Review of Psychology
2001, Vol. 8, No. 1-2, 3-11

UDC 159.9

Lightness anchoring in neural networks

DRAZEN DOMIJAN

Lightness anchoring is a process that transforms the scale of relative luminance ratios into a scale of perceived
shades of greys. Recent psychophysical investigations suggest that a surface with the highest luminance in a scene
appears white. In order to provide a mechanicistic account of this process, a new neural network is proposed based
on presynaptic inhibition of feedforward inhibitory pathways and self-excitatory feedback. Presynaptic inhibition
serves as a gate that controls the amount of inhibition that cells may receive. Computer simulations showed that
the proposed model correctly simulates human psychophysical data on the staircase Gelb effect, and the role of

field size and insulation on its appearance.

However, the model is not able to account for the perception of luminosity and the role of articulation in
lightness perception. A neural network for size estimation is presented which may partially circumvent the
problem, but how such a network interacts with an anchoring network in order to provide complete representation

of lightness values is not yet clear.

Surface lightness perception is a two-stage process. In
the first stage, local luminance ratios among surfaces are
computed. These ratios are invariant with respect to
changes in illumination and provide a basis for lightness
constancy (Arend & Goldstein, 1987; Land & McCann,
1971). However, computed ratios could not be directly re-
lated to perceptual experience because different surface
lightness combinations may have the same ratio (Figure
1a). Therefore, a second stage is needed which attaches
computed surface ratios to a common frame or anchor
(Bruno, Bernardis & Schirillo, 1997; Gilchrist et al., 1999).
While the first stage was thoroughly investigated from psy-
chophysical, neurophysiological and computational per-
spective, the anchoring process received much less atten-
tion. In order to explain how anchoring operates, two rules
have been postulated: one rule stated that average lumi-
nance in the scene is an anchor for perceived greys (Hel-
son, 1964), while the second rule posits that the highest lu-
minance is perceived as white (HLW rule; Wallach, 1948).
Recent experimental evidence favoured HLW rule (Bruno,
Bernardis & Schirillo, 1997; Cataliotti & Gilchrist, 1995;
Gilchrist et al., 1999; Schirillo & Schevell, 1993). For in-
stance, McCann (1992) showed that in a Mondrian, chang-
ing the highest luminance in the scene changes the appear-
ance of all other surfaces, while changing the luminance of
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some other surface and keeping the highest luminance con-
stant does not change the perceived lightness of the rest of
the Mondrian. A simple demonstration of the HLW rule is
a staircase Gelb effect. When a single surface on a dark
background is illuminated with a bright light it will be per-
ceived as white. However, when a second surface with
higher luminance is inserted in a display, it will be per-
ceived as white while the first surface will appear as light
grey. Insertion of the third surface with even higher lumi-
nance will cause darkening of the first and the second sur-
face, while the third surface will be perceived as white.
This process of insertion of new surface with highest lumi-
nance in a display could be continued and perceptual con-
sequence will be the same, surface with highest luminance
will be perceived as white while all other surfaces will be-
come darker (Cataliotti & Gilchrist, 1995). Gilchrist et al.
(1999) extended their findings and discovered a set of vari-
ables that alter perception of surface lightness in staircase
Gelb effect such as configuration, articulation, field size
and insulation.

From a computational perspective, a space-average
rule is much easier to implement in a visual system, be-
cause it is closely related to a low-pass filtering which may
estimate average input intensity. Neumann (1996) sug-
gested that combination of information from ON and OFF
channels allowed processing of input luminance in a shunt-
ing neural mode] of local contrast detectors. Whether a vis-
ual system actually uses this information is investigated in
ganzfeld experiments (i.e. homogeneous visual field). Bar-
low and Verillo (1976) concluded that observers are capa-
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Figure 1. A) Problem of lightness anchoring. The same ratio between two surfaces may correspond to different combinations of perceived
shades of grey. B) Simplified illustration of the basic components of the neural network theory of lightness perception proposed by Gross-
berg. Input is analysed in parallel by a feature contour system and boundary contour system and the result is passed to a filling-in stage,

which integrates all information in a unique lightness percept.

ble of discriminating ganzfelds of different lightness, indi-
cating processing of absolute luminance. However, Schu-
bert and Gilchrist (1992) questioned this result, because
observers may respond to luminance transients at the onset
of each trial. Therefore, they used ganzfeld whose lumi-
nance varies very slowly, and asked the observers to indi-
cate the direction of the brightness change. Observers have
great difficulty in performing this task, which suggests that
direct luminance information is not available. Gilchrist
(1994) even challenged the assumption that absolute lumi-
nance is registered at photoreceptors as an input to the vis-
ual system. Given the evidence above, it is an important re-
search task to search for a plausible neural mechanism of
the HLW rule.

Neural networks for lightness perception

A very influential theory of lightness perception based
on a neural network is provided by Grossberg and his col-
leagues (Cohen & Grossberg, 1984; Grossberg, 1987;
Grossberg & Todorovié¢, 1988; Kelly & Grossberg, 2000;
Neumann, Pessoa & Mingolla, 1998; Pessoa, Mingolla &
Neumann, 1995). The theory has been rigorously tested
through a large set of computer simulations which demon-
strated that it is capable of explaining a variety of phenom-
ena in lightness perception such as lightness constancy,
lightness contrast, Craik-O’Brien-Cornsweet effect, Mach
bands, interactions between lightness and depth. Basic

components of the theory are: boundary contour system
(BCS), feature contour system (FCS) and filling-in stage.
Interactions between components are illustrated in Figure
1b. BCS consists of oriented contrast detectors that locate
edges while FCS extract luminance ratios between adja-
cent surfaces in a visual scene. Filling-in stage provides an
integration of information from BCS and FCS by a diffu-
sion that spreads FCS signals within gates that are provided
by BCS signals, which prevent activity spreading between
surfaces. Neural activity in filling-in stage is compared
with human perception. However, filling-in does not have
anchor, and comparison between network and human per-
formance is just qualitative not quantitative.

Ross & Pessoa (1995) have developed an extension of
the neural model of lightness perception, which incorpo-
rate HLW rule for anchoring. They introduced a fixed
minimum, fixed maximum, linear scaling rule for anchor-
ing of computed surface values,

I, - min

i (M

a—————+
max-min

where x; is the output of the anchoring process at spatial po-
sition i, [; is the input from the filling-in stage, max is the
largest I; and min is the smallest |; in the scene. Parameters
a and b define the range of output values. Since the usual
scale in research on lightness perception are Munsell va-
lues, where white surfaces are assigned value 9 and black
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Figure 2. Feedforward and feedback neural networks which are unable to implement HLW rule of lightness anchoring. Full arrows denote
excitatory connections and dashed arrows denote inhibitory connections. In feedforward case, since all cells may inhibit each other, cell
with the largest input will not retain the largest possible activity level. Feedback networks with strong lateral inhibition usually behave as a
winner-take-all where only the cell with the largest input remains active, while all other cells are shut down.

surfaces are assigned value 2, therefore a =7 and b = 2.
Ross & Pessoa (1995) showed that their rule could simulate
staircase Gelb effect, but only partially. Their rule could
not reproduce the compression of perceived shades of grey
for higher luminance due to the lack of nonlinearity. Also,
their rule could not explain the result of Li & Gilchrist
(1999) who showed that in a large dome which is painted
half in black and half in middle grey, observers reported
that they perceive black surface as middle grey and middle
grey surface as white. A linear scaling rule would correctly
assign 9 to middle grey surface since it is the highest lumi-
nance in the scene but incorrectly assign 2 to black surface
since it is the smallest luminance in the scene. Another
problem for Ross & Pessoa’s rule is that it does not have
any physical interpretation that could be implemented in a
neural network. The same is true for the recent revision of
the model (Ross & Pessoa, 2000). Although they use a dif-
ferent equation, which is able to implement HLW rule
without forcing the lowest luminance to be black, their
model lacks quantitative treatment of the staircase Gelb ef-
fect and the variables that affect its appearance such as size
and insulation. Also, the model relies on an unrealistic as-
sumption that initially all activities are set to the largest
value, which means that we should see a white colour be-
fore we open our eyes.

The aim of the present paper is to introduce the neural
mechanism for lightness anchoring that can implement the
HLW rule and provide a quantitative account of the basic
features of the staircase Gelb effect.

Model description

Since the range of perceived grey values is restricted,
the additive network model is not appropriate because its
range of activities depends on input and different inputs
may produce a different ranges of activities which is diffi-
cult to translate to perceptual scale of lightness values. In-
stead, a shunting or multiplicative model should be used. It
has upper and lower bounds on activity values that are con-
sequences of physiological mechanisms at the cell’s mem-
brane (Grossberg, 1988). However, a shunting neural
model with feedforward or feedback lateral inhibition is
not enough (Figure 2). In feedforward case, the network
extracts the ratio between inputs, which is useful in the
early stages of visual processing but it could not implement
the HLW rule. The reason is that the cell with the largest in-
put will reduce its activity level depending on the number
of active cells in input.

In a feedback case, the network may behave in three
different ways, depending on the choices of output func-
tions (Grossberg, 1988). When output function is faster
than linear, the network behaves as a winner-takes-all net-
work. This means that the cell, which receives the largest
input, remains active while all other cells are shut down
and we could perceive only one surface at the time. If out-
put function is linear, the network will allow the largest in-
put to attain the largest activity value, but it is not possible
to obtain compression of lightness values observed by
Cataliotti & Gilchrist (1995). Slower-than-linear function
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produces uniform activity distribution, which is clearly in-
appropriate. The same is true for more complex output
functions such as sigmoid function since it is a combination
of previously described functions.

In order to explain how highest-luminance-as-white
rule of lightness anchoring may arise in a neural tissue, a
new neural network is proposed based on feedforward pre-
synaptic inhibition. The model is illustrated in Figure 3.
Cells in input layer send excitatory signals to correspond-
ing cells in anchoring layer and also inhibitory signals to all
other cells. This connectivity pattern implements feedfor-
ward Iateral inhibition. Furthermore, inhibitory pathways
are gated by presynaptic inhibition, which also originates
from input layer. Presynaptic inhibition could be mediated
by the same interneurons that are responsible for feedfor-
ward lateral inhibition or separate sets of units. Finally,
self-excitatory feedback pathways amplify signals re-
ceived by feedforward axons, which is responsible for
compression observed in staircase Gelb effect. Mathemati-
cally, the model is described by a set of differential equa-
tions,

X
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where [w]" =max(w,0), f(w) = w. x; denotes activity of cell
at position 7 in an anchoring layer, E; and I; are excitatory
and inhibitory inputs, and I; is presynaptic inhibition of lat-
eral inhibitory pathways I;. Parameters A, B, C, and Dj; de-
scribe the cell’s passive decay, activity upper and lower
bound, and the strength of the feedforward inhibitory inter-
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actions, respectively. The model behaviour will be essen-
tially identical if we replace shunting inhibition with addi-
tive
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but shunting excitation is necessary for correct implemen-
tation of the anchoring rule since it provides upper bound
for an activity which corresponds to the white colour on a
perceptual scale.

Computer simulations

To test the validity of the proposed model, computer
simulations were performed. Since the model includes
feedback connections, a system of differential equations
could not be solved explicitly. Instead, numerical integra-
tion was used in a software package Wolfram Mathematica
4.0 with NDSolve command. Parameters were set to the
following values: A=0.1; B=9.0; C=0.0; D;=0.3 forall i
and . For simplicity, surfaces are approximate by one cell,
that is, every cell represents a different surface. The surface
with the lowest luminance was assigned value 1.0 and
every new surface that was introduced in the network was
incremented by 1.0, to obtain luminance staircase.

The results of computer simulations are presented in
Figures 4 and 5. Figure 4 (left) shows that the model cor-
rectly simulates the staircase Gelb effect. This is due to the

Figure 3. Neural model of lightness anchoring. With respect to standard neural network model, inhibitory feedback connections are re-
moved and only self-excitatory feedback is retained. Also feedforward presynaptic inhibition is introduced which inhibit feedforward

lateral inhibitory connections.
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Figure 4. Computer simulation of the staircase Gelb effect. Perceived shades of grey measured on a Munsell scale are plotted against a
contrast between surfaces with largest and smallest luminance. A) Full network. B) Network without self-excitatory feedback, which

demonstrate its importance in explanation of the effect.
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Figure 5. Simulation of the effect of surface size and insulation on the staircase Gelb effect. A) As the size of the surfaces increases, the to-
tal amount of inhibition that particular cell receives also increases so perceived grey value become darker. B) Insulation is explained as a
variant of the surface size effect. A white border has a strong influence on the network because it is a surface with the highest luminance so
it may override presynaptic inhibition from target surfaces. Therefore, they will appear darker.

joint operation of presynaptic inhibition and self-excitatory
feedback. A celi that encodes the surface with the largest
luminance in the scene does not receive any inhibition from
other cells because it is protected by presynaptic inhibition.
All other cells receive inhibition but only from those cells
which have a higher level of activity. In this way, the order
of activity levels from input layer is preserved, while an-
choring is achieved by assigning the largest activity value

to the largest input, that is, highest luminance in the scene.
Figure 4 (right) shows what happened when self-excitatory
feedback was removed from the network. Lightness esti-
mates become much darker and the relative distance be-
tween them becomes almost linear. However, empirical
evidence suggests that difference in lightness is smaller for
lighter surfaces (Cataliotti & Gilchrist, 1995, Experiment
1). This simulation illustrates the importance of the self-
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excitatory feedback in quantitative modelling of the stair-
case Gelb effect.

How the model treats size and insulation is demon-
strated in Figure 5. Different sizes are simulated by chang-
ing the number of the cells with the same activity level.
Small surfaces are represented with one cell for each sur-
face and large surfaces by two cells. Since increasing the
size of the surface increases the amount of inhibition that
each cell receives, darkening is observed for larger sur-
faces (Figure 5 left).

Cataliotti & Gilchrist (1995) showed that there is no ef-
fect of size on perceived lightness because changing the
distance between observers and stimulus did not change
the appearance of the surfaces. However, Gilchrist ef al.
(1999) distinguished between retinal and perceived size.
They concluded that changes in perceived size change the
appearance of the surfaces but not the retinal size. It seems
that this is in contrast with the present model, but the
filling-in stage is not a retinal stage of processing. It is hy-
pothesised that filling-in operates in a cortex after compu-
tations in BCS take place. Grossberg (1987; Kelly &
Grossberg, 2000) claims that multi-scale version of the
BCS is capable of computing object boundaries with re-
spect to its depth. Also, he points out that BCS may detect
the correlation between changes in object size and changes
in object depth as illustrated by Emmert’s law. Final sur-
face representation will not change the size of the object’s
surface if there is such correlation. In other words, the
filling-in stage may code the object’s perceived size and
not the retinal size.

Insulation is explained as a variant of the size effect
(Figure 5 right). Since only white border has potential to
change the appearance of the surfaces, it is assumed that
white surface is grouped with white border into a single
large white surface. Then the same argument as in the case
of size may be applied, that is, a larger surface produces
stronger inhibition and all surfaces except white become
darker. Consistent with this explanation is the fact that a
black border has no effect on lightness since the lightness
estimates are approximately the same with or without bor-
der (Gilchrist et al., 1999). A black border simply could not
influence any other surface since its signal is weakest in the
network and it is blocked by presynaptic inhibition from
other parts of the input.

Gilchrist et al. (1999) also found the effect of configu-
ration on lightness. Mondrian configuration produces
darker lightness estimates than simple line arrangement.
This .is consistent with the present model because it as-
sumes that before anchoring, local ratio measures are com-
puted. Therefore, a configuration effect is attributed to the
operation of lateral inhibition in the retina or lateral genicu-
late nucleus, which results in darker lightness values for
surfaces embedded in Mondrian. An anchoring network

only reflects this difference which is created earlier in the
processing of visual input.

Finally, a separate set of computer simulations (which
is not shown) has been performed in order to test the net-
work resistance to the changes in parameter values. The
model is robust with respect to the variations in the passive
decay rate and strength of the inhibitory feedforward con-
nections, that is, the network behaviour remains invariant
under parametric changes. This is an important fact be-
cause real neurons are subject to large fluctuations in pa-
rameters that define them due to variations in physiological
variables such as blood or oxygen supplies and chemical or
electrical properties of cell membrane. Such variations
may cause large disturbances in the network operation if
the mechanisms responsible for producing desired behav-
iour are not resistant enough.

DISCUSSION

Computer simulations suggested that neural network
with feedforward presynaptic inhibition of lateral inhibi-
tory pathways and self-excitatory feedback is able to im-
plement HLW rule of lightness anchoring. This is illus-
trated by simulating the staircase Gelb effect and the influ-
ence of field size and insulation on lightness anchoring,.
This is achieved through the operation of presynaptic inhi-
bition which acts as a gate that controls the amount of inhi-
bition that particular cell in an anchoring layer may re-
ceive. An input cell with the largest activity completely
prevents lateral inhibition from the surrounding cells, and
its target cell in an anchoring layer receives only excitation
which will drive the cell’s activity to the upper bounds in a
shunting model. Other cells receive inhibition depending
on the difference between cell activity and surrounding
cells with higher activity, since only they could override a
gate provided by presynaptic inhibition. Therefore, the
cell’s activity in an anchoring layer will be ordered as in in-
put layer with a certain amount of compression provided by
self-excitatory feedback. Self-excitation drives cell’s ac-
tivity toward higher values, which is consistent with psy-
chophysical measurements provided by Cataliotti and Gil-
christ (1995).

However, the HLW rule is not sufficient for a complete
understanding of lightness anchoring because it could not
account for the perception of objects that are light sources
since they have higher luminance than other surfaces in the
scene but they do not appear white. Rather they are de-
scribed as glowing or luminous surfaces (Bonato & Catali-
otti, 2000; Bonato & Gilchrist, 1994; 1999). Within the
present model, such a surface will be treated as white and
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no distinction is possible between white and self-luminous
surfaces.

Gilchrist and Bonato (1995) investigated the relation
between photometric and geometric factors in center-
surround displays and proposed a rule which specifies that
the surround should be perceived as white. Li and Gilchrist
(1999) revised their findings using large acrylic dome and
showed that relative luminance and relative size jointly
predict the appearance of surfaces in a simple stimulus con-
dition. They proposed an additional area rule, which states
that the largest surface in the scene should be perceived as
white. When the surface with the largest area is also the
surface with the highest luminance, it will appear white,
but when the surface with the highest luminance is not the
largest, it starts to appear as a self-luminous surface. As the
area of the surface with highest luminance becomes
smaller, its luminosity becomes stronger. At the same time,
a surface with a larger area becomes white. The existence
of two rules that jointly determine the final perception
makes it difficult to propose a model of the whole process
of lightness anchoring. Further research will explore how
to design a neural network that could combine an area rule
with the HLW rule in order to correctly predict perceived
lightness in a simple stimulus condition.

The first step toward this goal is to implement an area
rule. How a neural network can encode the size of the sur-
faces has not been systematically studied. The exception is
Grossberg’s analysis of relation between depth and size,
but he did not investigate how size could be measured. The
simplest possible idea is that cells with large receptive
fields may measure the size of the input because they sum
all excitatory input which they receive. The problem with
this idea is that more than one object may be present within

areceptive field and the cell could not distinguish one large
object from a few small objects. Another possibility is
given in Figure 6. This is a feedforward network with lat-
eral excitatory and inhibitory connections. Besides, all in-
put cells send presynaptic inhibition to all feedforward ax-
ons. Presynaptic inhibition is slightly smaller on excitatory
connections. In this way, presynaptic inhibition will allow
excitatory signals that originate from the same object to in-
fluence a target cell, while it will prevent inhibitory signals.
On the other hand, presynaptic inhibition will completely
prevent signals from other objects that are labelled with
smaller activity level. Also signals from cells that represent
objects that are labelled with higher activity level than tar-
get object will pass presynaptic inhibition through excita-
tory and inhibitory connections. Therefore, their total im-
pact on a target cell will be zero because excitation and in-
hibition will cancel each other out. It is assumed that differ-
ent objects are represented with different activity level in
the input. How such representation may be achieved is de-
scribed in Domijan (2001). Figure 6B illustrates how neu-
ral network for size estimation works. It takes input and
counts the number of units that have the same activity
value (i.e., final activity value is equal to the number of
cells that have the same input value). It is interesting to note
that all cells that code the same object have the same activ-
ity value. If this network becomes input to the anchoring
network, it implements the area rule (it is assumed that
there are two anchoring networks; one that receives input
from filling-in stage and the other that receives input from
network for size estimation). However, implementation is
only partial, because the model will correctly assign white
to the largest surface only if it has the highest luminanceas
well. If a smaller surface has the highest luminance, con-
flict arises since two anchoring networks point to different

B
Input Network Response
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0 0 00 2 2 0 0 0 0 4 4
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Figure 6. Neural model for size estimation. A) The network receives feedforward excitation and inhibition from all cells in the input layer.
Every connection is subject to presynaptic inhibition. B) An example that illustrates how the network behaves. The left is input to the net-
work with three surfaces with different sizes. The right is a network response. Larger surfaces are represented with stronger activity.
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surfaces that should be assigned as white. How this conflict
may be overcome is not yet clear. The source of the prob-
lem is that a network has no way to represent luminosity
because the largest possible activity value is assigned to
white so this is a physical limitation in a model which im-
plies that luminosity may be represented in a different net-
work. Bonato and Cataliotti (2000) even suggest that
physiological mechanisms may not be responsible for lu-
minosity perception but it may arise as a consequence of
visual experience.

Another problem for the presented neural model is the
role of articulation in lightness perception. As a number of
surfaces within fixed area increases, perceived lightness of
surfaces changes (Agostini & Galmonte, 1999; Bruno et.
al., 1997; Schirillo, 1999a; 1999b). This could be related to
the problem of size estimation, because increasing the
number of surfaces within fixed area implies reduction in
surface size. Therefore, articulation requires that the size of
all surfaces in the scene should be estimated. Smaller sur-
faces should receive larger inhibition, since they appear
darker than larger surfaces with the same luminance (Gil-
christ et al., 1999). However, such a tendency is in contrast
with the reported size influence on lightness perception,
where larger surfaces exert stronger inhibition and there-
fore produce darker estimates than smaller surfaces. How
to resolve this apparent paradox is not clear. Situation is
even more complicated because relative position of the sur-
faces in the experimental display also has influence on the
final perceptual outcome (Agostini & Galmonte, 1999).

The neural network proposed here is not intended to
provide an account of the role of perceptual organisation in
lightness perception (Agostini & Galmonte, 2000; Ander-
son, 1997; Gilchrist e al., 1999; Ross & Pessoa, 2000; To-
dorovi¢, 1997). It is assumed that the process of integration
of form and lightness signals is achieved before the stage of
filling-in. If BCS and FCS are properly designed they
should provide enough information to correctly predict
lightness values in different stimulus configurations
{Domijan, 2000; Kelly & Grossberg, 2000; Ross & Pessoa,
2000). The present model only transforms the computed
relative contrast values into the scale of absolute lightness.
On the other hand, Gilchrist et al. (1999) assumed that the
process of anchoring is directly related to the organisation
of the visual scene embodied in the concept of framework.
The most global framework is the whole visual scene while
the most local framework is particular surface taken in iso-
lation. Between these two extremes, every surface may en-
gage in different collections of surfaces. The degree with
which a particular framework will influence appearance of
the surfaces depends on the strength of the framework, that
is, how strongly the surface belongs to it. Based on this de-
scriptive idea, Gilchrist ez al. (1999) showed that a large
number of effects and illusions in lightness perception
might be explained. One direction for future work is to de-

10

velop the computational specification of frameworks in the
context of neural networks.
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