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The equiform differential geometry of curves in
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Abstract. In this paper the equiform differential geometry of
curves in the pseudo-Galilean space G1

3 is introduced. Basic invariants
and a moving trihedron are described. Frenet formulas are derived and
the fundamental theorem of curves in equiform geometry of G1

3 is proved.
The curves of constant curvatures are described.
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1. Introduction

Theory of curves and the curves of constant curvature in the equiform differential
geometry of the isotropic spaces I1

3 and I2
3 , and the Galilean space G3 are described

in [7] and [8], respectively. In this paper we introduce the equiform differential
geometry, prove the fundamental theorem of curves and describe the curves of con-
stant curvature in the equiform differential geometry of G1

3. Although the equiform
geometry has minor importance related to usual one, the curves that appear here
in the equiform geometry, can be seen as generalizations of well-known curves from
above mentioned geometries and therefore could have been of research interest.

The pseudo-Galilean space is one of the real Cayley-Klein spaces. It has pro-
jective signature (0, 0,+,−) according to [6]. The absolute of the pseudo-Galilean
space is an ordered triple {ω, f, I} where ω is the ideal (absolute) plane, f a line in
ω and I is the fixed hyperbolic involution of the points of f .

The geometry of a pseudo-Galilean space G1
3 has been explained in details in

dissertation [1]. The curves in G1
3 are described in [2] and [4] and the surfaces in

[3] and [5]. The notions and the symbols therein will be used in this paper.
Let us first recall basic notions from pseudo-Galilean geometry.
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In the inhomogeneous affine coordinates for points and vectors (point pairs) the
similarity group H8 of G1

3 has the following form

x̄ = a+ b · x,
ȳ = c+ d · x+ r · coshϕ · y + r · sinhϕ · z, (1.1)
z̄ = e+ f · x+ r · sinhϕ · y + r · coshϕ · z,

where a, b, c, d, e, f, r and ϕ are real numbers. Particularly, for b = r = 1, the
group (1.1) becomes the group B6 ⊂ H8 of isometries (proper motions) of the
pseudo-Galilean space G1

3. The motion group leaves invariant the absolute figure
and defines the other invariants of this geometry.

It has the following form

x̄ = a+ x,

ȳ = c+ d · x+ coshϕ · y + sinhϕ · z, (1.2)
z̄ = e+ f · x+ sinhϕ · y + coshϕ · z.

According to the motion group in the pseudo-Galilean space, there are non-
isotropic vectors x(x, y, z) (for which holds x �= 0) and four types of isotropic
vectors: spacelike (x = 0, y2 − z2 > 0), timelike (x = 0 y2 − z2 < 0) and two types
of lightlike vectors (x = 0, y = ±z).

The scalar product of two vectors a = (a1, a2, a3) and b = (b1, b2, b3) in G1
3 is

defined by

a · b =

{
a1 · b1, a1 �= 0 or b1 �= 0,
a2 · b2 − a3 · b3, a1 = 0 and b1 = 0.

Let us recall basic facts about curves in pseudo-Galilean space, that were intro-
duced in [2].

A curve r(t) = (x(t), y(t), z(t)) is admissible if it has no inflection points, no
isotropic tangents or tangents or normals whose projections on the absolute plane
would be light-like vectors.

For an admissible curve r : I → G1
3, I ⊆ R the curvature κ(t) and the torsion

τ(t) are defined by

κ(t) =

√
|ÿ(t)2 − z̈(t)2|
(ẋ(t))2

,

τ(t) =
ÿ(t)

...
z (t)− ...

y (t)z̈(t)
|ẋ(t)|5 · κ2(t)

, (1.3)

expressed in components.
Hence, for an admissible curve r : I → G1

3, I ⊆ R parameterized by the arc
length s with differential form ds = dx, given by

r(x) = (x, y(x), z(x)), (1.4)

the formulas (1.3) have the following form

κ(x) =
√
|y′′(x)2 − z′′(x)2|,

τ(x) =
y′′(x)z′′′(x)− y′′′(x)z′′(x)

κ2(x)
. (1.5)
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The associated trihedron is given by

t = r′(x) = (1, y′(x), z′(x)),

n =
1

κ(x)
r′′(x) =

1
κ(x)

(0, y′′(x), z′′(x)), (1.6)

b =
1

κ(x)
(0, εz′′(x), εy′′(x)),

where ε = +1 or −1, chosen by criterion det(t,n,b) = 1, that means

|y′′2(x) − z′′2(x)| = ε(y′′2(x)− z′′2(x)).

The curve r given by (1.4) is time-like (resp. space-like) if n(x) is a space-like
(resp. time-like) vector. The principal normal vector or simply normal is space-like
if ε = +1 and time-like if ε = −1.

For derivatives of the tangent (vector) t, the normal n and the binormal b,
respectively, the following Serret-Frenet formulas hold

t′ = κ · n, n′ = τ · b, b′ = τ · n. (1.7)

From (1.7), we derive an important relation

r′′′(x) = κ′(x) · n(x) + κ(x) · τ(x) · b(x). (1.8)

2. Equiform transformations of the pseudo-Galilean space

Let us now introduce the notion of equiform transformations of the pseudo-Galilean
space G1

3.
Similarity group (1.1) maps a usual (formal) line element (dx = 0, dy, dz) in a

pseudo-Euclidean plane (i.e. x = const.) into a segment of length proportional to
the original with the coefficient of proportionality r. Other line elements (dx, dy, dz),
which lie on an isotropic plane (dx �= 0) are mapped into proportional ones with
the coefficient b. Therefore, all line segments are mapped into proportional ones
with the same coefficient of proportionality if and only if b = r.

With this condition we get a subgroup H7 ⊂ H8 which preserves length ratio of
segments and angles between planes and lines, respectively. Therefore it is justified
to call this group the group of equiform transformations of the pseudo-Galilean
space.

The structure of this group is described by the following theorem.
Theorem 2.1. Every equiform transformation e of the space G3

1 is a semi-direct
composition of a homothety h and an isometry i, i.e.
e = i ◦ h = h ◦ i. Here homothety h denotes the mapping (x, y, z) → (x̄, ȳ, z̄)
given by

x̄ = λ · x, ȳ = λ · y, z̄ = λ · z, (2.1)

with given coefficient λ > 0, fixing the origin (0, 0, 0).
Definition 2.2. Geometry of G3

1 induced by the 7-parameter equiform group
H7 is called the equiform geometry of the space G3

1.
According to the previous theorem, we can find invariants of the equiform group

by finding invariants of the homothety group and those of the isometry group.
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3. Frenet formulas in the equiform geometry of the pseudo-
Galilean space

Let r : I → G1
3 be an admissible curve. We define the equiform parameter of r by

σ :=
∫

ds

ρ
=

∫
κds,

where ρ = 1
κ is the radius of curvature of the curve r.

It follows
dσ

ds
=

1
ρ

i.e.
ds

dσ
= ρ. (3.1)

Let h be a homothety with the center in the origin and the coefficient λ. If we
put r̃ = h(r) then it follows

s̃ = λs and ρ̃ = λρ, (3.2)

where s̃ is the arc length parameter of r̃ and ρ̃ the radius of curvature of this curve.
Therefore, σ is an equiform invariant parameter of r.

Remark 3.1. Let us note that κ and τ are not invariants of the homothety
group, since from (1.3) it follows κ̃ = 1

λκ and τ̃ = 1
λτ.

The vector

T =
dr
dσ

is called a tangent vector of the curve r in the equiform geometry. From (1.6) and
(3.1) we get

T =
dr
ds

· ds
dσ

= ρ · dr
ds

= ρ · t. (3.3)

Further, we define the principal normal and the binormal vector, or simply the
normal and the binormal by

N = ρ · n, B = ρ · b. (3.4)

It is easy to check that the trihedron {T,N,B} is an equiform invariant trihedron
of the curve r.

Let us find now the derivatives of these triples with respect to σ, denoted by
prime (′). From (1.7), (3.1), (3.3) and (3.4) it follows

T′ =
dT
dσ

=
d

dσ
(ρt) =

d

ds
(ρt)

ds

dσ
= (ρ̇t+ ρṫ)ρ = ρ̇T+N,

where the derivative with respect to the arc length s is denoted by a dot. Similarly,
we obtain

N′ =
dN
dσ

= ρ̇N+ ρτB,

B′ =
dB
dσ

= ρτN + ρ̇B.
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Definition 3.2. The function K : I → R defined by

K = ρ̇ (3.5)

is called the equiform curvature of the curve r. Let us prove that K is a differential
invariant of the group of equiform transformations. If we put K̃ to be equiform
curvature of the curve r̃, then we have

K̃ = ˙̃ρ =
dρ̃

ds̃
=
d(λρ)
ds

ds

ds̃
= ρ̇ = K.

Definition 3.3. The function T : I → R defined by

T = ρτ =
τ

κ
(3.6)

is called the equiform torsion of the curve r. It is a differential invariant of the
group of equiform transformations, too.

Thus the formulas analogous to the Frenet formulas in the equiform geometry
of the pseudo-Galilean space have the following form

dT
dσ

= K ·T+N

dN
dσ

= K ·N+ T · B
dB
dσ

= T ·N+K · B.

Remark 3.4. The equiform parameter σ =
∫
κ(s)ds for closed curves is called

the total curvature, and it plays an important role in global differential geometry
of the Euclidean space. Also, the function τ

κ has been already known as a conical
curvature and it also has interesting geometric interpretation.

4. The fundamental theorem of curves in equiform geometry
of the pseudo-Galilean space

First of all, we recall the fundamental theorem of the pseudo-Galilean theory of
curves, proved in [2]. This theorem differs crucially from the analogous theorem
in Euclidian, isotropic or Galilean space. The uniqueness in this theorem is not
fulfilled and the reason for this is the existence of pseudo-Euclidean planes in
pseudo-Galilean space. As it is well known in pseudo-Euclidean plane geometry,
the uniqueness in the fundamental theorem of plane curves does not hold. Here is
the theorem.

Theorem 4.1 [[2]]. Let κ = κ(x) and τ = τ(x) be given functions so that
0 < κ(x) ∈ C1, 0 �= τ(x) ∈ C. There are two admissible curves (one timelike and
one spacelike) so that the following statements are true:

(1) c passes through a given point;

(2) at this point the Frenet trihedron of c concides with a given orthonormal pos-
itively oriented trihedron;
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(3) c can be represented as a vector function r(x) ∈ C3 with arc length parameter
x;

(4) κ(x) and τ(x) are the curvature and torsion of c, respectively.

Here C0 = C, C1, C2, C3 denote the corresponding continuous differentiability
classes of functions, respectively. This theorem implies the fundamental theorem
of curves of the equiform geometry of the pseudo-Galilean space.

Theorem 4.2. Let K = K(x) and T = T (x) be given functions so that 0 <
K(x) ∈ C1 and 0 �= T (x) ∈ C. There are two admissible curves (one timelike and
one spacelike) so that the following statements are true:

(1) c passes through a given point;

(2) at this point the equiform Frenet trihedron of c concides with a given positively
oriented equiform trihedron;

(3) c can be represented as a vector function r(x) ∈ C3 with arc length parameter
x;

(4) K(x) and T (x) are the equiform curvature and equiform torsion of c, respec-
tively.

Proof. From K(x) > 0 it follows

ρ(x) :=

x∫
0

K(t)dt > 0. (4.1)

Hence,

κ(x) :=
1

ρ(x)
> 0 and τ(x) := T (x) · κ(x) �= 0. (4.2)

Furthermore, by Theorem 4.1 it follows that there are two admissible curves that
pass through a given point, that the Frenet trihedron coincides with a given or-
thonormal positively oriented trihedron {t,n,b}, the curves can be represented as
a vector functions r(x) and κ(x) and τ(x) are the curvature and torsion of these
curves, respectively. Finally, we only need check the statement (2) and (4) of the
Theorem 4.2, but they follow from (3.3), (3.4), (4.1) and (4.2). ✷

5. Curves of the constant equiform curvature and torsion

In this section we consider four different cases for curves of constant equiform cur-
vature and torsion, which fulfill the conditions of Theorem 4.2.

A) K = const. �= 0, T = const. �= 0

According to (3.5) and (3.6) the curve is characterized by

ρ̇ = a,
τ

κ
= b,
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where a and b are non-zero real constants. It follows

κ =
1

as+ c
, τ =

b

as+ c
.

We can assume without loss of generality that c = 0, thus the natural equations of
the curve have the form

κ =
1
as
, τ =

b

as
. (5.1)

Further, the coordinate functions of the curve are:

x = s, y = y(s), z = z(s).

The relation (1.8), using (1.6), can be written into the coordinates, in the fol-
lowing way

(0, y′′′, z′′′) =
κ′

κ
· (0, y′′, z′′) + τ · (0, εz′′, εy′′).

Thus the computation of the coordinate functions y and z reduces to solving the
following symmetric system of ordinary differential equations

y′′′ =
κ′

κ
· y′′ + τ · εz′′, (5.2)

z′′′ =
κ′

κ
· z′′ + τ · εy′′.

Using formulas (5.1), this system takes the form

y′′′ = −1
s
· y′′ + ε

b

as
· z′′,

z′′′ = −1
s
· z′′ + ε

b

as
· y′′.

If we introduce the substitution as = t we get

t · d
3y

dt3
= −d2y

dt2
+ ε

b

a
· d

2z

dt2
,

t · d
3z

dt3
= −d2z

dt2
+ ε

b

a
· d

2y

dt2
.

Reducing the order (u = d2y
dt2 , v =

d2z
dt2 ) we obtain the system

du

dt
= −1

t
· u+ ε

b

at
· v, (5.3)

dv

dt
= −1

t
· v + ε

b

at
· u.

Eliminating v and dv
dt from this system, for a �= b, we get homogenous Euler’s

equation

a2t2 · d
2u

dt2
+ 3a2t · du

dt
+ (a2 − b2) · u = 0. (5.4)
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The general solution of this equation is given by

u(t) =
1
t

[
C1 cosh(

b

a
ln t) + C2 sinh(

b

a
ln t)

]
.

Further, because of u = d2y
dt2 = 1

a2
d2y
dx2 , we have

y′′(x) =
a

x

[
C1 cosh(

b

a
ln ax) + C2 sinh(

b

a
ln ax)

]
. (5.5)

For C1 = 1, C2 = 0, after integration, we get the particular solution

y′(x) =
a2

b
sinh(

b

a
ln ax),

or by putting t = b
a ln ax we obtain

y′(t) =
a2

b2
exp

a
b t sinh t.

Finally, after partial integration we have

y1(t) =
a2

b(b2 − a2)
exp

a
b t

(
b cosh t− a sinh t

)
.

The second particular solution of Euler’s equation (5.4) we get if in (5.5) we put
C1 = 0, C2 = 1. After integration we obtain function

y2(t) =
a2

b(b2 − a2)
exp

a
b t

(
b sinh t− a cosh t

)
.

In the similar way as described for the first particular solution, eliminating u
and du

dt from (5.3), we get the following homogenous Euler’s equation for v

a2t2 · d
2v

dt2
+ 3a2t · dv

dt
+ (a2 − b2) · v = 0. (5.6)

Solutions of this Euler’s equation, corresponding to solutions y1(t) and y2(t) are

z1(t) =
a2

b(b2 − a2)
exp

a
b t

(
b sinh t− a cosh t

)
,

z2(t) =
a2

b(b2 − a2)
exp

a
b t

(
b cosh t− a sinh t

)
.

According to the Theorem 4.1 we have obtained two curves satisfying conditions
(5.1). The parametric representations of the first curve is given by

x(t) =
1
a
exp

a
b t, y(t) =

a2

b(b2 − a2)
exp

a
b t

(
b cosh t− a sinh t

)
,
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z(t) =
a2

b(b2 − a2)
exp

a
b t

(
b sinh t− a cosh t

)
, (5.7)

and the second curve by

x(t) =
1
a
exp

a
b t, y(t) =

a2

b(b2 − a2)
exp

a
b t

(
b sinh t− a cosh t

)
,

z(t) =
a2

b(b2 − a2)
exp

a
b t

(
b cosh t− a sinh t

)
. (5.8)

These curves lie on the two cones of revolution (in the sense of G1
3)

y2 − z2 =
a6

b2(b2 − a2)
x2,

and

z2 − y2 =
a6

b2(b2 − a2)
x2,

respectively. Note that for a < b the first curve is space-like and the second time-
like, and for a > b vice versa.

Moreover, the obtained curves are isogonal trajectories of cone generators. We
prove this statement for the curve given by (5.7) and for the corresponding cone of
revolution. First of all, we find that the tangent vector of (5.7) has the form

(x′(t), y′(t), z′(t)) =
(1
b
exp

a
b t,

a2

b2
exp

a
b t sinh t,

a2

b2
exp

a
b t cosh t

)
,

and its improper point Ft (at infinity) has the following homogeneous coordinates

Ft

(
0 : 1 :

a2

b
sinh t :

a2

b
cosh t

)
.

The improper point Fg of a generator g is

Fg

(
0 : 1 :

a3

b(b2 − a2)
(b cosh t− a sinh t) :

a3

b(b2 − a2)
(b sinh t− a cosh t)

)
.

In the pseudo-Galilean space the angle between a tangent t and a generator g
is defined as the pseudo-Euclidian distance of the points Ft and Fg in the absolute
plane ω. Hence we have

ϕ =
a2√

|a2 − b2|
= const

and our statement is proved.
In a similar way, for the curve given by (5.8) we get the same result.
Since τ

κ = const., the curves are general helices and moreover they are also
conical helices.
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Figure 1. Conical helix

Remark 5.1. For a = b the system (5.3) has solution which is not an admissible
curve, because this condition implies equality dy

dt = ± dz
dt , that is not allowed by

definition of an admissible curve.
B) K = const. �= 0, T = 0

It follows

κ =
1

as+ c
, τ = 0.

The system (5.2) have the same form as in Galilean case and it follows

y′′′ =
κ′

κ
· y′′, z′′′ =

κ′

κ
· z′′.

Finally, we have

x = s, y(s) =
1
a2

(as+ b)
[
ln(as+ b)− 1

]
, z = 0

and this is an isotropic logarithmic spiral in G1
3.

1 2 3 4 5

-1

1

2

3

Figure 2. Isotropic logarithmic spiral
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C) K = 0, T = const. �= 0

These curves are characterized by

κ = const. �= 0, τ = const. �= 0,

and therefore τ
κ = const. holds.

According to [4] these are circular helices.

Figure 3. Circular helix

D) K = 0, T = 0

The natural equations of these curves are given by

κ = const. �= 0, τ = 0.

According to [1] these curves are the isotropic circles of the pseudo-Galilean space,
i.e. curves in G1

3 are isometric to the parabolas

y =
κ

2
x2, z = 0.
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