A strong form of $\beta-I$-continuous functions

Jeyaraman Bhuvaneswari1 and Neelamegarajan Rajesh2. *

1 Department of Computer Applications, Rajalakshmi Engineering College, Thandalam, Chennai-602 105, Tamil Nadu, India
2 Department of Mathematics, Kongu Engineering College, Perundurai, Erode-638 052, Tamil Nadu, India

Received September 11, 2008; accepted October 17, 2008

Abstract. In this paper, $\beta-I$-open sets are used to define and investigate a new class of functions called strongly $\beta-I$-continuous functions in ideal topological spaces.

AMS subject classifications: 54C08

Key words: ideal topological spaces, $\beta-I$-open sets, strongly $\beta-I$-continuous functions

1. Introduction

The subject of ideals in topological spaces has been introduced and studied by Kuratowski [5] and Vaidyanathasamy [6]. An ideal I on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies (i) $A \in I$ and $B \subset A$ implies $B \in I$ and (ii) $A \in I$ and $B \in I$ implies $A \cup B \in I$. Given a topological space (X, τ) with an ideal I on X and if $\mathcal{P}(X)$ is the set of all subsets of X, a set operator $(\cdot)^*$: $\mathcal{P}(X) \rightarrow \mathcal{P}(X)$, called the local function [6] of A with respect to τ and I, is defined as follows: for $A \subset X$, $A^*(\tau, I) = \{x \in X \mid U \cap A \notin I$ for every $U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau \mid x \in U\}$. A Kuratowski closure operator $\text{Cl}^*(\cdot)$ for a topology $\tau^*(\tau, I)$ called the τ-topology, which is finer than τ is defined by $\text{Cl}^*(A) = A \cup A^*(\tau, I)$. When there is no chance of confusion, $A^*(I)$ is denoted by A^*. If I is an ideal on X, then (X, τ, I) is called an ideal topological space. By a space, we always mean a topological space (X, τ) with no separation properties assumed. If $A \subset X$, $\text{Cl}(A)$ and $\text{Int}(A)$ will denote the closure and interior of A in (X, τ), respectively.

A point $x \in X$ is called a θ-cluster point of A if $\text{Cl}(V) \cap A \neq \emptyset$ for every open set V of X containing x. The set of all θ-cluster points of A is said to be the θ-closure of A [7] and is denoted by $\text{Cl}_\theta(A)$. If $A = \text{Cl}_\theta(A)$, then the set A is said to be θ-closed [7]. The complement of a θ-closed set is said to be θ-open [7]. The union of all θ-open sets contained in a subset A is called the θ-interior of A and is denoted by $\text{Int}_\theta(A)$. It follows from [7] that the collection of θ-open sets in a topological space (X, τ) forms a topology τ_θ on X. In this paper, the concept of strongly $\beta-I$-continuous functions is introduced and studied. Some of their characteristic properties are investigated.

*Corresponding author. Email addresses: sai_jbhuvana@yahoo.co.in (J. Bhuvaneswari), nrajesh_topology@yahoo.co.in (N. Rajesh)

http://www.mathos.hr/mc ©2009 Department of Mathematics, University of Osijek
2. Preliminaries

A subset S of an ideal topological space (X, τ, I) is said to be β-I-open [4] (resp. α-I-open [4]) if $S \subset \text{Cl}(\text{Int}(\text{Cl}^*(S)))$ (resp. $S \subset \text{Int}(\text{Cl}^*(S)))$. The complement of a β-I-open set is called β-I-closed [4]. The intersection of all β-I-closed sets containing S is called the β-I-closure of S and is denoted by $\beta\text{Cl}(S)$. The β-I-interior of S is defined by the union of all β-I-open sets contained in S and is denoted by $\beta\text{Int}(S)$. A subset S of an ideal topological space (X, τ, I) is said to be β-I-regular [8] if it is both β-I-open and β-I-closed. The family of all β-I-regular (resp. β-I-open, β-I-closed, α-I-open) sets of (X, τ, I) is denoted by $\beta\text{IR}(X)$ (resp. $\beta\text{IO}(X)$, $\beta\text{IC}(X)$, $\alpha\text{IO}(X)$). The family of all β-I-regular (resp. β-I-open, β-I-closed) sets of (X, τ, I) containing a point $x \in X$ is denoted by $\beta\text{IR}(X, x)$ (resp. $\beta\text{IO}(X, x)$, $\beta\text{IC}(X, x)$). A point $x \in X$ is called the β-I-θ-cluster point of S if $\beta\text{Cl}(U) \cap S \neq \emptyset$ for every β-I-open set U of (X, τ, I) containing x. The set of all β-I-θ-cluster points of S is called the β-I-closure of S and is denoted by $\beta\text{Cl}_\theta(S)$.

A subset S is said to be β-I-θ-open if its complement is β-I-θ-closed. A point $x \in X$ is called the β-I-θ-interior point of S if there exists a β-I-regular set U of X containing x such that $x \in U \subset S$. The set of all β-I-θ-interior points of S and is denoted by $\beta\text{Int}_\theta(S)$.

Definition 1. A function $f : (X, \tau, I) \to (Y, \sigma)$ is said to be β-I-continuous (see [4]) if $f^{-1}(V) \in \beta\text{IO}(X)$ for every $V \in \sigma$, or equivalently, $f^{-1}(V) \in \beta\text{IC}(X)$ for every closed set V of Y.

Theorem 1 (see [4]). A function $f : (X, \tau, I) \to (Y, \sigma)$ is β-I-continuous if and only if for each $x \in X$ and each open set V of Y containing $f(x)$ there exists $U \in \beta\text{IO}(X, x)$ such that $f(U) \subset V$.

3. Strongly β-I-continuous functions

We have introduced the following definition

Definition 2. A function $f : (X, \tau, I) \to (Y, \sigma)$ is said to be strongly β-I-continuous if for each $x \in X$ and each open set V of Y containing $f(x)$, there exists $U \in \beta\text{IO}(X, x)$ such that $f(\beta\text{Cl}(U)) \subset \text{Cl}(V)$.

Theorem 2. Every β-I-continuous function is strongly β-I-continuous.

Proof. Suppose that $x \in X$ and V is any open set of Y containing $f(x)$. Since f is β-I-continuous and $\text{Cl}(V)$ is closed in Y, $f^{-1}(V)$ is β-I-open and $f^{-1}(\text{Cl}(V))$ is β-I-closed in X. Now, put $U = f^{-1}(V)$. Then we have $U \in \beta\text{IO}(X, x)$ and $\beta\text{Cl}(U) \subset f^{-1}(\text{Cl}(V))$. Therefore, we obtain $f(\beta\text{Cl}(U)) \subset \text{Cl}(V)$. This shows that f is strongly β-I-continuous.

The converse of Theorem 2 is not true as it can been seen from the following example.

Example 1. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, \{a\}, X\}$ and $\sigma = \{\emptyset, \{b\}, X\}$ and $I = \{\emptyset, \{a\}\}$. Then the identity function $f : (X, \tau, I) \to (X, \sigma)$ is strongly β-I-continuous but not β-I-continuous.
Theorem 3. For a function $f : (X,\tau,I) \to (Y,\sigma)$ the following properties are equivalent:

(i) f is strongly β-I-continuous;

(ii) $\beta I \text{Cl}_\theta(f^{-1}(B)) \subset f^{-1}(\text{Cl}_\theta(B))$ for every subset B of Y;

(iii) $f(\beta I \text{Cl}_\theta(A)) \subset \text{Cl}_\theta(f(A))$ for every subset A of X.

Proof. (i)\Rightarrow(iii): Let B be any subset of Y. Suppose that $x \notin f^{-1}(\text{Cl}_\theta(B))$. Then $f(x) \notin \text{Cl}_\theta(B)$ and there exists an open set V of Y containing $f(x)$ such that $\text{Cl}(V) \cap B = \varnothing$. Since f is strongly β-I-continuous, there exists $U \in \beta I O(X,x)$ such that $f(\beta I \text{Cl}(U)) \subset \text{Cl}(V)$. Therefore, we have $f(\beta I \text{Cl}(U)) \cap B = \emptyset$ and $\beta I \text{Cl}(U) \cap f^{-1}(B) = \emptyset$. This shows that $x \notin \beta I \text{Cl}_\theta(f^{-1}(B))$. Hence, we obtain $f(\beta I \text{Cl}_\theta(f^{-1}(B)) \subset f^{-1}(\text{Cl}_\theta(B))$.

(ii)\Rightarrow(iii): Let A be any subset of X. Then we have

$$\beta I \text{Cl}_\theta(A) \subset \beta I \text{Cl}_\theta(f^{-1}(f(A))) \subset f^{-1}(\text{Cl}_\theta(f(A)))$$

and hence $f(\beta I \text{Cl}_\theta(A)) \subset \text{Cl}_\theta(f(A))$.

(iii)\Rightarrow(ii): Let B be a subset of Y. We have $f(\beta I \text{Cl}_\theta(f^{-1}(B))) \subset \text{Cl}_\theta(f(f^{-1}(B))) \subset \text{Cl}_\theta(B)$ and hence $\beta I \text{Cl}_\theta(f^{-1}(B)) \subset f^{-1}(\text{Cl}_\theta(B))$.

(ii)\Rightarrow(i): Let $x \in X$ and V be an open set of Y containing $f(x)$. Then we have

$$\text{Cl}(V) \cap (Y - \text{Cl}(V)) = \emptyset$$

and hence $x \notin \beta I \text{Cl}_\theta(Y - \text{Cl}(V))$. Hence, $x \notin f^{-1}(\text{Cl}_\theta(Y - \text{Cl}(V)))$ and $x \notin \beta I \text{Cl}(U) \cap f^{-1}(f^{-1}(B)) = \emptyset$. Therefore, we obtain $f(\beta I \text{Cl}_\theta(f^{-1}(B)) \subset f^{-1}(\text{Cl}_\theta(B))$.

Theorem 4. For a function $f : (X,\tau,I) \to (Y,\sigma)$ the following properties are equivalent:

(i) f is strongly β-I-continuous;

(ii) $f^{-1}(V) \subset \beta I \text{Int}_\theta(f^{-1}(\text{Cl}(V)))$ for every open set V of Y;

(iii) $\beta I \text{Cl}_\theta(f^{-1}(V)) \subset f^{-1}(\text{Cl}(V))$ for every open set V of Y.

Proof. (i)\Rightarrow(ii): Suppose that V is any open set of Y and $x \notin f^{-1}(f^{-1}(V))$. Then $f(x) \notin V$ and there exists $U \in \beta I O(X,x)$ such that $f(\beta I \text{Cl}(U)) \subset \text{Cl}(U)$. Therefore, $x \notin U \subset \beta I \text{Cl}(U) \subset f^{-1}(\text{Cl}(V))$. This shows that $x \notin \beta I \text{Int}_\theta(f^{-1}(\text{Cl}(V)))$ for any open set V of Y. In consequence, $f^{-1}(V) \subset \beta I \text{Int}_\theta(f^{-1}(\text{Cl}(V)))$.

(ii)\Rightarrow(iii): Suppose that V is any open set of Y and $x \notin f^{-1}(\text{Cl}(V))$. Then $f(x) \notin \text{Cl}(V)$. It follows that there exists an open set U of Y such that $U \cap V = \emptyset$ and hence $\text{Cl}(U) \cap V = \emptyset$. Therefore, we have $f^{-1}(\text{Cl}(U)) \cap f^{-1}(V) = \emptyset$. Since $x \notin f^{-1}(U)$, by (ii), $x \notin \beta I \text{Int}_\theta(f^{-1}(\text{Cl}(V)))$. In consequence, there exists $W \in \beta I O(X,x)$ such that $\beta I \text{Cl}(W) \subset f^{-1}(\text{Cl}(U))$. Thus, we have $\beta I \text{Cl}(W) \cap f^{-1}(V) = \emptyset$ and hence $x \notin \beta I \text{Cl}_\theta(f^{-1}(V))$. This shows that $\beta I \text{Cl}_\theta(f^{-1}(V)) \subset f^{-1}(\text{Cl}(V))$.

(iii)\Rightarrow(i): Suppose that $x \in X$ and V is any open set of Y containing $f(x)$. Then, $V \cap (Y - \text{Cl}(V)) = \emptyset$ and $f(x) \notin \text{Cl}(Y - \text{Cl}(V))$. Therefore, $x \notin f^{-1}(\text{Cl}(Y - \text{Cl}(V)))$ and (iii), $x \notin \beta I \text{Cl}_\theta(f^{-1}(Y - \text{Cl}(V)))$. In consequence, there exists $U \in \beta I O(X,x)$ such that $\beta I \text{Cl}(U) \cap f^{-1}(Y - \text{Cl}(V)) = \emptyset$. Therefore, we obtain $f(\beta I \text{Cl}(U)) \subset \text{Cl}(V)$. This shows that f is strongly β-I-continuous.\qed
Definition 3. A function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is said to be strongly θ-β-\mathcal{I}-continuous (see [9]) if for each point $x \in X$ and any open set V of Y containing $f(x)$, there exists $U \in \beta\mathcal{I}O(X, x)$ such that $f(\beta\mathcal{I}\text{Cl}(U)) \subset V$.

Theorem 5. Let Y be a regular space. Then for a function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ the following properties are equivalent:

(i) f is strongly θ-β-\mathcal{I}-continuous;

(ii) f is β-\mathcal{I}-continuous;

(iii) f is strongly β-\mathcal{I}-continuous.

Proof. (i)\Rightarrow(ii): This is obvious.
(iii)\Rightarrow(i): Suppose that $x \in X$ and V is any open set of Y containing $f(x)$. Since Y is regular, there exists an open set W of Y such that $f(x) \in W \subset \text{Cl}(W) \subset V$. Since f is strongly β-\mathcal{I}-continuous, there exists $U \in \beta\mathcal{I}O(X, x)$ such that $f(\beta\mathcal{I}\text{Cl}(U)) \subset \text{Cl}(W) \subset V$. This shows that f is strongly θ-β-\mathcal{I}-continuous. \qed

Definition 4 (see [3]). Let A and X_0 be subsets of an ideal topological space (X, τ, \mathcal{I}) such that $A \subset X_0 \subset X$. Then $(X_0, \tau|_{X_0}, \mathcal{I}|_{X_0})$ is an ideal topological space with an ideal $\mathcal{I}|_{X_0} = \{I \in \mathcal{I} | I \subset X_0\} = \{I \cap X_0 | I \in \mathcal{I}\}$.

Lemma 1 (see [9]). Let A and X_0 be subsets of an ideal topological space (X, τ, \mathcal{I}). Then the following properties hold:

(i) If $A \in \beta\mathcal{I}O(X)$ and $X_0 \in \alpha\mathcal{I}O(X)$, then $A \cap X_0 \in \beta\mathcal{I}O(X_0)$;

(ii) If $A \in \beta\mathcal{I}O(X_0)$ and $X_0 \in \alpha\mathcal{I}O(X)$, then $A \in \beta\mathcal{I}O(X)$.

Lemma 2 (see [9]). Let A and X_0 be subsets of an ideal topological space (X, τ, \mathcal{I}) such that $A \subset X_0 \subset X$. Let $\beta\mathcal{I}\text{Cl}_{X_0}(A)$ denote the β-\mathcal{I}-closure of A with respect to the subspace X_0. Then

(i) If X_0 is α-\mathcal{I}-open in X, then $\beta\mathcal{I}\text{Cl}_{X_0}(A) \subset \beta\mathcal{I}\text{Cl}(A)$;

(ii) If $A \in \beta\mathcal{I}O(X_0)$ and $X_0 \in \alpha\mathcal{I}O(X)$, then $\beta\mathcal{I}\text{Cl}(A) \subset \beta\mathcal{I}\text{Cl}_{X_0}(A)$.

Theorem 6. If $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is strongly β-\mathcal{I}-continuous and X_0 is an α-\mathcal{I}-open subset of X, then the restriction $f|_{X_0} : (X_0, \tau|_{X_0}, \mathcal{I}|_{X_0}) \to (Y, \sigma)$ is strongly β-$\mathcal{I}|_{X_0}$-continuous.

Proof. For any $x \in X_0$ and any open set V of Y containing $f(x)$, there exists $U \in \beta\mathcal{I}O(X, x)$ such that $f(\beta\mathcal{I}\text{Cl}(U)) \subset \text{Cl}(V)$ since f is strongly β-\mathcal{I}-continuous. Let $U_0 = U \cap X_0$, then by Lemmas 1 and 2, $U_0 \in \beta\mathcal{I}O(X_0, x)$ and $\beta\mathcal{I}\text{Cl}_{X_0}(U_0) \subset \beta\mathcal{I}\text{Cl}(U_0)$. Therefore, we obtain

$$(f|_{X_0})(\beta\mathcal{I}\text{Cl}_{X_0}(U_0)) = f(\beta\mathcal{I}\text{Cl}_{X_0}(U_0)) \subset f(\beta\mathcal{I}\text{Cl}(U_0)) \subset f(\beta\mathcal{I}\text{Cl}(U)) \subset \text{Cl}(V).$$

This shows that $f|_{X_0}$ is strongly β-$\mathcal{I}|_{X_0}$-continuous. \qed
Theorem 7. A function \(f : (X, \tau, I) \rightarrow (Y, \sigma) \) is strongly \(\beta-I \)-continuous if for each \(x \in X \) there exists \(X_0 \in \alpha I O(X, x) \) such that the restriction \(f|_{X_0} : (X_0, \tau|_{X_0}, I|_{X_0}) \rightarrow (Y, \sigma) \) is strongly \(\beta-I \)-continuous.

Proof. Let \(x \in X \) and \(V \) be an open set of \(Y \) containing \(f(x) \). There exists \(X_0 \in \alpha I O(X, x) \) such that \(f|_{X_0} : (X_0, \tau|_{X_0}, I|_{X_0}) \rightarrow (Y, \sigma) \) is strongly \(\beta-I \)-continuous. Thus, there exists \(U \in \beta I O(X_0, x) \) such that \(f|_{X_0} (\beta \text{Cl}(X_0(U))) \subset \text{Cl}(V) \). By Lemmas 1 and 2, \(U \in \beta I O(X, x) \) and \(\beta \text{Cl}(U) \subset \beta \text{Cl}(X_0(U)) \). Hence, we have \(f(\beta \text{Cl}(U)) = (f|_{X_0}) (\beta \text{Cl}(U)) \subset (f|_{X_0}) (\beta \text{Cl}(X_0(U))) \subset \text{Cl}(V) \). This shows that \(f \) is strongly \(\beta-I_{|x_0} \)-continuous.

Corollary 1. Let \(\{U_\lambda : \lambda \in \Omega\} \) be an \(\alpha-I \)-open cover of an ideal topological space \((X, \tau, I) \). A function \(f : (X, \tau, I) \rightarrow (Y, \sigma) \) is strongly \(\beta-I \)-continuous if and only if the restriction \(f|_{U\lambda} : (U_\lambda, \tau|_{U\lambda}, I|_{U\lambda}) \rightarrow (Y, \sigma) \) is strongly \(\beta-I_{|x_0} \)-continuous for each \(\lambda \in \Omega \).

Proof. The proof follows from Theorems 6 and 7.

Definition 5. An ideal topological space \((X, \tau, I) \) is said to be:

(i) \(\beta-I \)-closed (resp. \(\beta-I \)-Lindelof) if every cover of \(X \) by \(\beta-I \)-open sets has a finite (resp. countable) subcover whose \(\beta-I \)-closures cover \(X \);

(ii) countably \(\beta-I \)-closed if every countable cover of \(X \) by \(\beta-I \)-open sets has a finite subcover whose \(\beta-I \)-closures cover \(X \).

Definition 6. A topological space \((X, \tau) \) is said to be:

(i) quasi \(H \)-closed (see [7]) (resp. almost Lindelof [2]) if every cover of \(X \) by open sets has a finite (resp. countable) subfamily whose closures cover \(X \),

(ii) lightly compact (see [1]) if every countable cover of \(X \) by open sets has a finite subfamily whose closures cover \(X \).

Definition 7. A subset \(K \) of an ideal topological space \((X, \tau, I) \) is said to be \(\beta-I \)-closed relative to \(X \) if for every cover \(\{V_\lambda : \lambda \in \Omega\} \) of \(K \) by \(\beta-I \)-open subsets of \(X \), there exists a finite subset \(\Omega_0 \) of \(\Omega \) such that \(K \subset \bigcup \{\beta \text{Cl}(V_\lambda) : \lambda \in \Omega_0\} \) (resp. \(K \subset U \{\text{Cl}(V_\lambda) : \alpha \in \Omega_0\} \)).

Definition 8. A subset \(K \) of a topological space \((X, \tau) \) is said to be quasi \(H \)-closed relative to \(X \) (see [7]) if every cover \(\{V_\lambda : \lambda \in \Omega\} \) of \(K \) by open subsets of \(X \), there exists a finite subset \(\Omega_0 \) of \(\Omega \) such that \(K \subset \bigcup \{\text{Cl}(V_\lambda) : \lambda \in \Omega_0\} \).

Theorem 8. If \(f : (X, \tau, I) \rightarrow (Y, \sigma) \) is a strongly \(\beta-I \)-continuous function and \(K \) is \(\beta-I \)-closed relative to \(X \), then \(f(K) \) is quasi-\(H \)-closed relative to \(Y \).

Proof. Suppose that \(f : (X, \tau, I) \rightarrow (Y, \sigma) \) is strongly \(\beta-I \)-continuous and \(K \) is \(\beta-I \)-closed relative to \(X \). Let \(\{V_\lambda : \lambda \in \Omega\} \) be a cover of \(f(K) \) by open sets of \(Y \). For each point \(x \in K \), there exists \(\lambda(x) \in \Omega \) such that \(f(x) \in V_{\lambda(x)} \). Since \(f \) is strongly \(\beta-I \)-continuous, there exists \(U_x \in \beta I O(X, x) \) such that \(f(\beta \text{Cl}(U_x)) \subset \text{Cl}(V_{\lambda(x)}) \).

The family \(\{U_x : x \in K\} \) is a cover of \(K \) by \(\beta-I \)-open sets of \(X \) and hence there
exists a finite subset K_1 of K such that $K \subset \bigcup_{x \in K_1} \beta I \operatorname{Cl}(U_x)$. Therefore, we obtain $f(K) \subset \bigcup_{x \in K_1} \operatorname{Cl}(V_{\lambda(x)})$. This shows that $f(K)$ is quasi-H-closed relative to Y. □

Remark 1. If we change in the above Theorem the condition of a strongly βI-continuous function by a strongly strongly θI-continuous function, we obtain that $f(K)$ is a compact subset of Y.

Corollary 2. If $f : (X, \tau, I) \to (Y, \sigma)$ is a strongly βI-continuous surjection, then the following properties hold:

(i) If X is βI-closed, then Y is quasi-H-closed;

(ii) If X is countably βI-closed, then Y is lightly compact;

(iii) If X is βI-Lindelöf, then Y is almost Lindelöf.

Acknowledgement

The authors are very grateful to the referee for his careful work and suggestions which improved the quality of the paper.

References

