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C1-continuous Coons-type blending of triangular
patches

SAŽETAK

A Gordon–Coons-type surface construction starts from
three differentiable triangular surface patches, which are
defined on the same triangular parameter domain. If one
boundary curve of each fits a curvilinear triangle, then the
defined surface interpolates to these curves. The connec-
tion between the resulting surface and the constituents is
C1 continuous along the common boundary curves with
the exception of the corner points. This surface defini-
tion is an extension of the Gordon–Coons definiton of a
triangular surface patch constructed from three boundary
curves.
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Coonsovo povezivanje klase C1 trokutnih dijelova

SAŽETAK

Gordon-Coonsova konstrukcija plohe kreće od tri diferen-
cijabilna trokutna plošna dijela koji su definirani na iston
trokutnom parametarskom području. Ako po jedna rubna
krivulja svakog od njih odgovara krivuljnom trokutu, tada
definirana ploha interpolira te krivulje. Veza izmed-u do-
bivene plohe i sastavnih dijelova je klase C1 duž zajedničkih
rubnih krivulja, s izuzetkom vrhova. Ova definicija plohe je
proširenje Gordon–Coonsove definicije trokutnog plošnog
dijela konstruiranog iz tri granične točke.

Ključne riječi: povezivanje ploha, modeliranje ploha,
CAGD

1 Introduction

The presented surface definition is based on a classical in-
terpolation method, where the constructed function of two
variables has given values on the boundary of a given tri-

angle. The original formulation of the solution of this in-
terpolation problem is the following [1].

If the real-valued function F(x,y) is continuous on the tri-
angle T with vertices (0,0), (1,0) and (0,1) in the xy plane,
then the function given by

W (x,y) =
1
2

{[
1− x− y

1− y
F(0,y)+

x
1− y

F(1− y,y)
]

+
[

1− x− y
1− x

F(x,0)+
y

1− x
F(x,1− x)

]

+
[

x
x+ y

F(x+ y,0)+
y

x+ y
F(0,x+ y)

]

− [xF(1,0)+ yF(0,1)+ (1− x− y)F(0,0)]
}

is continuous over T and interpolates to the values of F
on its boundary, i.e. along the curves x = 0, y = 0 and
1− x− y = 0 [3, §8.2].

A geometric interpretation of this interpolation problem
is the construction of Gordon–Coons triangular surface
patches, which is the triangular version of the well-known
construction of rectangular Coons patches [2] extended
in [6]. A Gordon–Coons surface patch is generated by
the above formula from three continuous curve segments
forming a spatial curvilinear triangle, which are the bound-
ary curves of the generated patch. The boolean sum of
convex combinations of three pairs of the given curves is
corrected with a convex combination of the vertex points
(Fig 1).
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Figure 1: The parameter triangle and boundary curves.

As the convex combination is invariant with respect to
affine transformations, the standard parameter triangle can

1Supported by the Hungarian National Foundation OTKA No. T047276 and the Foundation TeT HR-29/2004.

29
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be transformed affinely, and barycentric coordinates can
be used with respect to a base triangle with the vertices
(0,0,1), (1,0,0) and (0,1,0) [4, §18]. The parameter trian-
gle is determined by 0≤ u,v,w ≤ 1 and u+v+w = 1. The
three continuous input curves are defined on the bound-
aries of the parameter triangle. Their representing vector
functions are expressed with barycentric coordinates writ-
ten in a symmetric form.
g1(0,v,1−v) is defined over the edge u = 0, g2(u,0,1−u)
over the edge v = 0 and g3(u,1−u,0) over the edge w = 0,
which can be written also as g3(1 − v,v,0) substituting
u = 1− v.
If the three curves satisfy the boundary conditions

g2(1,0,0) = g3(1,0,0) = P1,

g1(0,1,0) = g3(0,1,0) = P2 and
g1(0,0,1) = g2(0,0,1) = P3,

then the surface patch given by the vector function

r(u,v,w) =
1
2

{[
w

u+w
g1(0,v,1− v)+

u
u+w

g3(1− v,v,0)
]

+
[

w
v+w

g2(u,0,1−u)+
v

v+w
g3(u,1−u,0)

]

+
[

u
u+ v

g2(u+ v,0,1−u− v)

+
v

u+ v
g1(0,u+ v,1−u− v)

]

− [ug3(1,0,0)+ vg1(0,1,0)+wg2(0,0,1)]
}

,

0 ≤ u,v,w ≤ 1, u+ v+w = 1

(1)

interpolates the input curves along the edges of the param-
eter triangle.
The other surface definition, which we use in our surface
construction, was given for the construction of a C 1 con-
tinuous triangular interpolant in [5] as follows.

If three functions Fi, i = 1,2,3 are C2 differentiable on the
triangle T described with the barycentric coordinates u, v
and w, 0 ≤ u,v,w ≤ 1, u + v + w = 1, and each of them
interpolates one vertex of T and a vector field along its op-
posite side, then the function given by

DF =
u2w2F1 + v2w2F2 +u2v2F3

u2w2 + v2w2 +u2v2 (2)

is differentiable, and interpolates the values and the first
partial derivatives of the given “underlying” surfaces F1,
F2 and F3 (consequently, also the given vector fields) along
the edge u = 0, v = 0 and w = 0 of the triangle, respec-
tively.
This convex combination scheme was applied and inves-
tigated for three differentiable triangular surface patches
defined on the same parameter domain in [7]. However,
the problem ensuring the compatibility conditions for the
input surfaces at the corner points is not solved in general.

Therefore, the continuity of the defined surface at the ver-
tices is not ensured.
A generalization of the Gordon–Coons surface construc-
tion in (1) was given with three triangular surface con-
stituents in [8] as follows.
Let r1(u,v,w), r2(u,v,w) and r3(u,v,w) be continuous vec-
tor functions defined on the parameter triangle 0≤ u,v,w≤
1, u + v + w = 1, representing three triangular surface
patches with common corner points (Fig 2)

r1(0,0,1) = r2(0,0,1) = P3,

r1(0,1,0) = r3(0,1,0) = P2,

r2(1,0,0) = r3(1,0,0) = P1.
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Figure 2: Three input surface patches and auxiliary
curves.

The weighting (“blending”) functions are

µ1 =
(1−λ1)w2

λ1u2 +(1−λ1)w2 ,

µ2 =
(1−λ2)u2

λ2v2 +(1−λ2)u2 ,

µ3 =
(1−λ3)v2

λ3w2 +(1−λ3)v2 ,

where 0 ≤ λ1,λ2,λ3 ≤ 1 are shape parameters of values
between 0 and 1, and at the corner points

µ1(0,1,0) := 1, µ2(0,0,1) := 1, µ3(1,0,0) := 1

are required.

Definition 1. The surface patch is defined by the vector
function

f(u,v,w) =
1
2

[
µ1r1 +(1−µ1)r3 +µ2r2 +(1−µ2)r1

+µ3r3 +(1−µ3)r2 −q(u,v,w)
]
,

(3)

where q(u,v,w) =

v2w2g1(0,v,1− v)+u2w2g2(u,0,1−u)+u2v2g3(u,1−u,0)
u2w2 + v2w2 +u2v2

0 ≤ u,v,w ≤ 1, u+ v+w = 1

(4)
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is a correction term generated from the auxiliary curves g 1,
g2 and g3 over the boundaries of the parameter triangle.

g1(0,v,1− v) = [µ3r3 +(1−µ3)r2](0,v,1−v) ,

g2(u,0,1−u) = [µ1r1 +(1−µ1)r3](u,0,1−u) ,

g3(u,1−u,0) = [µ2r2 +(1−µ2r1](u,1−u,0)

are blended curves over the sides u = 0, v = 0 and w = 0,
respectively of the triangular parameter domain. �
The surface f(u,v,w) matches the boundary curves
r1(0,v,1− v), r2(u,0,1−u) and r3(u,1−u,0), 0 ≤ u ≤ 1,
0 ≤ v ≤ 1 [8].
The structure of this scheme is similar to that of Gordon–
Coons’ construction, where the boolean sum of three con-
vex combinations of the given constituents is corrected ac-
cording to the interpolation condition. Here the correction
function has the structure of the scheme in (2) and fits the
auxiliary curves:

q(0,v,1− v) = g1(0,v,1− v),
q(u,0,1−u) = g2(u,0,1−u),
q(1− v,v,0) = q(u,1−u,0) =

g3(1− v,v,0) = g3(u,1−u,0).

The connection between the resulting surface and the in-
put surface constituents is C0 along the common boundary
curves.

The shape parameters (λ1,λ2,λ3) = λ are either specified
by the user, or can be determined from a fairing condition.
We have used the linearized thin plate energy function with
f̄(u,v) = f(u,v,w)

∣∣
w=1−u−v,

E(λ) =
∫

A
(f̄2

uu +2f̄2
uv + f̄2

vv)dA, A = [0,1]× [0,1]. (5)

The optimal values of λ1, λ2 and λ3 are computed by min-
imizing E(λ). (In the equations the indices u and v de-
note the partial derivatives with respect to u and v, respec-
tively.) The integral has been approximated by an integral
sum computed at 9 inner points, and the numerical min-
imization has been carried out by the symbolic algebraic
program package Mathematica.
For drawing triangular patches with Mathematica the pa-
rameter triangle had to be transformed into a rectangle by
substituting u = t − st, v = st, s,t ∈ [0,1]. Therefore, the
patches appear in the figures with s and t parameter lines.

2 Examples

In Fig 3 three triangular surface patches are shown, which
are defined as quadratic Bézier surfaces. One auxiliary
curve and the correction term q(u,v,w) is shown in Fig
4 and in Fig 5, respectively. The resulting surface defined
in (3) is shown in Fig 6. It joins to the input surfaces with
C0 continuity along their connection curves.

Figure 3: Three Bézier patches.

Figure 4: One auxiliary curve.

Figure 5: The correction function defined from the auxil-
iary curves.

Figure 6: The resulting surface.
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3 C1 continuous blending surface con-
structed from differentiable patches

In this chapter a new definition of a triangular Gordon–
Coons-type surface patch will be given. It is determined by
three differentiable triangular patches, where three bound-
ary curves, one of each patch, form a curvilinear triangle.
The resulting patch fits these boundary curves and has a
C1-continuous connection to the given constituents along
them.

Now we investigate the partial derivatives of the vector
function defined in (3) along the edges of the parameter
triangle T . Computing the partial derivatives with barycen-
tric coordinates we get the following.

Along the edge u = 0 fv = r1v, fw = r1w and

fu =
[
r1u +

1
2

(µ3r3u +(1−µ3)r2u)
]∣∣∣∣

u=0
. (6)

Along the edge v = 0 fu = r2u, fw = r2w and

fv =
[
r2v +

1
2

(µ1r1v +(1−µ1)r3v)
]∣∣∣∣

v=0
. (7)

Along the edge w = 0 fu = r3u, fv = r3v and

fw =
[
r3w +

1
2

(µ2r2w +(1−µ2)r1w)
]∣∣∣∣

w=0
. (8)

In order to get C1 continuous connection between the
resulting surface represented by f(u,v,w) and the con-
stituents

fu
∣∣
u=0 = r1u

∣∣
u=0, fv

∣∣
v=0 = r2v

∣∣
v=0, fw

∣∣
w=0 = r3w

∣∣
w=0,

must be ensured. For this an additional correction term is
needed in Definition 1. Its value has to be zero along the
boundary curves, and its partial derivatives have to annu-
late the second terms of the partial derivatives in the ex-
pressions (6), (7) and (8). The following vector function
satisfies these requirements

s(u,v,w) =
1
2

[
κ1 (µ3r3u +(1−µ3)r2u)

∣∣
u=0

+κ2 (µ1r1v +(1−µ1)r3v)
∣∣
v=0

+κ3 (µ2r2w +(1−µ2)r1w)
∣∣
w=0

]
(9)

with the blending functions

κ1 =
uv2w2

Σ
, κ2 =

vu2w2

Σ
, κ3 =

wu2v2

Σ
,

Σ = u2w2 + v2w2 +u2v2.

(10)

Obviously,

κi
∣∣
u=0 = 0, κi

∣∣
v=0 = 0, κi

∣∣
w=0 = 0, i = 1,2,3,

κ1u
∣∣
u=0 = 1, κ1v

∣∣
v=0 = 0, κ1w

∣∣
w=0 = 0,

κ2u
∣∣
u=0 = 0, κ2v

∣∣
v=0 = 1, κ2w

∣∣
w=0 = 0,

κ3u
∣∣
u=0 = 0, κ3v

∣∣
v=0 = 0, κ3w

∣∣
w=0 = 1.

The required surface is defined by extending Definition 1
in the following way.

Definition 2.

f(u,v,w) =
1
2

[
µ1r1 +(1−µ1)r3 +µ2r2 +(1−µ2)r1

+µ3r3 +(1−µ3)r2
]−q(u,v,w)− s(u,v,w),

0 ≤ u,v,w ≤ 1, u+ v+w = 1,

(11)

where q(u,v,w) is defined in (4), s(u,v,w) in (9) with the
weighting functions in (10) �

Considering the computed derivatives, we have obtained
the following theorem.

Theorem 1. Assume that three surface paches are given
by the differentiable vector functions r1(u,v,w), r2(u,v,w)
and r3(u,v,w) on the parameter triangle 0 ≤ u,v,w ≤ 1,
u+ v+w = 1 with common corner points, i.e.

r1(0,0,1) = r2(0,0,1),
r1(0,1,0) = r3(0,1,0),
r2(1,0,0) = r3(1,0,0).

Then the surface represented by the vector function in Def-
inition 2 interpolates the boundary curves r1

∣∣
u=0, r2

∣∣
v=0

and r3
∣∣
w=0, and joins to the corresponding surface patch

C1 continuously along the common boundary with the ex-
ception of the corner points.

Proof. The proof follows from the computations above.
However, the compatibility conditions of the differentia-
bility of the resulting surface at the vertices require further
investigations.

4 Examples

Figure 7: C1 continuous surface defined from the con-
stituents in Fig 3.
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In Fig 7 the surface constructed by Definition 2 is shown.
It is generated from the same quadratic Bézier patches as
the surface in Fig 6. There is a visible difference between
the C0 and C1 results. While the C0 surface is rather round,
and intersects the constituents, the C1 result has common
tangent planes with them along the common boundary
curves. The next two figures illustrate the effect of the
shape parameters λi included in the blending coefficients
µi, i = 1,2,3. In the equation of the resulting surface in
Fig 7 the shape parameters have been determined from the
fairing condition by minimizing the energy function in (5).
The same surface is shown from a side view in Fig 8.

Figure 8: The surface in Fig 7 from the side.

In Fig 9 the surface is generated from the same con-
stituents, but the shape parameters have been given as user
inputs. The value of λ3 influencing the weight of the given
patch on the right hand side has been raised. Consequently,
the result is less concave in the middle.

Figure 9: The surface generated with different shape pa-
rameters.

Figure 10: An open corner on a prism.

In Fig 10 an open corner on a prism is shown modelled
with triangular Bézier patches. The boundary of the trian-
gular hole is drawn with heavy lines. The constituents in
the surface definition are in the inside of this triangle. The
neighbouring triangles are coplanar extensions of them.

Figure 11: The C1 resulting surface with the extensions of
the constituents.

The constructed surface is shown in Fig 11. It fits the
boundary and has common tangent planes with the neigh-
bouring surfaces.

Figure 12: The same solution from a different view.

In Fig 12 the same surface is shown from a side view in or-
der to make the comparison with the next examples easier.

The next figures show the shaping effect of the con-
stituents. In Fig 13 different constituents with the same
boundary curves and tangent planes are shown, the result-
ing C1 surface is shown in Fig 14.

Figure 13: Constituents with the same boundaries.
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Figure 14: The result has a different shape.

Figure 15: Changing one input patch.

Figure 16: The effect on the inner shape of the resulting
surface.

In Fig 15 the input patch on the lower side has been
changed while keeping its boundary fixed. The result with
these constituents is shown in Fig 16.

5 Conclusions

We have presented a new surface definition, which gen-
erates a triangular patch from three triangular surface
patches. Novel in this definition is that the inner shape of
the resulting surface can be modified by changing the in-
put surface patches while keeping the boundary conditions

fixed. Moreover, new is the introduction of shape param-
eters in the blending functions. This surface construction
can be applied for filling triangular holes which occur in
modelling of composite surfaces.
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[6] SZILVÁSI-NAGY, M., VENDEL, T.P., STACHEL, H.:
C2 filling of gaps by convex combination of surfaces
under boundary constrains, KoG, 6, 2002. pp. 41–48.
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