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A new application of quasi power increasing
sequences

HUSEYIN BoRr*

Abstract. By applying the concept of a (- power increasing se-
quence, the author presents a generalization of a result of Leindler [8]
dealing with | N,p, |, summability for the | N,p,,0, |k summability
factors. Some new results have also been obtained.
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1. Introduction

A positive sequence (by,) is said to be almost increasing if there exists a positive
increasing sequence (¢, ) and two positive constants A and B such that Ac,, < b, <
Bey, (see [1]). Obviously every increasing sequence is almost increasing. However,
the converse need not be true as can be seen by taking the example, say b, =
ne(=1" A positive sequence (7n) is said to be quasi S-power increasing sequence
if there exists a constant K = K (,7) > 1 such that

Knﬁfyn > mﬁ’)/m (1)

holds for all n > m > 1 (see [8]). It should be noted that every almost increasing
sequence is a quasi J-power increasing sequence for any nonnegative (3, but the
converse need not be true as can be seen by taking the example, say 7, = n~? for
8> 0. Let > a, be a given infinite series with partial sums (s,,). We denote by ¢,
the n-th (C,1) mean of the sequence (nay,). A series > a, is said to be summable
[C1 e > 1, if (see [5],[7))

o0

Z% | £, |F< 0. (2)

n=1
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Let (p,) be a sequence of positive numbers such that

n
Po=> p,—0o0 as n—oo, (Py=p;=0,i>1). (3)

v=0

The sequence-to-sequence transformation

1 n
On = 55~ DPvSv 4
e Z::O (4)

defines the sequence (0,) of the Riesz mean or simply the (N, p,) mean of the
sequence (s;), generated by the sequence of coefficients (p,) (see [6]). The series
> ay is said to be summable | N, p, |, k > 1, if (see [2])

S (Po/pa)t | Aoy [F< oo, (5)
n=1
where .
Pn
Aop_1 = “BP ;PU—NM;, n > 1. (6)

In the special case p, = 1 for all values of n | N,p,, | . summability is the same as
| C, 1|, summability.
Let (6,,) be any sequence of positive real constants. The series > a,, is said to be
summable | N, p,, 0, |k, k > 1, if (see [9])

o0

> 0 Aoy |F< o (7)

n=1

If we take 6,, = S", then | N,pp, 0, |x summability reduces to | N,p, |, summa-

bility. Also if we take 6,, = n and p, = 1 for all values of n, then we get | C, 1 |
summability. Furthermore if we take 6,, = n, then | N,p,,0, | summability re-
duces to | R, pn | (see [3]) summability.

2. Known results

Bor [ 4] has proved the following theorem for | N, p,, |, summability factors.

Theorem A. Let (X,,) be an almost increasing sequence and let the condition

1
D= lsn[f=0(Xm) (8)
n
n=1
be satisfied. If the sequences (,) and (\,) satisfy the conditions
| AN [ Ba, 9)
Bn — 0, (10)
> | ABy | Xy < o0, (11)
n=1

| An | X = O(1), (12)
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and furthermore if (pn) is a positive sequence such that
o~ Pn
>y L 1= O(Xw) (13)

then the series Y an\y, is summable | N,p, |x, k > 1.
Leindler [8] has proved Theorem A by using a quasi f— power increasing se-
quence instead of an almost increasing sequence. His theorem is as follows:

Theorem B. Let (X,,) be a quasi B— power increasing sequence for some 0 <
B < 1. If all conditions from (8) to (13) are satisfied, then the series ) an\, is
summable | N,pn |k, k > 1.

3. The main result

The aim of this paper is to generalize Theorem B for | N, p,, 0, | . summability.
Now we shall prove the following theorem.

Theorem. Let ( "p") be a nmon-increasing sequence. If all the conditions of
Theorem B are satisfied with the condition (13) replaced by

ﬁ:j (5 ) s [= O(X0), (14)

then the series . apA, is summable | N, pn, 0 |k, k > 1.

If we take 0, = S 2 then we get Theorem B. In this case condition (14) reduces

to condition (13) and the condition (9’1“3&) which is a non-increasing sequence is

automatically satisfied.

We need the following lemma for the proof of our Theorem.

Lemma 1 ([8]). Under the conditions on (X,), (Bn) and (A\,) as taken in the
statement of the Theorem, the following conditions hold :

anﬁn = 0(1), (15)
> BuXn < . (16)
n=1

4. Proof of the Theorem

Let (T},) be the sequence of (N, p,, ) mean of the series > a,\,. Then, by definition,

we have
1 n v
T, = — v D 17
PN "

Then

Ty—Th 1= v—10u Ay, 12> 1. (18)
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Using Abel’s transformation, we get

Ty—Th 1=

n—1 n—1

P Pn ) yz::p'us'u)\ + = P, P vz::P S’L)A)\’l)+ Pn SnAn

Tn,l + Tn,2 + Tn,3; say.

To prove the theorem, by Minkowski’s inequality, it is sufficient to show that

o0
29271 | Ty |F< 00,  for r=1,2,3.

n=1

Firstly by using Holder’s inequality, we have that

m+1

Z 92_1 | Tna |k

n=2

IN

X

m—+1 n—1

Zek 1|PPn 12]71)31) vl

n=2 v=1

n=2

1 n—1 k—1
{550

(19)

m+1 )t 1 2
S0 (B) o o I a A s
n n=i y=1

m m+1 D k—1
DVAEIEIEDS (%) o

n=v+1

k—1
va|)‘v||5v|k<ypv> pr_
n=v+1

m

P k—1 1
k vPv
W3 1A o] (%) %
Zwek (5 ) 50 ¥
k
1>ZA|AE|205?1<%> o I
v=1 r=1 r
m P k
Ml oot (B sl
v=1 v

m—1

Zlmle +O) | A | X

H’—‘

3 e

O(1) Y BuXy +0(1) | A | X =O(1) as

v=1
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in view of hypotheses of the Theorem and Lemma.
Also we get that

m—+1 m—+1
k—1 k__ k—1 k
nz::zen | T2 |F= Ze |PPn 1;PSUA)\U|
m—+1

IN

k—1
n ! >
Zek l(p )P Z:P |5v| ﬁv {K;Pyﬁv}
A N A
1)z::PU|sU| Bo D (pn ) PP,

n=v+1

k—1 m+1

7Jp7j pn
ZPyﬂv | 50 |F < > PP
n=v+1
Zﬂv Sy |k ( vpv)k !
91211 k—1 m .
- o) (?) stw
Z v6, L2
:"11 |50 |® £
=0(1) ZAvﬂy Z 5r +0(1 mﬂmz Sv

r=1 v=1

S
Il

=0(1) | A(vBy) | Xo + O(1)mB X

i 3
- -

3
|

=01) ) [+ [AB | =B |]Xs+O1)mbnX

S
Il

=0(1) > v | A8 | Xy +0( Zwmx +O()mfn X

v

3

v=1

=0(1) as m— oo,

by virtue of hypotheses of the Theorem and Lemma..
Finally, as in T}, ; we have that

m
292_1|Tn,3| ng 1| Sn n|k
n=1 n=1
m D k
=01 ak—1<—") A ] An P71 s |
();n Pnllllll

DI (g—") s |F= 0(1) as m — oco.
n=1 n
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Therefore we get that
m
Zﬂffl | T |F=0(1) as m — oo, for r=1,23.
n=1

This completes the proof of the Theorem. O

If we take p, = 1 for all values of n and #,, = n, then we get a new result
concerning the | C,1 |, summability factors. Also, if we take p,, = 1 for all values of
n, then we have a new result for | C, 1,6, |, summability. Furthermore, if we take
6, = n, then we have another new result for | R, p,, |, summability. Finally, if we

take p, = n+-17 then we get a result for | NV, n+-17 0y, | summability.
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