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Principal component analysis (PCA) is a popular tool in fault detecting of the com-
plex plant, but offers little support on fault isolation. Partial PCA (PPCA) is well devel-
oped for its capability of fault isolation utilizing a structured residual. In this paper, par-
tial dynamic PCA(PDPCA) is proposed to enhance the isolation ability of dynamic pro-
cess, which is a method combining PPCA and dynamic PCA. Simulation of PDPCA on a
CSTR shows the effectiveness of the proposed method.
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1. Introduction

On-line monitoring of process industry is ex-
tremely important for plant safety and product qual-
ity, which includes fault detection, fault isolation,
fault diagnosis, and fault recovery. Major issues are
fault detection and isolation. Due to the complexity
of the process, multivariate statistical methods have
drawn more and more attention, where principal
component analysis (PCA) is one of the most im-
portant methods.1 In PCA monitoring, a statistical
model is built using normal data of the process, and
faults are detected by referencing the measured pro-
cess behavior against the model. Though PCA-ba-
sed monitoring is very effective in detecting abnor-
mal process situations (fault detection), it has been
found to be lacking when it came to pinpointing the
root-cause of the problem (fault isolation and diag-
nosis). Contribution Chart, multi-block approach,2

and pattern recognition technology have been dis-
cussed to solve this problem, but none of them can
provide a complete solution. Subspace approach
based on fault reconstruction is a good tool to iden-
tify the occurred fault by assuming that each fault
in a candidate fault set is the true fault and compar-
ing to the reconstructed SPE with the control lim-
its.3 A new index combining SPE and T2 is intro-
duced to improve the identifiability.4 But the recon-
structions of every candidate fault must be com-
puted, which makes the fault identification complex
and hard to be implemented online.

Analytical redundancy methods, based on the
fundamental model, have well developed fault iso-
lation utilizing a structured or directional residual
set, but such a model is not easily obtained due to
nonlinearity, complexity, and high dimensionality
of a process. Gertler5 (1999) shows that there is a

close duality between PCA and parity relations and
proves the duality strictly. It gives one direct alge-
braic method of getting the structured residuals
from the full PCA model and implements the fault
isolation in the static linear system.

Since most processes are dynamic and nonlin-
ear, which makes the above approach based on PCA
not executable, partial NPCA is developed to im-
plement fault isolation in nonlinear system by struc-
tured residual.6,7 But the problem still exists in dy-
namic system, especially with control loops.

Variable measurements are serially dependent in
dynamic process. Bakshi8 (1998) proposed Multi-sca-
le principal component analysis (MSPCA), which
combines the ability of PCA to decorrelate the vari-
ables by extracting a linear relationship with that of
wavelet analysis to extract deterministic features and
approximately decorrelate auto-correlated measure-
ments. Modeling utilizing observed disturbance, other
than autocorrelated measurement, can eliminate the
effects of process dynamics and implement PCA.9

In this paper, a dynamic PCA (DPCA) with
moving window is introduced to deal with dynamic
processes, and a partial DPCA (PDPCA), which can
get structured residuals of dynamic process, is pro-
posed to enhance the isolation ability of PCA in dy-
namic process. This method can isolate the faults of
sensor and actuator, but here only sensor faults are
discussed. The organization of the paper is as fol-
lows. Firstly, a review of the structured residual of
PCA is presented. Secondly, moving window dy-
namic PCA is introduced. Next, the PDPCA is pro-
posed, attainability conditions and implementing
procedure are demonstrated in detail. In every sec-
tion, some problems met in engineering and simula-
tion on CSTR which is described simply are illustra-
ted. Finally, we end this paper with a conclusion.
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2. Structured residual of PCA

2.1 Structured residual of analytical redundancy

Partial PCA was proposed by virtue of the
structured residual of analytical redundancy.10 So it
will be discussed first.

Consider a static linear system in which the
outputs at time � depend on the known (manipu-
lated or measured) inputs and unknown fault (and
noise), according to the relationship,

y(�) = A u(�) + Bf (�) (1)

where y(�) is a m-dimensional output vector, u(�) is
a k-dimensional input vector and f (�) is a fault vec-
tor. A is a model matrix, and B is a fault matrix. A
set of residuals is obtained by

1(�) = y(�) – A u(�) = Bf (�) (2)

Residual structures are characterized by an in-
cidence matrix. The rows of this matrix belong to
residuals and its columns to faults. A “0” at an in-
tersection indicates that the residual does not re-
spond to the fault while a “1” indicates that it does.
Columns of the incidence matrix are the Boolean
fault codes obtained in response to the particular
faults. The structure is isolating if columns are dif-
ferent, and strongly isolating if, beyond all the col-
umns being different, no column can arise from an-
other column by turning “1”s into “0”s. An easy
way of achieving strong isolation is by a column
canonical structure, in which all columns have the
same number of 1s, all in a different configuration.
Table 1 is a strongly isolating structure.

Calculate the residuals, make the residual over
the thresholds “1”, and the fault variables can be
isolated according to the residual code column.

To achieve that each residual is sensitive to a par-
ticular subset of faults and each fault triggers a differ-
ent subset of residual, as described by incidence ma-
trix in table 1, they need to be transformed to

s(�) = W 1(�) = W B f (�) (3)

where W is a transforming matrix. s(�) is a struc-
tured residual. Structured residuals are so designed
that each residual is sensitive to a particular subset
of fault.

2.2 Structured Residual of PCA

When PCA is used, we put all variables together,
combine input and output used above, and get
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x(�) is a vector composed of process variables.
Choosing process training data, free from fault at n
observation points (n > k+m), we can get

X x x x( ) [ ( ), ( ), ( )]k m n n� % � 21 2 (5)

This matrix will be used to model. After being
normalized, it can be decomposed as

X PT E p t E( )k m n i i
i

k

� %
�

� 3� � 3��
1

(6)

where T is a n k% orthogonal matrix, being called
scores matrix. ti. is a n-dimensional vector, being
called principal component (PC) scores. P is an
( )k m k� % orthonormal matrix, pi is eigenvectors of
the covariance matrix, being called loadings vectors.
Every column of X is corresponding to one sample
time. The methods of determining k are in section
3.3. E is called model residual matrix, expressed by

E X PT X PP X PP X� � 3� � 3 � 3 (7)

where P = [pk+1……pk+m], T P X� 3
So any column of E can be expressed in vector

form.

e PP x( ) ( )� � �� 3 � 21 n (8)

Eq. (8) indicates that the residuals are the lin-
ear combinations of pk+1……pk+m.

To solve the problem better, the residual can be
described in the residual subspace (RS), in term of
pk+1……pk+m coordinates.

( �( ) ( )t � 3P x (9)

Eq. (9) shows that new residuals are linear com-
binations of the observation x(�), and pk+1 … pk+m
are coefficients.

Since x(�) is the observed value, it can be ex-
pressed as

x x x( ) ( ) ( )� � �� �0 ' (10)

where x
0( )� is the true value, which approximately

exists in the PC subspace and is orthogonal to the
RS. So x

0( )� is orthogonal to the RS and (9) can be
rewritten as

( � � � � �( ) ( ) ( ) ( ) ( )� 3 � 3 � 3 4 3P x P x P x P x0 ' ' (11)

( �( ) is computed by x( ),� but depends on 'x( )� only.
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T a b l e 1 – A strongly isolating incidence matrix

f1 f2 f3

r1 0 1 1

r2 1 0 1

r3 1 1 0



The structured residual of a new observation at
time t can be obtained by the transformation:

� (( ) ( ) ( )t t t� � 3V V P x' (12)

where �( )t is structured residual and can be of any
dimension by choosing V. By comparing (3) and
(12), the same residual form between analytical re-
dundancy and PCA can be found. The duality has
been proved.5 The ith elements � i t( ) of �( )t is cor-
responding with ith row of the incidence matrix.

When residual structure is designed, the resid-
ual can be obtained by (12) and

3 3 �v Pi
i( ) 0 (13)

where 3v i is the ith row of V, ( )3P
i is the column

corresponding with the “0”of the ith residual. Get,
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where � i t( ) is the ith residual, ( )( )3P
i and x

( ) ( )i t
are parts of 3P and x(t) corresponding with the “1”
of the ith residual.

So the residual is decoupled with some vari-
ables designated in the residual structure and only
sensitive to partial process variables. Eq. (13) is of-
ten used to design transformation matrix V, and can
also be satisfied by

rank( )3 � �P
i m 1 (15)

To guarantee that � i t( ) respond to all corre-
sponding fault, the following rank condition has to
be satisfied:

Rank Rankg[( ) ] ( )*3 � 3 �P p P
i i 1 (16)

where p* g is any column of ( ) .3P
i

If Eqs. (15), (16) are not satisfied, the selected
row-structure is not attainable. If any two columns
of 3P are linear dependent, the respective faults are
not isolable.

Dynamic PCA (DPCA)

Moving Window DPCA

Dynamic systems are naturally described by
differential equations or difference equations. In the
difference equation model, the variables appear

with a number of past samples, in addition to the
present one. If past samples are there only for the
output variables, the model is autoregressive (AR).
If only the input variables have their past samples,
the model is moving average (MA). If both, the
model is autoregressive–moving average (ARMA).
In this paper, only AR model is discussed to sim-
plify the problem, the similar to MA model and
ARMA model.

AR model can be expressed as

y A u D y
0 0 0

1

( ) ( ) ( )t t t g
g

h

� � �
�

� g (17)

where superscript ‘0’ still indicates true values, A
and diagonal matrices Dg are the coefficient matri-
ces of u0(t) and y

0( ),t g� h is the process order, i.e.
past outputs number.

Here the process output y at time t is linearly
related to the h past outputs. When PCA, which is
based on samples from a stationary process, is ap-
plied to this dynamic process, the information of
the auto-correlations is not taken into account. Dy-
namic PCA (DPCA) was proposed to solve this
problem, which augmented each dynamic vector
with the previous h observations and stacked the
data matrix in the following manner:
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(18)

3 � 3 3 � 2 3 � 3x y y y u( ) [ ( ) ( ) ( ) ( )]t t t t h t1 (19)

The matrix contained n + 1 observations. It is
clear that the columns in the above matrix are lin-
early related to each other. Moreover, for each sam-
ple (row), only the first vector’s observation is new,
while all others are merely replications of the row
above, so less information is introduced into the
matrix. So the matrix is not constructed well. In-
stead, we construct a matrix in the form of a mov-
ing window of constant width that does not contain
overlapping rows:

3�
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(20)

where h + 1, is the moving window’s width, and
n + 1 is the number of windows used in the matrix.
Matrix X2 has full information and eliminates
the auto-correlation. The procedure is illustrated in
Fig. 1.
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To distinguish from general PCA we call this
method moving window DPCA. Its advantage can
be seen in the following application.

It is clear that the model form and the lag order
h are important to construct matrix of DPCA. In
PCA modeling, past samples pose as “pseudo vari-
ables.” Pseudo variables in plant models increase
the number of variables without changing the num-
ber of equations. Experience indicates that h=1 or 2
is usually appropriate when DPCA is used.11 The
optimal order, used by process statistical model, can
be determined by the criterion that the number of
new relationships will increase with the order until
it is optimal.12

In addition, it is important to determine the
variables with auto-correlations, which can be im-
plemented by virtue of the analysis model in our
application, while the Durbin-Watson test is used in
engineering.13 The D statistic can be compared to
two (lower and upper) critical values, DL and DU.
When D < DL, the null hypothesis that there is no
correlation between the successive variables is re-
jected; when D > DU, it is not rejected. If DL < D <
DU, the test is inconclusive.

Process of CSTR

A nonisothermal continuous stirred tank chem-
ical reactor (Fig. 2), a dynamic nonlinear system

is used in the application of the paper. The reac-
tion is of 1st order (A * B). It is assumed that
the tank is well mixed and the physical proper-
ties are constant. The process has one feed
stream, one product stream, and one cooling water
stream. The cooling water flow controls the out-
let temperature (T) by feed back control. The
flow rate of inlet and outlet can be adjusted to be
equal.

The CSTR model can be expressed as
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Here Eq. (21) is the mass balance equation and
(22) is the energy balance equation for CSTR.
Seven variables are involved in the process: flow
rate (Q), inlet concentration of A (cA,in) inlet tem-
perature (Tin) flow rate of cooling water (Qc) cool-
ing temperature (Tc,in) outlet concentration of A (cA)
and outlet temperature (T).

The proportional feedback control relation is

Q t K T T tc C set( ) ( ( ))� � � �15 (23)

In this paper, the parameters are

V = 1m3, $ = $c = 106 g m–3, E/R = 8330.1K,

cp = cp,c = 1 (cal g–1 K–1), k0 = 1010 (m3 kmol–1 min–1)

a = 1.678 · 106 cal min–1 K–1, b = 0.5,

'H = �1.3 · 107 cal kmol–1,

initial values:

Tin = 370.0 K, TC,in = 365.0 K, Q = 1 m3 min–1,

QC = 15 m3 min–1, cA,in = 2 kmol m–3,

T = 368.25 K, cA = 0.8 kmol m–3.

Coefficient of proportional feedback control:
KC = �1.5.

Measurement noise of every variable and dis-
turbance (process noise) on every input are normal
process with zero means, and the variances are
listed in table 2.
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F i g . 1 – Procedure of construct matrix by moving window

F i g . 2 – CSTR process



Principal component subspace
of CSTR process

To describe the modeling ability of DPCA in
focus, 400 normal observations without measure-
ment noise, generated by above process under con-
trol, are used to identify the principal component
subspace (PCS) of CSTR. PCS should explain
100 % variance of process variables without mea-
surement noise

It is obvious that the process of CSTR in sec-
tion 3.2 is first order dynamic system, which can be
expressed by the following model.

y(t + 1) = y(t) + f(u(t), y(t)) (24)

So, according to Eq. (24) and section 3.1, the
matrix X1(399×9) for general DPCA in Eq. (18) and
X2 (200×9) for moving window DPCA in Eq. (20)
can be constructed as x u y y( ) [ ( ) ( ) ( )],t t t t� �1
which includes 9 (pseudo) variables. X(400×7), for
PCA is still constructed as x u y( ) [ ( ) ( )],t t t� which
includes 7 variables.

After mean-centering and scaling X, X1 and X2,
the principal components (PCs) model was identi-
fied and the explanation to data variances of PCs
can be got as Fig. 3.

It is well known that the dimension of RS of
PCA model is equal to the number of the linear rela-
tionships among the monitored variables. Fig. 3a,
based on PCA, shows that the first 6 PCs explain near
100 % variance. The dimension of PCS is 6, and that
of RS is 1. Therefore, PCA model only deal with the
linear relationship of feedback control, and the infor-
mation of two differential equations is neglected. Fig.
3b, based on DPCA, shows that the first 6 PCs still
explain near 100 % variance and PCS has dimension
6, but RS has dimension 3, due to introducing pseudo
variables. So, three linear relationships extracted from
one feedback control and two differential equations
are described by the DPCA model.

It is noticeable in fig. 3b, that the moving win-
dow DPCA has the same ability to identify the PC
model as general DPCA, only dealing with half size
matrix of X1. The detailed explanation of each PC is
listed in table 3, where the first 6 PCs of two meth-
ods both capture 99.998 % variance, and the first 5
PCs of moving window DPCA capture more vari-
ance than the latter.

LI RONGYU and GANG RONG, Dynamic Process Fault Isolation by Partial DPCA, Chem. Biochem. Eng. Q. 20 (1) 69–77 (2006) 73

T a b l e 2 – Variances of measurement and process noise

Measurement noise Process noise

Q 4e-6 1.9e-3

cA,in 1e-2 6.44e-3

Tc,in 2.5e-3 4.75e-2

TC 2.5e-3 4.75e-2

QC 1e-2

cA 2.5e-5

T 4e-4

F i g . 3 – Variance explained by PC

T a b l e 3 a – Percent variance captured by general DPCA
model

PC no. Eigenvalues By this PC Total

1 2.9473 32.75 32.75

2 1.6098 17.87 50.63

3 1.5064 16.74 67.37

4 1.0242 11.38 78.75

5 0.95657 10.63 89.38

6 0.95551 10.61 99.998

7 1.5731e-004 0.002 100

8 2.8018e-005 0 100

9 2.1718e-032 0 100

T a b l e 3 b – Percent variance captured by moving windows
DPCA model

PC no. Eigenvalues By this PC Total

1 3.0023 33.36 33.36

2 1.6595 18.44 51.80

3 1.4441 16.05 67.84

4 1.0913 12.13 79.97

5 0.95262 10.58 90.55

6 0.85001 9.445 99.998

7 1.6035e-004 0.002 100

8 2.3121e-005 0 100

9 1.0884e-031 0 100



Although, strong nonlinearity exists in CSTR
process, it can be considered as a linear system in
this paper for the little variation of inputs. The fig.
3b and table 3 validate this point, where PCS repre-
sents 99.998% of the total variance. So, the three
linear relationships can approximately represent the
CSTR model, and the DPCA, based on linear sys-
tem, can be performed on this process

In engineering, 85 % of captured variance is
used to determine the number of PCs roughly. The
method in this paper can be obtained after the mea-
surement noises are filtered. Cross validation
method can determine the dimension of PCS by
data including measurement noise.13,14 Variance of
reconstruction error, based on fault reconstruction,
is also proposed to select the number of retain
PCs,15 which is compared with several other
method in Valle(1999).16

Partial DPCA (PDPCA)

Now, a better method, moving window DPCA,
can be used to process auto-correlation data. Let

B � [�I, �D1 … �Dh, A] (25)

AR model (17) can be described as:

B x0(t) = 0 (26)

So we can get structured residual in the dy-
namic process as section 2.2. Since the structured
residual �( )t used above is distinguished from the
standard PCA, the method of computing residual
threshold is also different from standard PCA. What
is more, there are strong dynamics in some complex
process, where the computing of transformation
matrix V becomes difficult due to the pseudo vari-
ables, especially when control loops exist.

To implement fault isolation by structured re-
sidual in dynamic system, the partial PCA is pro-
posed on the basis of structured residual of PCA in
section 2.2, and is combined with DPCA.

Partial PCA (PPCA)

Partial PCA is a PCA performed on a reduced
vector x(i)(�) (as described by section 2.2), where
some variables in x(�) are missing. Therefore, the
residual (Q statistic in general) will only be sensi-
tive to faults associated with the variables which are
present in the reduced vector x(i)(�).10 Faults associ-
ated with variables eliminated from the partial
PCA, corresponding to ‘0’ in the incidence matrix,
will leave the residuals within the nominal thresh-
olds. These residuals, corresponding to an inci-
dence matrix, are referred to as structured residuals
of partial PCA.

Designing incidence matrix, each subset should
include at least one linear relationship on which
PPCA is performed. It can also be guaranteed by
Eq. (15) in linear static system.

Partial dynamic PCA (PDPCA)

During Partial PCA the structured residuals,
corresponding to incidence matrix, can be got by
standard PCA on every data subset, without trans-
formation matrix. So structured residual can be eas-
ily introduced into the dynamic process with con-
trol loop, and there moving window DPCA, substi-
tuted for standard PCA, is performed on every sub-
set. This approach to obtain the structured residual
of dynamic system, combining DPCA and PPCA, is
referred to as partial DPCA (PDPCA). It should be
noticed, that the method of using DPCA and
PDPCA on AR model can also be applied to other
model.

Although, trouble in transformation matrix do
not exist in PDPCA, the attainability conditions of
incidence matrix can not be given by Eqs. (15)(16).

It has been discussed in section 4.1 that every
subset where PPCA performed on should include
one linear relationship at least. In dynamic linear
process, the linear relationships of X2 in Eq. (20) re-
sult from the auto-correlation variables.

So attainability condition 1 of the incidence
matrix is that not less than one auto-correlation
variable is included in every subset. In this paper’s
application, two output variables are easily deter-
mined to be auto-correlative according to the ana-
lytical model. In practice Durbin – Watson test is
used to do it.

When the incidence matrix satisfying above
condition is designed, the partial DPCA can be run
to implement the fault isolation of dynamic process.

Implementation of Partial DPCA

The specific procedure of the PDPCA is given.
1. Choose the width h+1 of the moving win-

dows, process model form and variables with
auto-correlation, construct normal data matrix X2 by
moving windows. Mean-center and scale it.

2. Perform a DPCA on X2 to determine the
number of relations m.

3. Construct an incidence matrix according to
attainability condition, preferably with strong isola-
tion properties.

4. Select subset data matrix from X2 and per-
form a set of partial DPCAs with each one imple-
menting a row of the incidence matrix. Determine
the thresholds beyond which abnormality is indi-
cated and according fault code is set “1”. Now, get
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loading vector and thresholds of every subset,
which is PDPCA model of every subset.

5. When new data come, select data belonging
to ith subset and calculate the residual ri (SPE) in
PDPCA model which correspond to fault code ‘1’,
if beyond the threshold of ith subset.

6. Compare the fault code of structured residu-
als to every column of incidence matrix to attain
fault isolation.

The procedure is also illustrated in Fig. 4.

Application on CSTR

Sensor faults include reading deviating, float-
ing, sensor invalidating completely and accuracy
decrease. Here only reading deviating and sensor
invalidating are considered, and the others are simi-
lar as viewed from fault isolation.

From time 401, 400 × 7 observations are sam-
pled from CSTR process respectively working un-
der 7 faults: flow sensor bias +0.1 m3 min–1, input
stream concentration –0.2 kmol/m3, input stream
temperature +1 oC, cool water flow +0.2 m3 min–1,
cool water temperature –1 oC, output stream tem-
perature –1 oC and ‘A’ concentration sensor invali-
dation of output stream, pointing to 0.8 kmol m–3.

Contribution plot, which is the commonest tool
of fault isolation, is first used to deal with +1oC
fault of cooling water temperature sensor. After the
Tc,in fault is detected in X2 (200 × 7 matrix, com-
posed of 400 observations), for clear drawing con-
tribution plot in Fig. 5, first 50 rows of X2 under
normal and fault station are used. It can be seen that
an evident fault occurs from point 51 and the con-
tribution of Tc,in to SPE is the largest. Then fault of
Tc,in occurs in all probability. Meanwhile, contribu-
tion of Qc is also large. It can not be decided
whether or not the fault of Qc occurs. Thus, contri-

bution plots can not give a totally unambiguous
isolation.

Next, PDPCA is applied to fault isolation of
CSTR process. The incidence matrix with strong
isolability is designed as table 4.

In each row of seven, corresponding to a vari-
able subset, two variables are missing, each time
differently. Note, that when the data matrix X2 for
PDPCA is constructed, the dynamic variable should
exist in or be eliminated from a subset together with
its h time lag pseudo variables. It can be tested that
the linear relationships numbers of respective sub-
sets are (3, 3, 2, 1, 2, 1, 1), and the matrix meets the
attainability condition 1. After loading vector and
thresholds are determined, based on the 200 normal
data, the structured residuals (i.e. SPE of every sub-
set here) for single fault of 7 faults can be obtained
by PDPCA. The responses to fault are plotted in
Fig. 6, where each column corresponds to a fault
code given in table 4. In each subplot, the first 200
samples are normal data, and the next 200 are faulty
data.
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T a b l e 4 – Incidence matrix with strong isolability of CSTR

Q cAin Tin Qc Tc,in cA T

r1 0 0 1 1 1 1 1

r2 1 0 0 1 1 1 1

r3 1 1 0 0 1 1 1

r4 1 1 1 0 1 0 1

r5 1 1 1 1 0 0 1

r6 1 1 1 1 0 1 0

r7 0 1 1 1 1 1 0

F i g . 4 – Procedure of PDPCA

F i g . 5 – Fault detect and isolation by contribution plot



By comparing Fig. 6 with table 4, it can be
seen that the responses of every subset to most
faults (Q, Qc, cA, T) are in agreement with the inci-
dence matrix and these faults can be isolated. But
(4,2), (5,2), (6,3), (7,3), (7,5), which denote (row
number, column number) of corresponding subplots
in Fig. 6, show that some subsets can not response
to faults of (cAin, Tin, Tcin). The reason is that these
variables, called independent variable, which are
independent of the linear relationships in a subset,
appear in this subset, such as cAin in subset 5 and 6,
Tin in subset 6 and 7, and Tcin in subset 7. The infor-
mation of these variables exists in the PCS, not the
RS, which represents the linear relationships. So,
the SPE statistic from RS does not response when
these variables’ faults occur. Only attainability con-
dition 1 can not guarantee the attainability of the
incidence matrix.

Attainability condition 2: If SPE is used as
the residual, every subset can not include variables

independent of the linear relationships in this sub-
set. To meet this condition, an auto-correlation vari-
able is eliminated from a subset together with the
variables only correlative with this dynamic vari-
able. According to analytical model of CSTR, cA,in
is only correlative with cA, while Tin and Tcin are
only correlative with T. Thus, the incidence matrix
can be improved as table 5.

The numbers of linear relationships in respec-
tive subset are (2,2,3,3,2,1) and condition 1 is met.
After PDPCA is performed again, response is got as
Fig. 7, where the residual is sensitive to all faults
associated with the variables in its subset, and is
within in-control limit when variable with fault
does not exist in its subset. For new observation,
the variable with fault can be found by comparing
the response of every subset with table 5.

The isolation property may be not strong any
longer for meeting attainability condition 2. In ad-
dition, some knowledge of process or fault data is
needed to determine the independent variables in
one subset.

Conclusion

Multivariate statistical method plays an impor-
tant role in the process monitoring, where PCA is
the main approach. But PCA is found to be lacking
in fault isolation. Another, standard PCA can not be
used in dynamic system. Structure residual is useful
for fault isolation. By performing PCA on subsets
of variables, i.e. partial PCA based on the link be-
tween PCA and parity relations, a set of structured
residuals can be obtained for sensor/actuator fault
isolation. In addition, structure residual for process
parameter fault can be obtained from PCA models
established from a full training data set containing a
fault one at a time, not partial. So process fault is
not discussed in this article. In this paper, moving
window DPCA is introduced and PDPCA combin-
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F i g . 6 – Response to 7 faults of CSTR

T a b l e 5 – Improved incidence matrix

Q cA,in Tin Qc Tc,in cA T

r1 0 1 1 0 1 1 1

r2 1 0 1 0 1 1 1

r3 1 1 0 1 1 1 1

r4 0 1 1 1 0 1 1

r5 1 0 1 1 1 0 1

r6 1 1 0 1 0 1 0

F i g . 7 – Response to 7 faults of CSTR after improvement



ing moving DPCA and PPCA is proposed to resolve
the sensor/actuator fault isolation of the dynamic
process. To implement PDPCA, two attainability
conditions of incident matrix are given. Problem
that moving DPCA and PDPCA will meet in engi-
neering is discussed in detail. Simulation on the
CSTR shows the better effect of this method.
Though there is some difficulty in determining the
variable independent with the subset linear relation
in complexity dynamic system, further research on
PDPCA is a challenging subject.
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N o m e n c l a t u r e

AR – autoregressive
CSTR – continuous stirred tank reactor
PCA – principal component analysis.
PDPCA – partial dynamic principal component analysis
PCS – principal component subspace
PCs – principal components
RS – residual subspace

N o t a t i o n

t – scalar
t – vectors
T – matrix
k – number of input
m – dimension of RS, number of output
n – number of samples
r – residual

S u p e r s c r i p t s

0 – true value
’ – transpose

L i s t o f s y m b o l s

c – conentration, kmol m–3

cp – specific heat capacity, cal g–1 K–1

H – molar enthalpy, cal kmol–1

k – rate coefficient, m3 kmol–1 min–1

Q – volume flow rate, m3 min–1

t – time, min

T – temperature, K

V – volume, m3

$ – density, g m–3
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