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Fast potential step measurements (0.9 ® 1.9 ® 0.9 V, E vs. she) with simultaneous monitoring

of the double layer capacity were applied in the study of the kinetics of PAA adsorption on

gold from 0.5 M H2SO4, at 293 K. It was shown that the addition of PAA to the solution at 1.9 V

(in the presence of a very thin oxide layer at the gold surface of � 1 nm) does not affect the

value of the capacity of the Au/Au2O3/PAA-solution interface, which was also confirmed by

Electrochemical Impedance Spectroscopy. After the very fast cathodic reduction of the thin ox-

ide layer (step 1.9 ® 0.9 V) for several milliseconds, the initial adsorption of PAA molecules

at the bare gold surface reappeared in � 10 ms, causing exhaustion of the metal/solution boun-

dary layer. The induction region (dq/dt � 0) as well as the diffusion controlled region (dq/dt =

const. = f Mn((PAA); cPAA) are characteristic of low concentrations in the solution. According

to the experimentally obtained linear parts of the (q / logt)-dependences, values of the diffusion

coefficient of PAA-molecules with different molecular weights were calculated. These values

follow fairly well the empirical equation: DPAA = 7.03 × 10–4 Mn
–0.66 cm2 s–1. Using the same

procedure, the diffusion coefficient of 9 × 10–6 cm2 s–1 for adsorption of »small« organic mole-

cules, such as HMBT, was calculated.
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INTRODUCTION

The electrochemist is, naturally, primarily interested in

the kinetics and the mechanisms of electrode processes

with time as the fundamental variable.1–12 Although ad-

sorption is often a major step in overall electrode reac-

tions, it is remarkable to note that the double layer has

been considered merely as a static structure.

In the past, most adsorption studies were directed to

the thermodynamics of adsorption and to the inhibiting

properties displayed by a surfactant toward faradaic pro-

cesses, while very little attention was paid to the kinetic

aspects.

Studies of the kinetics of the establishment of adsorp-

tion equilibrium are of fundamental importance for under-

standing its mechanism and for evaluating the reliability

of the obtained data on adsorption. The rate of establish-

ment of equilibrium during adsorption depends on the

chemical nature of the polymer and its molecular weight,

the solvent, and the type of adsorbent. In most cases, ki-

netic curves indicate an increase in the amount of adsorb-

ed polymer with time, with an asymptotic approximation

to the equilibrium value.

Diffusion of polymers to the surface of the adsor-

bent or into its pores is almost always the stage that de-

termines the adsorption rate.

Polyelectrolyte adsorption on interfaces also concerns

various applications such as flocculation and steric stabi-

lization of colloidal particles in an aqueous phase, oil re-
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covery, and soil conditioning. In these cases, both the ad-

sorbance of polyelectrolytes and the conformation of the

adsorbed polymer, which is connected with the thickness

of the adsorbed layer, are very important.

The aim of this study is to investigate and to com-

pare the kinetics of adsorption of macromolecules (poly-

acrylamide, PAA, Mn = 5 000–1 500 000 g mol–1) with

that of some small organic molecules, such as 1-hydroxy-

methyl-1,2,3-benzotriazole, HMBT) on polycrystalline

gold from sulfuric acid.11

EXPERIMENTAL

Experiments were carried out in a classical thermostated elec-

trochemical cell, at 293 K, using a gold wire (d = 0.5 mm,

0.25 cm2) as a working electrode and a gold foil (10 cm2)

as an auxiliary electrode. Potentials were measured against

the Hg/Hg2SO4 reference electrode and were referred to the

standard hydrogen electrode (she).

The kinetics of PAA adsorption on gold from 0.5 M

H2SO4 were studied using the potentiostatic method with si-

multaneous monitoring of the dl-capacity.13 The program ap-

plied in these investigations is shown in Figure 1.

The method of fast (potential) pulse measurements,

following the current (t > 10–7 s) and capacity (t > 10–3 s)

transients14,15 was also used in this study. This method al-

lows us to look into the very fast processes (microseconds)

taking place at the metal/solution interface.

Aqueous solutions of 0.5 M H2SO4 were prepared

from 98 % (w) p.a. H2SO4 (Merck) and redistilled water

(k < 2 × 10–7 S cm–1). PAA was obtained by redox-initiated

polymerization of acrylamide. Six fractions of PAA with

molecular weights from 5 000 to 1 500 000 g mol–1 were

used in the study. The polydispersity index of PAA ranged

from 1.2 to 1.35.

RESULTS AND DISCUSSION

Processes gold oxidation and formation of a thin oxide

film (ca. 0.9 ± 0.1 nm), stepping from 0.9 to 1.9 V (with

100 V/s), and especially its reduction (1.9 V ® 0.9 V),

are fast processes (5–10 ms), as determined by log j / log

t profiles (not shown in this paper) and confirmed later

from C / log t data.

These steps (0.9 V ® 1.9 V ® 0.9 V, E vs. she) were

repeated at least 10 times, and after that a given quantity

of PAA was added into the solution at the potential of

1.9 V (in the presence of Au2O3 film, Figure 1b). The

capacity was practically constant after the PAA addition

into solution, and this is additional evidence that PAA

does not adsorb at the gold oxide/solution interface. This

fact was also confirmed by EIS (Electrochemical Imped-

ance Spectroscopy), Figure 2. After a certain period of

time (� 100 s), the potential was stepped from 1.9 to 0.9
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Figure 1. Schematic representation of the capacity-time (C/t)-pro-
files during the process of formation (1.9 V) and reduction (0.9 V)
of Au2O3 at the gold/solution interface; (a) without PAA; (b) with
PAA in the solution; (PAA was added at 1.9 V, E vs. she).

Figure 2. Experimental and fitted Bode-plots (using the Boukamp
program)17 for the system: Au/0.5 M H2SO4 at E vs. she = 1.9 V
and 293 K; –D– and –x– without PAA in the solution; –o– and –�– in
the presence of PAA (wPAA = 100 ppm, M = 1 500 000 g mol–1).

Figure 3. Capacity-time (C/t)-profiles for PAA (5 000 g mol–1) ad-
sorption at the gold/solution interface (0.9 V, E vs. she) for several
PAA concentrations (w = 1, 5, 20 ppm) in the solution.



V (reduction of gold oxide and simultaneous adsorption

of PAA at the bare gold surface) and capacity-time pro-

files were registered (Figure 3).

It can be seen that the capacity values (after fast re-

duction of Au2O3) for t � 1 s are significantly lower than

those obtained in the absence of PAA and regularly de-

pend on the PAA-concentration in solution. After that,

the capacity monotonically decreases reaching a limiting

value for t ® ¥ (Figure 3).

Kinetic (q vs. time) curves for PAA adsorption on

gold shown in Figures 4 and 5 were obtained using pre-

viously determined values for capacity, in the absence

(Cq=0) or in the presence of PAA (Cm
q) in the solution

(as a function of time, Figure 3) and two-condenser

model. This model assumes parallel existence of covered

parts of a metallic surface with adsorbed PAA molecules

(q) and an uncovered part (1 – q). Thus, the measured

value of the overall capacity can be given as:

Cm
q = Cm

q=0(1 – q) + Cm
q=1q or (1)

q = (Cm
q=0 – Cm

q) / (Cm
q=0 – Cm

q=1) (2)

It should be mentioned that the value of Cm
q=1 was

determined as a limiting (minimum) value of the capa-

city for cPAA ® ¥ and t ® ¥ at 0.9 V, E vs. she (12 ± 0.5

mF cm–2 in our case).

Four regions (steps) can be observed on these curves

(Figures 4 and 5):

(i) The initial adsorption step, point A.

(ii) The induction period, region A–B.

(iii) The diffusion controlled PAA adsorption, region B–C.

(iv) The saturation of the gold surface with adsorbed PAA-

molecules, C–D region.

KINETICS OF POLYACRYLAMIDE ADSORPTION ON GOLD 463

Croat. Chem. Acta 81 (3) 461¿466 (2008)

Figure 4. Surface coverage (q) vs. time dependences for PAA
(5 000 g mol–1) adsorption on gold from 0.5 M H2SO4 (wPAA =
1, 5, 20 ppm) at E vs. she = 0.9 V; point A, initial adsorption;
A–B induction period; B–C diffusion controlled adsorption and
C–D saturation of the adsorbed layer.

TABLE I. Parameters for adsorption kinetics of PAA on gold at 0.9 V (E vs. she) and 293 K

Mn ( )
–

PAA

g mol 1

w cPAA PAA

–3ppm mol dm











q ( / ) ( )

–

d d aq t ⋅103

1s

nads

mol cm s–2 –1

b( ) dexh

cm

⋅103

(t ® 0) (t ® ¥)

5 000 1

5

20

(2 × 10–7)

(1 × 10–6)

(4 × 10–6)

0.08

0.31

0.48

0.767

0.798

0.853

4.24

4.47

3.57

7.38 × 10–14

7.73 × 10–14

6.18 × 10–14

6.9

5.4

2.1

225 000 1

2

5

20

(4.44 × 10–9)

(8.88 × 10–9)

(2.22 × 10–8)

(8.88 × 10–8)

0.123

0.224

0.434

0.470

0.780

0.805

0.830

0.845

1.78

2.30

2.17

1.34

2.37 × 10–16

3.06 × 10–16

2.90 × 10–16

1.78 × 10–16

3.7

3.4

2.6

0.7

1 500 000 1

2

5

20

(6.7 × 10–10)

(1.34 × 10–9)

(3.33 × 10–9)

(1.34 × 10–8)

0.114

0.170

0.360

0.520

0.782

0.811

0.849

0.855

1.69

2.48

2.53

1.45

1.98 × 10–17

2.90 × 10–17

2.96 × 10–17

1.70 × 10–17

2.00

1.50

1.26

0.45

(a) B–C region.
(b) Calculated by nads = (dq/dt) ⋅ cs

q=1.

Figure 5. Surface coverage (q) vs. time dependences for PAA
(1 500 000 g mol–1) adsorption on gold from 0.5 M H2SO4

(wPAA = 1, 2, 5, 20 ppm) at E vs. she = 0.9 V.



Point A (Figure 4) represents the initial coverage (q)

of the metal/solution interface with adsorbed polymer

molecules for t < 1 s. Fast pulse measurements, repre-

sented in the Figures 6 and 7, confirm these findings.

On the other hand, the values of the initial surface

coverage also depend on the PAA-concentration in the

solution (Figures 3, 4 and Table I) and it can be assumed

that the adsorption process during this step is under ki-

netic control. Otherwise, the transport of PAA molecules

through a very thin layer of solution, after electrochemical

fast reduction of Au2O3 film (� 1 nm), is an extremely

fast process (for DPAA � 10–8 cm2 s–1; t = x2 / 2D = (10–7)2 /

2 × 10–8 = 5 × 10–7 s).16

As can been seen from Figures 4 and 5, the induc-

tion period A–B (dq/dt � 0) appears only for very low

values of PAA mass fraction, wPAA � 5 ppm and its dura-

tion depends both on the concentration and molecular

weight of PAA. This period is necessary for the transport

of PAA-molecules from the bulk of solution to the me-

tal/solution-boundary layer exhausted in the process of

the initial step of adsorption; tAB / s = dexh
2 / 2D, Table I.

The values of cs
q=1 were calculated with regard to

the size of polymer coils in dilute polymer solutions, as

given in the paper of Schwartz16 (RG / nm = 7.49 × 10–3

´ Mn
0.64 or s / nm2 = RG

2 p). These values are presented

in Table II.

Region B–C (Figures 4 and 5) shows fairly good

linear parts whose slope (dq / dt) and duration also de-

pend on the PAA-concentration in the solution and/or

the size of the uncovered part of the metal surface (1 –

qin). For lower PAA concentrations, this step (B–C) is

relatively slow and the limiting values of surface cover-

age can be achieved after about 10 minutes. For higher

values of PAA mass fraction (w � 5 ppm), this region is

shorter and the rate of adsorption (under diffusion con-

trol) mainly depends on the available bare metal surface

(1 – qin).

The thickness of the exhausted layer (dexh) close to

the metal surface, after the initial step of adsorption (for

t � 10 ms), can be also approximately determined (Table

I) from the equation:

dexh / cm =
q q

t sc

c

→
=⋅0

1

sol
PAA

(3)

where cs
q=1 is the limiting surface concentration of PAA

molecules (expressed in mol cm–2) and csol
PAA is the PAA

concentration in the solution (expressed in mol cm–3).

Assuming the diffusion controlled adsorption process

in region B–C, especially for low initial coverage (qin), it

follows:

d

d
III

q

t



 


 ⋅ cs

q=1 = nads = – D
∂
∂

c

x
mol cm–2 s–1 (4)

where ∂c c≈ 0
PAA and ∂x ≈ dexh.

Thus, the calculated values of the diffusion coeffi-

cient for PAA (using data from Table I; for wPAA = 1 ppm)

are:

D5 000 = 2.54 × 10–6 cm2 s–1; D225 000 = 1.97 × 10–7

cm2 s–1; D1 500 000 = 5.9 × 10–8 cm2 s–1.

Evidently, the calculated values of the diffusion con-

stants for PAA significantly depend on its molecular

weight, or the size of the statistical polymer coils in the

solution, and they are in a good agreement with the litera-

ture data for a similar system.16

The limiting value of the surface coverage (qlim), for

steady-state conditions, can be obtained from region

C–D, Figure 4; where: (dq / dt)C–D << (dq / dt)B–C, and

(dq / dt)C–D ® 0. These values are also presented in Ta-

ble I (q for t ® ¥).

All the above considerations can be additionally

confirmed by means of fast (potential) pulse measure-

ments following the current and capacity transients (Fig-

ures 6 and 7).

The same experimental and calculation procedure

was, also applied for the adsorption of »small« organic

molecules (HMBT) at the gold/H2SO4 interface. The ob-

tained results are presented in Figure 8 and Table III.
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TABLE II. Basic parameters for statistical polymer coils (assuming
ball-shaped polymer coils, both in solution and at metallic sur-
face)

Mn

g mol–1

RG

nm

s

nm2

cs
q=1

mol cm–2 mg cm–2

5 000 1.75 9.6 1.74 × 10–11 8.7 × 10–5

22 000 4.50 64 2.6 × 10–12 5.72 × 10–5

225 000 20.0 1 250 1.33 × 10–13 3.0 × 10–5

680 000 40.5 5 150 3.22 × 10–14 2.19 × 10–5

1 500 000 67.0 14 170 1.17 × 10–14 1.76 × 10–5

Figure 6. Capacity-time (C/t) dependences for adsorption of PAA
(5 000 g mol–1) at the gold/solution interface during a fast poten-
tial step from 1.9 to 0.9 V (E vs. she) and the presence of several
concentrations of PAA (wPAA = 1, 5, 50 ppm) in the solution.



Comparing Figures 4 and 5 (for PAA) with that for

HMBT (Figure 8) it can be concluded that the rate of

HMBT adsorption is significantly faster. The calculated

value of the diffusion coefficient for HMBT molecules

was about 9 × 10–6 cm2 s–1, which is in good accord with

literature data for many other "small" organic molecules.

CONCLUSIONS

The study of PAA adsorption kinetics on polycrystalline

gold from 0.5 M H2SO4 (at E vs. she = 0.9 V and 293 K)

clearly indicates the existence of four regions: initial, in-

duction, diffusion controlled regions and saturation of the

metal surface with adsorbed PAA-molecules.

The initial step is very fast (t � 10 ms) and kineti-

cally controlled. The following three regions are diffu-

sion controlled; dq / dt = f ((1 – qin) ; Mn(PAA); cPAA)).

On the basis of the experimentally obtained linear

(q / log t)-dependences, for the diffusion controlled re-

gion B–C, values of the diffusion coefficient of PAA

molecules with different molecular weights were calcu-

lated. These values follow fairly well the empirical

equation: DPAA / cm2 s–1 = 7.03 × 10–4 Mn
–0.66 and are in

good agreement with the literature values for the diffu-

sion coefficient of PAA-molecules with similar molecu-

lar weights.16

Using the same procedure, the diffusion coefficient

of 9 × 10–6 cm2 s–1 for adsorption of "small" organic

molecules such as HMBT was calculated.
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q t
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–2 –1
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10
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Figure 7. Capacity-time (C/t) dependences for adsorption of PAA
(1 500 000 g mol–1) at the gold/solution interface during the fast
potential step from 1.9 to 0.9 V (E vs. she) and the presence of
several concentrations of PAA (wPAA = 5, 20, 100 ppm) in the so-
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Kinetika adsorpcije poliakrilamida na polikristalini~nom zlatu

Dragica Chamovska, Maja Cvetkovska i Toma Grchev

Kinetika adsorpcije poliakrilamida na zlato u otopini 0,5 M H2SO4 pri 293 K mjerena je uz brzu promjenu

potencijala (0,9→ 1,9→ 0,9 V, E vs. she), a simultano je odre|ivan kapacitet dvostrukog sloja. Pokazano je da

dodatak PAA u otopinu pri 1.9 V (u prisustvu tankog oksidnog sloja na povr{ini zlata, ≈ 1 nm) ne utje~e na ka-

pacitet Au/Au2O3/PAA me|upovr{ine, {to je tako|er potvr|eno elektrokemijskom impedancijskom spektrosko-

pijom. Nakon vrlo brze (nekoliko milisekundi) katodne redukcije tankog oksidnog sloja (korak 1,9 → 0,9 V),

dolazi do adsorpcije molekula PAA na povr{inu zlata (≈ 10 ms). Podru~je indukcije (dq/dt ≈ 0), kao i podru~je

difuzijske kontrole (dq/dt ≈ konst = f Mn((PAA); cPAA), karakteristi~ni su za niske koncentracije u otopini. Vri-

jednosti difuzijskog koeficijenta PAA razli~itih molarnih masa izra~unate su prema eksperimentalno utvr|enoj

linearnoj ovisnosti (q / logt). Dobivene vrijednosti se prili~no dobro sla`u s empirijskom jednad`bom: DPAA =

7,03 × 10–4 Mn
–0.66 cm2 s–1. Difuzijski koeficijent za adsorpciju "malih" organskih molekula kao HMBT odre-

|en je istim postupkom i iznosi 9 × 10–6 cm2 s–1.
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