Trigonometric Proof of Steiner-Lehmus Theorem in Hyperbolic Geometry

Trigonometric Proof of Steiner-Lehmus Theorem in Hyperbolic Geometry

ABSTRACT
In this study, we give a trigonometric proof of the Steiner-Lehmus Theorem in hyperbolic geometry.

Key words: hyperbolic geometry, hyperbolic triangle
MSC 2000: 51K05, 51K99

1 Introduction
Elementary hyperbolic geometry was born in 1903 when Hilbert provided, using the end-calculus to introduce coordinates, a first-order axiomatization for it by adding to the axioms for plane absolute geometry a hyperbolic parallel axiom stating that “Through any point \(P \) not lying on a line \(l \) there are two rays \(r_1 \) and \(r_2 \), not belonging to the same line, which do not intersect \(l \), and such that every ray through \(P \) contained in the angle formed by \(r_1 \) and \(r_2 \) does intersect \(l' \)” [2]. The hyperbolic geometry is a non-euclidean geometry. Here in this study, we give hyperbolic version of Steiner-Lehmus theorem. The well-known Steiner-Lehmus theorem states that if the internal angle bisectors of two angles of a triangle are equal, then the triangle is isosceles [1].

Lemma 1 (Sines Theorem) In the hyperbolic triangle \(ABC \) let \(\alpha, \beta, \gamma \) denote at \(A, B, C \) and \(a, b, c \) denote the hyperbolic lengths of the sides opposite \(A, B, C \), respectively, then

\[
\frac{\sin \alpha}{\sinh a} = \frac{\sin \beta}{\sinh b} = \frac{\sin \gamma}{\sinh c} \tag{1}\]

[3, p.125].

2 Main results
Theorem 2 If the internal angle bisectors of two angles of a triangle are equal, then the triangle isn’t isosceles.

Proof. Let \(BB' \) and \(CC' \) be the respective internal angle bisectors of angles \(B \) and \(C \) in triangle \(ABC \), and let \(a, b \) and \(c \) denote the sidelengths in the standard order. As shown in Figure 1, we set

\[
B = 2\beta, \ C = 2\gamma, \ u = AB', \ U = B'C, \ v = AC', \ V = C'B. \]

Figure 1

If we use the sines theorem in the triangles \(ABC, BB'C, BB'A, BCC', ACC' \) respectively (See Lemma 1), then

\[
\frac{\sin A}{\sinh a} = \frac{\sin 2\gamma}{\sinh c} = \frac{\sin 2\beta}{\sinh b} \tag{2}\]
If we put the values of $\sinh U = \sin A \sinh V = \sin A \sinh\gamma$ in the equations (7) and (8), then

$$\frac{\sinh b - \sinh c}{\sinh u} = \frac{\sinh a}{\sinh b} - \frac{\sinh a}{\sinh b} < 0$$

Because of $C > B$, $V > U$, $\nu > u$. Hence, $\sinh b < \sinh c$ (and $c > b$). Consequently, the case $C > B$ is satisfied while $BB' = CC'$. The triangle ABC can’t isosceles.

References

Nilgün Sönmez

e-mail: nceylan@aku.edu.tr

Afyon Kocatepe University
Faculty of Science and Literatures
Department of Mathematics
ANS Campus, 03200 - Afyonkarahisar, Turkey