Development and Experimental Testing of a FEM Model for the Stress Distribution Analysis in Agricultural Soil due to Artificial Compaction

Sorin-Ştefan BIRIŞ 1, Valentin VLĂDUŢ 2, Nicoleta UNGUREANU 1, Gigel PARASCHIV 1, Gheorghe VOICU 1

Summary

It is known that the compaction phenomenon of agricultural soil can be defined as an increase in its dry density, respectively as in reduction of its porosity, and it can result from any natural causes as: rainfall impact, soaking, internal water stress from soil, and other. An important role has the artificial compaction, which is generated by the contact with tyres or caterpillars of tractors and agricultural machines. In present, one of the most advanced methods for modelling the phenomenon of stresses propagation in agricultural soil is the Finite Element Method (FEM), which is a numerical method for obtaining approximate solutions of ordinary and partial differential equations of this distribution. In this paper, the soil has been idealised as an elastic-plastic material by Drucker-Prager yield criteria. This paper presents a model for prediction of the stress state in agricultural soil below agricultural tyres in the driving direction and perpendicular to the driving direction, which are different from one another, using the Finite Element Method. General model of analysis was created using FEM, which allows the analysis of equivalent stress distribution and the total displacements distribution in the soil volume, making evident both of the conditions in which the soil compaction is favour and of the study of graphic variation of equivalent stress and the study of shifting in the depth of the soil volume. Using an acquisition data system and pressure sensors, the theoretical model was experimentally checked in the laboratory

Key words

soil compaction, finite element method, stress state, tractor, tyre

1 Politehnica University of Bucharest, Faculty of Biotechnical Systems Engineering, Department of Biotechnical Systems, Splaiul Independentei 313, 060042, Bucharest, Romania e-mail: biris.sorinsteфан@gmail.com
2 National Institute of Research-Development for Machines and Installations Designed for Agriculture and Food Industry – INMA, Str. Ion Ionescu de la Brad., No. 6, S. 1, Bucharest, Romania
Received: August 28, 2008 | Accepted: October 16, 2008
Introduction

The passage of wheels over agricultural soils, which is usually of short duration in the case of most vehicles, results in soil artificial compaction (Gill, 1968). The compaction phenomenon of agricultural soil can be defined as an increase in its dry density and the closer packing of solid particles or reduction in porosity (McKyes, 1985), which can result from natural causes, including rainfall impact, soaking and internal water tension (Gill; 1968; Arvidsson, 1997).

The most important factors that have a significant influence in the process of artificial compaction of agricultural soil are: the type of the soil, moisture content of the soil, intensity of external load, area of the contact surface between the soil and the tyre or track, shape of the contact surface, and the number of passes (Biriş, 2003).

Because the agricultural soil is not an homogeneous, isotropic, and ideal elastic material, the mathematical modeling of stress propagation phenomenon is very difficult. Many mathematical models of stress propagation in the soil under different traction devices are based on the Boussinesq equations, which describe the stress distribution under a load point (Figure 1) acting on a homogeneous, isotropic, semi-infinite, and ideal elastic medium (Hammel, 1994). Frohlich developed equations to account for stress concentration around the application point of a concentrated load for the problem of the half-space medium subjected to a vertical load (Kolen, 1983).

Many models of dynamic soil behaviour are using elastic properties of soil, and when the soil is represented by a linearly elastic, homogenous, isotropic, semi-infinite, and ideal elastic medium (Hammel, 1994). The required input parameters for the constitutive model of the agricultural soil of wet clay type are (Gee-Clough, 1994):
- Soil cohesion (c): 18.12 kPa
- Internal friction angle of soil (ϕ): 30°
- Soil density (γ_w): 1270 kg/m3
- Poisson’s ratio (ν): 0.329
- Young’s modulus (E): 3000 kPa

The stress levels under a point load as shown in Figure 1 are given in cylindrical coordinates as follows (Upadhyaya, 1997):

$$\sigma_z = \frac{3 \cdot P \cdot z^3}{2 \cdot \pi \cdot R^5}$$ \hspace{1cm} (2)

$$\sigma_r = \frac{P \cdot z^3}{2 \cdot \pi} \left[\frac{3 \cdot z \cdot r^2}{R^5} - \frac{1 - 2 \cdot \nu}{R \cdot (R + z)} \right]$$ \hspace{1cm} (3)

$$\sigma_\theta = \frac{P \cdot (1 - 2 \cdot \nu)}{2 \cdot \pi} \left[\frac{1}{R \cdot (R + z)} - \frac{z}{R^3} \right]$$ \hspace{1cm} (4)

$$\tau_\varphi = \frac{3 \cdot P \cdot r^2}{2 \cdot \pi \cdot R^5}$$ \hspace{1cm} (5)

where P – is the point load, ν - Poisson's ratio, $\sigma_{z,0}$ - normal stress components, and τ_{φ} - shear stress component.

Figure 2 shows the stress state in soil, of an infinitely cubic soil element, which can be written in a matrix, named the matrix of the stress tensors (Koolen, 1983). Stresses acting on a soil element can be described by mechanical invariants, which are independent of the choice of reference axes. The invariants yields are (Keller, 2004):
Development and Experimental Testing of a FEM Model for the Stress Distribution Analysis in Agricultural Soil
due to Artificial Compaction

\[I_1 = \sigma_1 + \sigma_2 + \sigma_3 = \sigma_x + \sigma_y + \sigma_z \tag{6}\]

\[I_2 = \sigma_1 \sigma_2 + \sigma_2 \sigma_3 + \sigma_3 \sigma_1 - \tau_x^2 - \tau_y^2 = \sigma_1 \sigma_2 + \sigma_2 \sigma_3 + \sigma_3 \sigma_1 \tag{7}\]

\[I_3 = \sigma_x \sigma_y \sigma_z + 2 \tau_x \tau_y \tau_z - \sigma_x \tau_y^2 - \tau_x \sigma_y^2 = \sigma_1 \sigma_2 \sigma_3 \tag{8}\]

It is useful to define the stress measures that are invariant. Such stress is the octahedral normal stress and the octahedral shear stress:

\[\sigma_{oct} = \frac{1}{3} (\sigma_1 + \sigma_2 + \sigma_3) = \frac{1}{3} I_1 \tag{9}\]

\[\tau_{oct} = \frac{1}{3} \sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_1 - \sigma_3)^2} = \frac{2}{3} \sqrt{(I_1^2 - 3I_2)} \tag{10}\]

The critical state soil mechanics terminology uses the mean normal stress \(p\) and the deviator stress \(q\). If \(p = \sigma_{oct}\) (Eq. 9), \(q\) is given as (Keller, 2004):

\[q = \frac{1}{\sqrt{2}} \sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_1 - \sigma_3)^2} = \sqrt{(I_1^2 - 3I_2)} \tag{11}\]

The incremental methods are used to deal with material and geometrically non-linear problems. The basis of the incremental procedure is the subdivision of the load into many small increments. Each increment is treated in a piecemeal linear behaviour with the stiffness matrix evaluated at the start of the increment. The tangent stiffness, \(E_t\) (Figure 3) for each element is calculated from the stress-strain curves according to the current stress level of that element. In a FEM calculation when the coordinates are continually updated the strain increment \(\Delta\varepsilon\) has the mean of a ratio between an incremental length and the current length.

The relationship between \(\varepsilon\) and \(\varepsilon\) has the form (Gee-Clough, 1994):

\[\varepsilon = 1 - e^{-\varepsilon} \tag{12}\]

According to the relationship between \(\varepsilon\) and \(\varepsilon\) the following revised stress-strain and tangent stiffness formulae were derived and used in the calculation (Gee-Clough, 1994):

\[\sigma_1 - \sigma_3 = \frac{1-e^{-\varepsilon_1}}{a+b \cdot (1-e^{-\varepsilon_1})} \tag{13}\]

\[E_t = \frac{1}{a} [1-b \cdot (\sigma_1 - \sigma_3) \cdot (1-(b+a) \cdot (\sigma_1 - \sigma_3)] \tag{14}\]

For saturated soil under an un-drained condition, the volume change is generally considered to be negligible. But for FEM calculation purposes, it is common to assume a constant Poisson’s ratio slightly less than 0.5 (Gee-Clough, 1994).

In terms of the concept of the incremental method, for a soil with nonlinear properties when increments are very small, Hooke’s law in which the Young’s modulus, \(E_t\), and Poisson’s ratio, \(\nu_t\), are variables (depending on current stress and strain values) is valid. On this basis, for a plane strain problem, a formula for the volume modulus, \(K_t\), can be derived:

\[K_t = \frac{d(\sigma_x + \sigma_y)}{d(\varepsilon_x + \varepsilon_y)} = \frac{E_t}{(1-\nu_t - 2 \cdot \nu_t^2)} \tag{15}\]

where: \(\varepsilon_x, \varepsilon_y\) are strains in \(x\) and \(y\) directions; \(\sigma_x, \sigma_y\) are stresses in \(x\) and \(y\) directions.

If \(\nu_t\) is constant, as \(E_t\) decreases (soil failure), \(K_t\) also decreases. This means that soil volume changes can be large. Assuming \(K_t\) is constant, and the initial values of \(E_t\) and \(\nu_t\) are \(E_0\) and \(\nu_0\), respectively, then the Poisson’s ratio formula can be derived as in eq. (15) in which a maximum \(\nu_t\) and a minimum \(E_t\) may be specified to avoid the calculation problem (Gee-Clough, 1994):

\[\nu_t = 0.3 \cdot \left(\frac{\sqrt{9 - \frac{8 \cdot E_0}{E_t} \cdot (1 - \nu_0 - 2 \cdot \nu_0^2) - 1}}{E_0} \right) \tag{16}\]

Figure 4 shows the theoretical shape of contact area between the soil and agricultural tyres. The pressure distribution along the width of tyre is described by a decay function (Keller, 2004):
and the pressure distribution in the driving direction is described by a power-law function:

\[
p(x) = p_{x=0,y} \cdot [1 - \left(\frac{x}{l(y)}\right)^\alpha]; \quad 0 \leq x \leq \frac{l(y)}{2}
\]

(18)

where \(C, \delta \) and \(\alpha \) are parameters, \(w(x) \) is the width of contact between the tyre and soil, \(p_{x=0,y} \) is the pressure under the tyre centre and \(l(y) \) is the length of contact between the tyre and soil.

Figure 5 shows the vertical load distribution in the contact area beneath agricultural tyres for three considerations: the real distribution with measured values (left), a model with uniform load distribution (centre), and a better model with irregular load distribution (right).

Equation (17) can describe different cases of pressure distribution, e.g. maximum pressure under the tyre centre or pressure under the tyre edge. The parameters \(C, \delta \) and \(\alpha \) are calculated from wheel load, tyre inflation pressure, recommended tyre inflation pressure at given wheel load, tyre width and overall diameter of the unloaded tyre. All these parameters are easy to measure or readily available from e.g. tyre catalogues.

Soil volume with the depth of 1 meter, the width of 3 meter and length of 4 meter (Figure 6) under the act of different tractors and harvester-threshers (Table 1) was considered. The structural nonlinear analysis was made on the ideal model, the soil being considered a homogeneous and isotropic material. The COSMOS/M 2.95 Programme was used for FEM modelling.

In order to check the model elaborated using FEM, laboratory tests were taken using a data acquisition system (Figure 7). The system was connected to Flexi Force Tekscan W-B201-L force sensors (Figure 8), vertically mounted in the soil, at 10 cm distance, in a metallic container with 1 x 1 x 1 m dimensions (Figure 9). The contact area shape of the wheels was reproduced and materialised using some metallic plates of 15 mm thickness. The load on the wheel in static state was applied using the Hidropuls equipment.

<table>
<thead>
<tr>
<th>Applicant</th>
<th>Soil interaction elements</th>
<th>Gauge [mm]</th>
<th>Mass (total/deck) [kg]</th>
<th>The active width for load, [mm]</th>
<th>Pressure on the soil, [kPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Romanian tractor U-445 (45 HP)</td>
<td>The front wheels</td>
<td>1500</td>
<td>1920</td>
<td>720</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>The back wheels</td>
<td></td>
<td>1200</td>
<td></td>
<td>315</td>
</tr>
<tr>
<td>Romanian tractor U-650 (65 HP)</td>
<td>The front wheels</td>
<td>1600</td>
<td>3380</td>
<td>1170</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>The back wheels</td>
<td></td>
<td>2210</td>
<td></td>
<td>367</td>
</tr>
<tr>
<td>Romanian Caterpillar SM-445 (45 HP)</td>
<td>Track</td>
<td>1300</td>
<td>2600</td>
<td>360</td>
<td>360</td>
</tr>
<tr>
<td>Romanian harvester-thresher NH-TX66</td>
<td>The front wheels</td>
<td>2950</td>
<td>14000</td>
<td>11000</td>
<td>615</td>
</tr>
<tr>
<td></td>
<td>The back wheels</td>
<td></td>
<td>3000</td>
<td></td>
<td>408</td>
</tr>
<tr>
<td>Romanian harvester-thresher Sema-140</td>
<td>The front wheels</td>
<td>2850</td>
<td>11033</td>
<td>9033</td>
<td>587</td>
</tr>
<tr>
<td></td>
<td>The back wheels</td>
<td></td>
<td>2000</td>
<td></td>
<td>317.5</td>
</tr>
</tbody>
</table>
Results and discussion

Figures 10, 11, 12 and 13 show the results of FEM analysis in cross-section and in longitudinal section for two 45 HP tractors with tires and with caterpillar (U-445 and SM-445), respectively for two harvester-threshers (New Holland TX-66 and SEMA-140). These results are: the stresses distribution in soil and the graphical variation of stresses along the vertical-axial direction and along to the longitudinal direction.

In Figures 14 and 15 are comparatively presented the variation curves of the equivalent stresses with the points obtained by FEM calculus and by experimental tests for different depths along the tire’s vertical axis in the case of the U-445 tractor.

Figure 16 shows the results of FEM analysis in cross-section for a “1/2 symmetrical model” which consists in equivalent stresses distribution in agricultural soil under the action of a uniform load in the case of back wheel of U-650 tractor.

Figure 10. Stresses distribution in cross-section for: a) SEMA 140 harvester-thresher, b)SM-445 caterpillar tractor, c) SEMA 140 harvester-thresher after the first transit, d) New Holland TX-66 harvester-thresher (Units: Pa)
Figure 11. Stresses distribution in cross-section for: a) front wheels of U-445 tractor (U-445_f) (Units: Pa), b) back wheels of U-445 tractor (U-445_b) (Units: Pa), c-d) graphical distribution along the axial-vertical direction

Figure 12. Stresses distribution and graphical variation along the longitudinal direction to the top layer of the soil in longitudinal section for: a) New Holland TX-66 harvester-thresher, b) SEMA 140 harvester-thresher
Development and Experimental Testing of a FEM Model for the Stress Distribution Analysis in Agricultural Soil due to Artificial Compaction

Figure 17 shows the distribution of equivalent stresses in agricultural soil in cross-section for the same "1/2 symmetrical model" under the action of an un-uniform load (Decay function) in the case of back wheel of U-650 tractor.

Figure 18 shows the graphical variation of equivalent stresses along the vertical-axial direction for the two cases of loading.

Conclusions

The Finite Element Method is in present the most advanced mathematical tool which can be used for the study of agricultural soil artificial compaction process. For mathematical modelling the soil is considered as a homogeneous and isotropic material, and the Drucker-Prager plasticity model can be used to simulate the behaviour of agricultural soil.

This study shows that, from these analysed tractors and harvester-threshers, the highest artificial compaction of soil was caused by the front wheels of SEMA-140 harvester-thresher (see Figure 11.d), when the equivalent maximum stress in soil is approx. 60 kPa, and in the case of the front wheels of NH TX-66 harvester-thresher, when the maximum equivalent stress is higher then 55 kPa. In these cases is recommended to extend the contact area between the wheel and the soil.

In the case of the front wheels of U-445 tractor (see figure 11.c), the equivalent maximum stress in soil is approximately 42 kPa. We can see that the equivalent maximum stress in soil in the case

Figure 13. Stresses distribution and graphical variation along the longitudinal direction to the top layer of the soil in longitudinal section for: a) U-445 tractor, b) SM-445 caterpillar tractor

Figure 14. Equivalent stresses calculated and measured for the front deck of U-445 tractor

Figure 15. Equivalent stresses calculated and measured for the back deck of U-445 tractor
of analyzed caterpillar tractor (SM-445) is less than 20 kPa (Figure 11.c). This study represents a supplementary argument for using the caterpillar for the reduction of artificial soil compaction. The present researches are directed to using the rubber caterpillar, and also to using the reduce-pressure tyres with largest contact area with the soil.

We can see from the Figures 16, 17, and 18, that the distribution of equivalent stresses in soil volume is strongly influenced by the loading distribution in the contact area.

As we can see in Figure 14 and 15, between the calculated and measured results is a difference of 8 % for the front wheel and 12 % for the back wheel of U-650 tractor. There is a true development possibility of the pseudo-analytical procedures for the modelling of the stress propagation in agricultural soil, based on the work of Boussinesq, Fröhlich and Söhne, using the numerical calculus procedures, respectively the Finite Element Method.

References

