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A new approach in time series analysis of psychophysiological data

ANA PROROKOVIC

The research on chaos in biological systems has attracted a lot of interest recently. Some of such analyses
indicated that time series of heart inter beat intervals may contain “hidden information” which is neither visually
apparent, nor extractable by conventional methods of analysis. Previous correlational and spectral analysis of
heart dynamics has identified some of internal and external effects on the normal cardiac activity, but phase
interactions between the different frequency components of the processes stayed hidden. Recent studies showed
that mathematical techniques based on chaos theory and the parameters they yield. may differentiate various
mental load levels, as well as the stress effects, which may be reflected via specific chaotic dynamics of biological
subsystems. In this paper, some of the mathematical tools, which are used to analyse chaotic behaviour in various
biological systems, is presented (attractor phase portrait, correlation dimension and the largest Lypunov exponent).

The time series analysis is an appropriate technique for
the analysis of continuous psychophysiological variables,
which may appear in time as different types of signal such
as steady states, linear oscillations, non-linear oscillation
or noise.

In the case of linear oscillations, existing mathematical
tools (cosinor analysis, autocorrelations, spectral analysis)
are appropriate for description and explanation of such
rhythms. In the case of more complex rhythms, however,
with tendency of non-linear dynamics, these are not ade-
quate. For example, measures of heart rate variability
(HRV) as indicators of mental load are more likely to be
coarse-grained measures, while spectral analysis of HRV
shows broadband frequency characteristic, pointing to-
wards non-stationarity or non-linearity (Sammer, 1998).
One important advantage of non-linear methods is that the
measures give information, not only about the structure of
the empirical time series, but also about underlying system
itself. Besides, the assumption of non-linearity is consid-
ered to be more realistic approach to the investigations of
biological systems (Elbert et al., 1994).

The idea of existence of “chaotic” activities in biologi-
cal systems, and the central nervous system in particular, is
not a new one. This approach for understanding complex-
ity in nature has its roots in the work of Newton, Rayleigh,
and Poincare, but it is only recently that the procedures and
concepts were developed to a point where they are begin-
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ning to have an important impact on a wide variety of fields
including physiology and psychophysiology. This ap-
proach has significantly modified the manner in which
physiological processes are viewed and described. For ex-
ample, some processes formerly perceived as erratic, or
random, are now viewed in terms of patterns and potential
lawful relationships. Even the term chaos, itself, has
changed in meaning. Previously the term suggested ran-
domness, but it now connotates the idea of underlying
structure and the potential for describing a complex system
with the aid of relatively simple mathematical formula-
tions. Chaos has been formally defined as “stochastic be-
haviour in a deterministic system”, i.e. a system which dis-
plays apparent random behaviour, but has an underlying
pattern of lawfulness.

In the past 10 years, there has been an increasing inter-
est in the field of non-linear dynamics, or chaos, and it’s
application to psychophysiology. This approach my help in
answering some questions about nature and dynamics of
different biological systems.

Attractor Phase-Portrait

Research in psychophysiology often involves the inter-
pretation of signals reflected in time series that are irregu-
lar. One source of problems is our ability to visually recog-
nize patterns within these irregularities, which have been
proven as impossible to systematically detect by use of or-
dinary statistical techniques. The result was static rather
than dynamic view of behaviour. Dynamic view suggests
that a time series may be seen as to reflect the effects of all
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Figure 1. Most often attractors generated by coupled process equations
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other variables participating in the dynamics of the system.
One breakthrough in this area was possibility to project the
dynamics of a system onto a phase-space diagram. The
phase-space of a dynamic system is a mathematical space
with orthogonal coordinate directions representing each of
the variables needed to specify the instantaneous state of
the system (Baker & Gollub, 1994). This is particularly at-
tractive to many investigators in relatively long time meas-
urements, because it is very simple. Time series of a meas-
ured variable X, is sampled at a time interval producing the
discrete data set. One then forms n-duplets (triplets..) of
points X;, X1se.. and plots of the trajectory, traced out by
these n-dimensional phase—space diagram. This method of
reconstructing a phase-space trajectory is called “the
method of time delays” or “embedding”. A reasonable
choice of the delay gains importance through the fact that
we always have to deal with a finite amount of “‘noisy”
data. Depending on the type of structure we want to explore
we have to choose a suitable time delay (by autocorrelation
function, mutual information, false neighbours statistic
etc.), but the proper choice of the delay and embedding di-
mension cannot be established except in the context of a
specific application (Hegger et al, 1999).

Examination of the phase — portrait sometimes reveals
a banded structure that is reminiscent of “strange attrac-
tors” seen in numerical simulations of mathematical sys-
tems that are commonly accepted as being chaotic. For ex-
ample, EEG and ECG signals have underlying patterns,
which may be generated by coupled process equations (Sa-
belli, 2001): A+1= A+B; inA, and B..;= B(+A, cosA; and
often formed Rossler, Lorenz or Henon attractors.

The attractors which are generated by process equa-
tions on random numbers, rank ordered numbers and em-
pirical data (heart inter beat intervals) are presented on fig-
ures2ato2 d.

In psychophysiology, measuring and quantifying com-
plexity of dynamical system presented as a strange attrac-
tor, includes primarily measures of complexity and meas-
ures of predictability.

Measures of complexity

Fractal dimension is a term related to fractal objects,
which are known as self-similar mathematical structures
produced by simple repetitive mathematical operations.
The main characteristic of a fractal is its dimension, which
is different from the Euclidian and can be fractional or real
numbers. Some of the well-known fractals are Cantor set,
Koch snowflake, Mandelbrot set etc. The determination of
some form of fractal dimension is probably the most com-

monly used basis on which claims of chaotic dynamics
have been made in biological systems. If the irregular
waveform produces attractor phase-portrait, we can calcu-
late the dimension of this object using one of several differ-
ent algorithms. Another context in which the term “fractal
dimension™ appears in literature is when one makes a
measurement of the fractal dimension of the waveform it-
self, treating it as a fractal curve. Thus, by one measure, a
straight line has a dimension of 1.0, while a very wiggly
curve will have the dimension close to 1,5. This method is
also known as “length of coastline” analysis (Guevara et
al., 1988).

Some of the most important fractal dimensions for
practical applications are: Huseldorff-Besicovitch dimen-
sion, Correlational dimension and Hurst dimension. In the
field of psychophysiology, some recent studies report
about differences in dimensional complexity (DC,), where
variables, such as cognitive task difficulty or cortical
arousal, are manipulated to test quantitative hypotheses re-
garding brain-state changes (Watters, 1999). Various in-
vestigations reported that increased cognitive effort would
be reflected in an increase in dimensional complexity of
EEG signals (Murata & Iwase, 2001, Dhamala at al, 2002,
Watters, 1999). The experiments show a direct relationship
between complexity and the difficulty of the task. It seems,
therefore, that higher levels of mental load recruit a larger
number of independent neural processes, that contribute to
the complex brain dynamics. Dhamala et al. (2002) suggest
the possibility of relative change in correlation dimension
as a useful global measure of brain dynamics, e.g., in deter-
mining the levels of mental activity, even if little is known
about the underlying neurological processes. Similarly,
non-linear dynamics has been used to characterize cardiac
activity in terms of the DC, of the signal. The results of
many studies indicated that the complexity of heart dynam-
ics is also related to the type of the task, and that the pre-
dictability of heart dynamics is also related to the amount
of mental load (Sammer, 1998). Moreover, in extreme
situations, a reduction in the complexity of cardiac dynam-
ics may immediately precede coronary attack (Goldberger
& Rigney, 1999). The most popular attempts to character-
ize attractors and dimensional complexity have been based
on the correlation dimension as proposed by Grassberger
and Procaccia (1983), where DC, is typically computed as
the slope of the correlation integral from a reconstructed
state-space. One way to view this term is to consider a dy-
namical system, which would result in a circular or elliptic
limit attractor with dimension of one. In addition, the
power spectral density function could be computed. The
spectrum will be broadband for chaotic data, as well as for
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white noise. In contrast, if the signal is comprised of super-
imposed sinusoidal waves, it will have spikes at the fre-
quency of each sinusoid.

Grassberger — Procaccia correlation dimension

The correlation dimension of time series is defined as
cumulative number of rank-ordered vector-difference
lengths within a specific rang. Vector differences are
worked out as follows:

1)  Calculate autocorrelation function (figure 3a) and
find a point where correlation coefficient crosses zero on
time-delay axis;

2) This delay (lag) is then used to select time points on
x-axis to apply as coordinates for an embedding dimension
(figure 3b);

3) Plots of selected points result in vector i and vector j
and their difference makes one value in vector difference
length histogram. Compute vector difference as Euclidian
distance (figure 3c¢);

4)  Make the plot of log N (number of difference
lengths in specific rang) versus log r (rang) for all embed-
ding dimensions (figure 3d);

5) Make the plot of slope found in linear scaling re-
gions for each embedding dimension. DC, is the slope
value where convergence is observed (figure 3e).

Measures of predictability (instability)

The correlation dimension is not necessarily correlated
with predictability. For example, noise is very complex but
there is no predictability. On the other hand, a waveform,
which is linearly built up by very many sine waves, may be
understood as a complex signal. But it remains very pre-
dictable (Sammer, 1998). Non-linear systems theory pro-
vides so-called Lypunov exponent to estimate some as-
pects of predictability of system behaviour.

Lyapunov exponent

Chaotic attractor will always exhibit sensitivity to the
initial conditions (SIC). That is, two nearby points in the
phase-space diverge as the orbits (trajectories) progress.

- Indeed, the points are known to diverge exponentially, and
this divergence is described by Lypunov exponent. The
Lypunov exponent and chaos occurs when at least one ex-

ponent is positive. The first step is the transformation of the
time series into phase-space representation. The second
step involves measuring if the distances between two tra-
jectories of the reconstructed system dynamics in the
phase-space, grow, shrink or remain unchanged for a given
time. This is repeated several times over the whole attractor
and finally, the mean divergency/convergency is computed
indicating how chaotic the system behaviour was origi-
nally. A value of zero indicates a periodic, totally predict-
able system; positive exponents indicate chaotic system
behaviour, while negative exponents suggest that system
does not show chaotic behaviour (noise). Therefore, to gain
information about the irregularity of the system dynamics,
it should be sufficient to compute the largest Lypunov ex-
ponent. There are several algorithms for estimating the Ly-
punov exponent directly from a time series, but the sim-
plest mathematical method is the Wolf method (cited in El-
bert at all, 1994).

Wolf method

1)  Reconstruct the attractor.

2)  Choose an arbitrary trajectory from the attractor’s
base (fiducial trajectory) and follow its evolution through
the attractor to the end of the data set.

3) Continuously look for points in its locally nearest
neighbourhood and measure the separation (Euclidian dis-
tance) of the pairs over time. New neighbouring points
have to be substituted whenever the evolved distance ex-
ceeds some specified value. For simplicity in actual prac-
tice, instead of using a variable time step between two sub-
stitutions, one can simply take a fixed time step.

4) The average divergence rate (Lypunov exponent) is
then finally computed as follows:

_ 1 n I‘(Z‘,‘)
A= Lyt 11 0g r(tk_,)

where:

\ is largest Lypunov exponent,

k is the chosen time delay (number of time points),

% is the corresponding time period for k time points,
r(ty) is the separation that evolved from the initial distance,
K(t.1) is initial distance,

m is the number of replacements made in time,

I is the average time of replacement,

fy is starting time period,

As can be seen from the Table 1, the biggest correlation
dimension, i.e. dimensional complexity of the data was ob-
tained, as expected, on random numbers, followed by R-R
intervals during mental work, while it was absent in rank

63



PROROKOVIC, A new approach in time series, Review of Psychology, 2002, Vol. 9, No. 1-2, 59-65

Table 1

Correlation dimensions and largest Lypunov exponents for ex-
amples from Figure 2.

correlation largest Lypunov
dimension (DC,) exponent (1)
Random numbers 6.03 0
Rank ordered numbers 0 49
R-R intervals during 3 0.002
deep sleep
R-R intervals during 43 02

mental work

ordered numbers. On the other hand, the largest Lypunov
exponent was the biggest in the rank ordered numbers, be-
cause the system is fully determined by non linear equa-
tions, while in random numbers the chaotic determinism
does not exist. It should also be emphasised that the degree
of deterministic chaos in R-R intervals is significantly
higher in mental work situation than during relaxation, or
deep sleep. Taking into account both calculated parame-
ters, the degree of chaotic determinism can be well ap-
proximated in the data of some time series.

CONCLUSIONS

In general, there has been increasing evidence to sup-
port the case that chaos plays a positive role in the physiol-
ogy of the organism. Goldberger and West (1987) suggest
that the dynamics of a healthy physiological system would
produce apparently highly irregular and highly complex
types of variability, whereas disease and even aging are as-
sociated with less complexity and more regularity. For ex-
ample, it has been shown for epileptic seizures that the de-
gree of chaos is significantly different, both before and dur-
ing the seizure (Graf & Elbert, 1989). Moreover, dimen-
sional complexity and predictability, as empirical meas-
ures, have their contribution in many studies, dealing with
dynamics of cortical arousal and its role in cognition. As a
discriminating statistics, these parameters have much to of-
fer in interpreting quantitative changes in cortical activity
patterns, which previous attempts have not adequately ex-
plained (Watters, 1999). This property has caused that
these parameters are more and more adopted as dependent
variables in experimental designs, so the variability due to
a particular factor, such as type of cognitive activity, can be
isolated and tested for its significance against the control
condition. For example, Sammer (1998) suggested that
largest Lypunov exponent is sensitive to the amount of
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workload, while correlation dimension is sensitive for the
type of task (mental, physical).

Finally, it must be pointed out that these methods, pre-
sented here, are a small number of mathematical proce-
dures, which are based on the chaos theory. They are ap-
plied nowadays in various scientific disciplines, including
psychophysiology. It also has to be emphasised, that their
utility is not questionable. Their implementation in psy-
chophysiology for practical and scientific purposes, will be
increasing and attracting the interest of more and more re-
searchers.

REFERENCES

BAKER, G.L., & GOLLUB, J.P. (1994). Chaotic Dynam-
ics (4™ ed.), New York: Cambridge University Press.

DHAMALA, M., PAGNONI, G., WIESENFELD, K., &
BERNS, G.S. (2002). Measurements of brain activity

complexity for varying mental loads. Physical review,
65 (041917),1-7.

ELBERT, T., RAY, W.J., KOWALIK, Z.J., SKINNER,
JE., GRAF, K.E., & BIRBAUMER, N. (1994).
Chaos and physiology: Deterministic chaos in ex-
citable cell assemblies. Psychological Rewiews, 74,
1-47.

GOLDBERGER, A.L., & RIGNEY, D.L. (1990). Sudden
death is not chaos. In S. Krasner (Ed.) The Ubiquity of
Chaos (p.p. 23-34). Washington D.C.: American As-
sociation for the Advancement of Science.

GOLDBERGER, A, & WEST, B. (1987). Chaos in physi-
ology. In A.V. Holden, H. Degn, and L.F. Olsen
(Eds.), Chaos in Biological Sysrems (pp. 1-5 ). New
York: Plenum.

GRAF, K.E., & ELBERT, T. (1989). Dimensional analysis
of the waking EEG. In E. Basar and T.H. Bullock
(Eds.), Brain Dynamics. Progress and Perspectives
(pp- 135-152). Heidelberg: Springer.

GRASSBERGER, P., & PROCACCIA, I. (1983). Meas-
urring the strangeness of strange attractors. Physica
D. 9, 189-208.

GUEVARA, M.R,, SHIRER, A., & GLASS, L. (1988).
Phase-locked rhythms in periodically stimulated heart
cell aggregates. American Journal of Physiology, 254,
Hi-H10.

HEGGER, R., KANTZ, H., & SCHREIBER, T. (1999).
Practical implementation of nonlinear time series
methods: The TISEAN package. Chaos, 9, 413-435.



PROROKOVIC, A new approach in time series, Review of Psychology, 2002, Vol. 9, No. 1-2, 59-65

MURATA, A., & IWASE, H. (2001). Application of Cha-
otic Dynamics in EEG to Assesment of Mental Work-
load. JEICE TRANS: INF. & SYST, E84-D, 1112-

1117

SABELLI, H. (2001). Novelty, A Measure of Creative Or-
ganization in Natural and Mathematical Time Series.
Nonlinear Dynamics, Psychology, and Life Sciences,
5(2), 89-113.

SAMMER, G. (1998). Heart period variability and respira-
tory changes associated with physical and mental

load: non-linear analysis. Ergonomics, 41 (5). 746-

755.

WATTERS, P. A. (1999). Psychophysiology, Cortical
Arousal and Dynamical Comlexity (DC,). Non-linear

Dynamics, Psychology, and Life Sciences, 3 (3), 211-

233.

Received: October, 2002.
Accepted: December, 2002.

65



