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A new application of quasi power increasing
sequences

Hüseyi̇n Bor
∗

Abstract. By applying the concept of a β- power increasing se-
quence, the author presents a generalization of a result of Leindler [8]
dealing with | N̄, pn |k summability for the | N̄ , pn, θn |k summability
factors. Some new results have also been obtained.
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1. Introduction

A positive sequence (bn) is said to be almost increasing if there exists a positive
increasing sequence (cn) and two positive constants A and B such that Acn ≤ bn ≤
Bcn (see [1]). Obviously every increasing sequence is almost increasing. However,
the converse need not be true as can be seen by taking the example, say bn =
ne(−1)n

. A positive sequence (γn) is said to be quasi β-power increasing sequence
if there exists a constant K = K(β, γ) ≥ 1 such that

Knβγn ≥ mβγm (1)

holds for all n ≥ m ≥ 1 (see [8]). It should be noted that every almost increasing
sequence is a quasi β-power increasing sequence for any nonnegative β, but the
converse need not be true as can be seen by taking the example, say γn = n−β for
β > 0. Let

∑
an be a given infinite series with partial sums (sn). We denote by tn

the n-th (C,1) mean of the sequence (nan). A series
∑

an is said to be summable
| C, 1 |k, k ≥ 1 , if (see [5],[7])

∞∑
n=1

1
n
| tn |k< ∞. (2)

∗Department of Mathematics, Erciyes University, 38 039 Kayseri, Turkey, e-mail:
bor@erciyes.edu.tr



266 H.Bor

Let (pn) be a sequence of positive numbers such that

Pn =
n∑

v=0

pv → ∞ as n → ∞, (P−i = p−i = 0, i ≥ 1). (3)

The sequence-to-sequence transformation

σn =
1
Pn

n∑
v=0

pvsv (4)

defines the sequence (σn) of the Riesz mean or simply the (N̄ , pn) mean of the
sequence (sn), generated by the sequence of coefficients (pn) (see [6]). The series∑

an is said to be summable | N̄ , pn |k, k ≥ 1, if (see [2])
∞∑

n=1

(Pn/pn)k−1 | ∆σn−1 |k< ∞, (5)

where

∆σn−1 = − pn

PnPn−1

n∑
v=1

Pv−1av, n ≥ 1. (6)

In the special case pn = 1 for all values of n | N̄ , pn |k summability is the same as
| C, 1 |k summability.
Let (θn) be any sequence of positive real constants. The series

∑
an is said to be

summable | N̄, pn, θn |k, k ≥ 1, if (see [9])
∞∑

n=1

θk−1
n | ∆σn−1 |k< ∞. (7)

If we take θn = Pn

pn
, then | N̄ , pn, θn |k summability reduces to | N̄, pn |k summa-

bility. Also if we take θn = n and pn = 1 for all values of n, then we get | C, 1 |k
summability. Furthermore if we take θn = n, then | N̄, pn, θn |k summability re-
duces to | R, pn |k (see [3]) summability.

2. Known results

Bor [ 4] has proved the following theorem for | N̄ , pn |k summability factors.

Theorem A. Let (Xn) be an almost increasing sequence and let the condition
m∑

n=1

1
n
| sn |k= O(Xm) (8)

be satisfied. If the sequences (βn) and (λn) satisfy the conditions

| ∆λn |≤ βn, (9)
βn → 0, (10)
∞∑

n=1

n | ∆βn | Xn < ∞, (11)

| λn | Xn = O(1), (12)
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and furthermore if (pn) is a positive sequence such that

m∑
n=1

pn

Pn
| sn |k= O(Xm), (13)

then the series
∑

anλn is summable | N̄ , pn |k, k ≥ 1.
Leindler [8] has proved Theorem A by using a quasi β− power increasing se-

quence instead of an almost increasing sequence. His theorem is as follows:

Theorem B. Let (Xn) be a quasi β− power increasing sequence for some 0 <
β < 1. If all conditions from (8) to (13) are satisfied, then the series

∑
anλn is

summable | N̄ , pn |k, k ≥ 1.

3. The main result

The aim of this paper is to generalize Theorem B for | N̄ , pn, θn |k summability.
Now we shall prove the following theorem.

Theorem. Let
(

θnpn

Pn

)
be a non-increasing sequence. If all the conditions of

Theorem B are satisfied with the condition (13) replaced by

m∑
n=1

θk−1
n

(
pn

Pn

)k

| sn |k= O(Xm), (14)

then the series
∑

anλn is summable | N̄ , pn, θn |k, k ≥ 1.
If we take θn = Pn

pn
, then we get Theorem B. In this case condition (14) reduces

to condition (13) and the condition
(

θnpn

Pn

)
which is a non-increasing sequence is

automatically satisfied.
We need the following lemma for the proof of our Theorem.
Lemma 1 ([8]). Under the conditions on (Xn), (βn) and (λn) as taken in the

statement of the Theorem, the following conditions hold :

nXnβn = O(1), (15)
∞∑

n=1

βnXn < ∞. (16)

4. Proof of the Theorem

Let (Tn) be the sequence of (N̄ , pn) mean of the series
∑

anλn. Then, by definition,
we have

Tn =
1
Pn

n∑
v=0

pv

v∑
r=1

arλr. (17)

Then

Tn − Tn−1 =
pn

PnPn−1

n∑
v=1

Pv−1avλv, n ≥ 1. (18)
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Using Abel’s transformation, we get

Tn − Tn−1 = − pn

PnPn−1

n−1∑
v=1

pvsvλv +
pn

PnPn−1

n−1∑
v=1

Pvsv∆λv +
pn

Pn
snλn

= Tn,1 + Tn,2 + Tn,3, say.

To prove the theorem, by Minkowski’s inequality, it is sufficient to show that

∞∑
n=1

θk−1
n | Tn,r |k< ∞, for r = 1, 2, 3. (19)

Firstly by using Hölder’s inequality, we have that

m+1∑
n=2

θk−1
n | Tn,1 |k =

m+1∑
n=2

θk−1
n | pn

PnPn−1

n−1∑
v=1

pvsvλv |k

≤
m+1∑
n=2

θk−1
n

(
pn

Pn

)k 1
Pn−1

n−1∑
v=1

pv | λv || λv |k−1| sv |k

×
{

1
Pn−1

n−1∑
v=1

pv

}k−1

= O(1)
m∑

v=1

pv | λv || sv |k
m+1∑

n=v+1

(
θnpn

Pn

)k−1
pn

PnPn−1

= O(1)
m∑

v=1

pv | λv || sv |k
(
θvpv

Pv

)k−1 m+1∑
n=v+1

pn

PnPn−1

= O(1)
m∑

v=1

pv | λv || sv |k
(
θvpv

Pv

)k−1 1
Pv

= O(1)
m∑

v=1

| λv | θk−1
v

(
pv

Pv

)k

| sv |k

= O(1)
m−1∑
v=1

∆ | λv |
v∑

r=1

θk−1
r

(
pr

Pr

)k

| sr |k

+O(1) | λm |
m∑

v=1

θk−1
v

(
pv

Pv

)k

| sv |k

= O(1)
m−1∑
v=1

| ∆λv | Xv + O(1) | λm | Xm

= O(1)
m−1∑
v=1

βvXv + O(1) | λm | Xm = O(1) as m → ∞,



Quasi power increasing sequences 269

in view of hypotheses of the Theorem and Lemma.
Also we get that

m+1∑
n=2

θk−1
n | Tn,2 |k=

m+1∑
n=2

θk−1
n | pn

PnPn−1

n−1∑
v=1

Pvsv∆λv |k

≤
m+1∑
n=2

θk−1
n

(
pn

Pn

)k 1
Pn−1

n−1∑
v=1

Pv | sv |k βv ×
{

1
Pn−1

n−1∑
v=1

Pvβv

}k−1

= O(1)
m∑

v=1

Pv | sv |k βv

m+1∑
n=v+1

(
θnpn

Pn

)k−1
pn

PnPn−1

= O(1)
m∑

v=1

Pvβv | sv |k
(
θvpv

Pv

)k−1 m+1∑
n=v+1

pn

PnPn−1

= O(1)
m∑

v=1

βv | sv |k
(
θvpv

Pv

)k−1

= O(1)
(
θ1p1

P1

)k−1 m∑
v=1

βv | sv |k

= O(1)
m∑

v=1

vβv
| sv |k

v

= O(1)
m−1∑
v=1

∆(vβv)
v∑

r=1

| sr |k
r

+ O(1)mβm

m∑
v=1

| sv |k
v

= O(1)
m−1∑
v=1

| ∆(vβv) | Xv + O(1)mβmXm

= O(1)
m−1∑
v=1

| (v + 1) | ∆βv | − | βv | | Xv + O(1)mβmXm

= O(1)
m−1∑
v=1

v | ∆βv | Xv + O(1)
m−1∑
v=1

| βv | Xv + O(1)mβmXm

= O(1) as m → ∞,

by virtue of hypotheses of the Theorem and Lemma..
Finally, as in Tn,1 we have that

m∑
n=1

θk−1
n | Tn,3 |k =

m∑
n=1

θk−1
n | pn

Pn
snλn |k

= O(1)
m∑

n=1

θk−1
n

(
pn

Pn

)k

| λn || λn |k−1| sn |k

= O(1)
m∑

n=1

| λn | θk−1
n

(
pn

Pn

)
| sn |k= O(1) as m → ∞.
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Therefore we get that

m∑
n=1

θk−1
n | Tn,r |k= O(1) as m → ∞, for r = 1, 2, 3.

This completes the proof of the Theorem. ✷

If we take pn = 1 for all values of n and θn = n, then we get a new result
concerning the | C, 1 |k summability factors. Also, if we take pn = 1 for all values of
n, then we have a new result for | C, 1, θn |k summability. Furthermore, if we take
θn = n, then we have another new result for | R, pn |k summability. Finally, if we
take pn = 1

n+1 , then we get a result for | N̄, 1
n+1 , θn |k summability.
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