PROSTORNA RASPODJELA I GODIŠNJI HOD BROJA DANA S GRMLJAVINOM U JUGOSLAVIJI

Daniejel OREŠIĆ*

Pod pojmom grmljavine u širem smislu podrazumijeva se vidno i čujno električno pražnjenje u atmosferi. Sam svjetlosni efekt naziva se munja, odnosno sijevanje. Sijevanjem se označava svjetlost munja s udaljenih grmljavnih oblaka, pri čemu se zvuk više ne čuje. Zvučni efekt nazivamo gromom, a ako je dugotrajniji grmljavinom ili grmljennem. Za bolje razumijevanje teksta, potrebno je da se u najkraćim crtaima osvrnemo na neke fizikalne osnove. Lako postoje manje ili više različite teorije o uvjetima nastanka električnih pražnjenja u atmosferi, bitno je uočiti da sve one naglašavaju važnost vodenih kapljica i ledjnih kristala u atmosferi, te važnost njihovog gibanja. Pri tom treba misliti na one sitne kapljice i ledene kristale koji cine oblake, a ne na hidrometeore. To znači da grmljavina ne mora biti u vezi s padalinama, što znamo iz iskustava. Međutim, isto tako je razumljiva veza između oblačnog neba i grmljavine, pa nije čudno da se za nešto iznenadno i neubiočajeno kaže: kao grom iz vedra neba.

Grmljavinski oblaci većinom su komulonimbusi. To je zato što su jako vertikalno razvijeni, a to je potrebno za stvaranje električnog polja. Da sada pojasnimo već rečeno: Prvo, atmosfera je uvijek u određenoj meri ionizirana. Ovi ioni se u konvektivnim oblakima mogu spajati s vodenim kapljicama i ledjnim kristalima tako da oni postaju nosioc električnog naboja. Usljed jake konvekcije, ovi nosioc električnog naboja mogu se nagomilati u raznim dijelovima oblaka. Kada nastanu prostori s različitim predznakom naboja stvara se električno polje koje uhrasta i umjerava kretanje iona. U toku uhrzanja, mnogi ioni se sudaruju i spajaju s molekulama u zraku, stvarajući tako nove ione. To su uglavnom negativni ioni. Ako se proces nastavi, dolazi do burnog efekta lančane ionizacije. Dolazi do električnog pražnjenja, tj. munje. Munje uglavnom dovode na površinu Zemlje negativan elektricitet. Međutim, izbijanje munje može biti i sa Zemlje ka oblaku, što je često kod viših oblaka i nad morem. Munja se može kretati i između oblaka. U jednoj munji (koja traje 0.1 – 0.6 sek.) ima i više pražnjenja, uglavnom po istoj stazi. Prosječno ima 2 – 3, ali može biti do 40 pražnjenja u razmaku 0.03 – 0.07 sek. Srednja jačina struje munje je oko 20 tisuća A (maksimalno 220 tisuća A). Poznati zvučni efekt javlja se zato jer se na zagrijavanje kanala kojim kreće munja troši oko 70% ukupne energije. U vrlo kratkom vremenskom razmaku temperatura dosegne do 15 000°C, pa se uslijed širenja ugrijanog zraka čuje grom tj. grmljavina.

Važno je ponovno istaći da se grmljavina javlja u jako vertikalno razvijenim oblakima. Drugim riječima, grmljavinski oblak je komulonimbus. Komulonimbus nastaju uvijek pri jakoj konvekciji tj. snažnim ulaznim strujnjima. Općenito se uzima da postoje termičke i prisilne konvekcije, ali je u praksi razgraničenje izuzetno teško, jer najčešće zajedno i istovremeno djeluju oba procesa. Grmljavina je najčešća u grmljavnim nepogodama. To su nepogode u kojima je bilo grmljavine, ali ne treba zaboraviti da grmljavine može biti, a da nepogode nema (tj. da nije bilo padalina). Unutar jedne zračne mase grmljavnjske nepogode su termičkog tipa. Javljuju se u toploj polovici godine i pri vedrim danima, kada je mali horizontalni gradijent tlaka i vjetar slab. Tada se podloga, osobito tlo, tako zagrije. To zagrijavanje je diferencirano, a to znači da se zbog raznolikosti površine (nagib terena, različita vlažnost, boja, različita vegetacija i sl.), razne površine različito ugriju. Kako se zrak grije od podloge, dolazi do pojave da se određeni volumen zraka jače ugrije od okolnog zraka, i kao topliji počne uzdizati. Posljedica je da na određenoj visini dolazi do ohlađivanja, pa do kondenzacije vodene pare i oslobađanja latentne topline i stvaranja kumulonimbusa. Takve termičke grmljavnjske nepogode najčešće su ljeti nad kopnom u posljepodnevnim satima. Optimalni uvjeti za razvoj grmljavnjskih nepogoda ipak ne postoje unutar jedne zračne mase, nego su najčešće na frontama, a osobito na hladnoj fronti. Frontalne grmljavnjske nepogode na hladnoj fronti nastaju kad hladni zrak istisne i prisili topliji zrak ispred fronte na izdizanje, koje je često vrlo naglo. Ponovno treba istaći da veći dio grmljavnjskih nepogoda nastaje kombinacijom termičke i prisilne konvekcije. Ako jedna konvektivna nepogoda nađe na planinu, ona se još pojača uslijed orografskog efekta, jer se zrak još jače i brže izdiže uz padinu. Planinska barija dovodi do uzdizanja toplijeg zraka ispred fronte, kojeg na tu bariju potiskuje zrak iz hladnog sektora. S druge strane, nakon kratkog zastoja fronte, pojača se naglo preljevanje hladnog zraka nad topliji iza planinske barijere. U svakom slučaju orografski efekt očituje se u tome da grmljavnjskih nepogoda, odnosno grmljavine op-

Sl. 1.: Prosječni godišnji broj dana s grmljavinama u SFRJ, razdoblje 1948–1973. godine (izvor 3)

čenito ima više u planinskim krajevima. Da je to tako, odmah možemo uočiti iz sl. 1, gdje je prikazan srednji godišnji broj dana s grmljavinom u našoj zemlji. Najviše je dana s grmljavinom uglavnom u planinskim krajevima, tj. u alpskim i dinarskim dijelovima naše zemlje. Taj je utjecaj izražen i na Medvednici i na slavonskim planinama. Treba uočiti da je povećan broj dana s grmljavinom u Vojvodini, što se ne može objasniti većom cestinom prijelaza fronti, tj. ciklona, nego i većim udijelom termičke konvekcije u tim kontinentalnim područjima.

Za nas je još interesantnije razmotriti godišnji hod broja dana s grmljavinom. Na sl. 2. prikazan je godišnji hod dana s grmljavinom u Hvaru, Puli i Zagrebu izračunat za 20-godišnje razdoblje. Odmah uočavamo da postoje određene razlike koje se naročito ističu između Zagreba, kao tipičnog predstavnika kontinentalnog dijela naše zemlje, te Hvara, predstavnika primorja. U kontinentalnom dijelu naše zemlje (Zagreb) najveći broj dana s grmljavinom javlja se u toplom dijelu godine, tj. od travnja do rujna s maksimumom u lipnju. Krajem proljeća i početkom ljeta, preko naših krajeva prolaze brojne ciklone, ili samo hladne fronte, jer tada i naglje slabi tlak u jugoistočnoj i istočnoj Evropi. Tlak opada zbog naglog zagrijavanja podloge, a još se nije dovoljno razvilo etezijsko strujuanje. Zato ciklone preko sjevernoj Jadranu češće krenu na istok, dolinom Save i Dunava sve do Crnog mora; to je poznata putanja Vc (pet c, po W. J. van Bebberu). Osim povećanja padalina, ove ciklone če utjecati i na veći broj dana s grmljavinom, a naročito u kontinentalnom dijelu naše zemlje. Krajem proljeća i naročito ljeti, unutrašnjost se naglo zagrjava. Ljeti je termička konvekcija u unutrašnjosti maksimalno razvijena, što također utječe na povećanje grmljavinskih nepogoda, odnosno time i na više dana s grmljavinom. Opet ističemo da su primalna i termička konvekcija pojava koje često dvaju zajedno. Dakle, zbog češćih prolaza ciklona, ili samo hladnih fronti, i termičke konvekcije u unutrašnjosti, optimalni period češće grmljivine je u toplom dijelu godine. Naprotiv, u hladnom dijelu godine, naročito usred zime, grmljavine su u kontinentalnom dijelu zemlje vrlo rijetka pojava. To upućuje na nužan zaključak da je termička konvekcija važan

174
Sl. 2: Prosječni godišnji broj dana s grmljavinom po mjesecima, razdoblje 1951–1970. godine (autor: D. Orešić)

Sl. 3: Prosječni godišnji broj dana s grmljavinom po mjesecima, razdoblje 1951–1970. godine (autor: D. Orešić)

Sl. 4: Prosječni godišnji broj dana s grmljavinom po mjesecima, razdoblje 1952–1971. godine (autor: D. Orešić)

proces kojim nastaju grmljavinske nepogode. Pogledajmo godišnji hod u Hvaru. Odmah se uočava bitna razlika, koja je posljedica maritimnosti. Ne samo da grmljavinc ima u zimskim mjesecima, nego je u hladnom dijelu godine, u studenom, istaknut približno isti broj dana s grmljavinom (čak i nešto veći) kao i u srpnju. Iako zimi ima najmanje dana s grmljavinom, ipak ih ima više nego u unutrašnjosti.

Po odnosu između Pule i Hvaru reklo bi se da broj dana s grmljavinom u hladnom dijelu godine raste u našem priobalju od sjeverozapada ka jugoistoku, što je u prosjeku uglavnom točno. Vidimo da je jedna od osnovnih razlika između Zagreba i Hvara i ta, da u Hvaru postoji znatan broj dana s grmljavinom u jesenskim mjesecima. Veća čestina grmljavine u hladnom dijelu godine, napose u jesen, je karakteristika svih mjesta u primorskom dijelu naše zemlje. Jadranosko područje tada često preplavi zrak s juga (jugo), koji je bogat vodenom parom, a dovoljna je i manja reljefna prepreka da dode do orograf skih nepogoda u kojima se mogu lako javiti grmljavine. U hladnom dijelu godine česte su i ciklone koje se kreću paralelno s uzdužnom osi Jadranskog mora, prema sjevernoj Grčkoj (van Bebbenova putanja
Vd). Dakle, u jesen su češće i frontalne nepogode. Treba reći da, u hladnijem dijelu godine, uvjeti za termičku konvekciju nad morem najčešće postoje noću. Tada je najveća razlika između relativno toplog mora (dobar akumulator topline) i zraka iznad njega. Ako postoji advekcija hladnijeg zraka s kopna nad toplobe morebe, opet može doći do termičke konvekcije. Ljeti je, međutim, broj dana s grmljavinom manji nego u Zagrebu. Ljeti je primorski pojas pod utjecajem supsidencije i ohlađivanja od ozdoza hladnijeg mora (danju). Prema odnosu između Hvara i Pule moglo bi se reći da ljeti grmljavana ima više na sjevernom Jadranu, a sve manje kako se ide na jugoistok. Takve pravilnosti ipak nema, jer mnogi drugi faktori, naročito lokalni klimatski modifikatori, utječu na frekvenciju grmljavinje u toku godine. Na sl. 2 urtan je i godišnji hod grmljavine za Pulu. Po svemu što je rečeno može se zaključiti da Pula predstavlja godišnji hod broja dana s grmljavnom bločnog tipa. Pti tom Zagreb predstavlja kontinentalni, a Hvar maritimni tip godišnjeg hod a broja dana s grmljavinom. Prijelazni karakter očituje se u nepo- većanom broju dana s grmljavinama u hladnijem dijelu godine u odnosu na Zagreb, a smanjen u odnosu na Hvar (u studenom: Zagreb 0.8 dana, Pula 3.2 dana, Hvar 4.8 dana). Utjecaj kontinentalnosti na sjever- nom Jadranu očituje se u većem broju dana s grmljavom i (u srpnju: Hvar 4.6 dana, Pula 6.2 dana).

Obratimo sada pažnju na sl. 3 gdje je prikazan godišnji hod broja dana s grmljavinom za isti 20-godišnji period kao i na sl. 2, a ovaj put za Dubrovnik, Hvar i Split. Prema dosada rečenom, sva tri go- dišnja hod hladne grmljavinama su maritimnih tipa. Kad pogledamo krivulje Hvara i Splita, uočavamo izvesne razlike. U hladnijem dijelu godine Hvar ima njezino malo više grmljavinje od Splita. Oba mjesta nalaze se na istoj geografskoj dužini, ali je Hvar 40-ak km južnije, na položaju na kome je više izložen južnim proljećima (jugo) nego Split. Ipak veća je razlika između Hvara i Splita ljeti, što bi se moglo objasniti postoj- ajanjem više reljefne prepreke u neposrednom zadebu Splita. Orografski efekt ovdje je svakako prisutan. Dubrovnik ima u hladnijem dijelu godine još veći broj dana s grmljavinom od Hvara. To je posljedica njegovog južnijeg položaja, čime je izložen prodorima s juga, ali ne treba zaboraviti ni termički utjecaj hladnijem dijelu godine, naročito otočan. Vjerojatno bi u toplijem dijelu godine broj dana s grmljavinom bio manji, da i ovdje nema reljefnih prepreka u neposrednom zadeb Dubrovnika.

Na temelju prethodne dvije slike (sl. 2 i sl. 3) bitno je da uočavamo dva glavna tipa prosječnog godišnjeg hod brora dana s grmljavinom: kontinentalni i maritimni. Kontinentalni tip karakterizira jedan izrazit maksimum ljeti (lipanj) i vrlo mali broj dana s grmljavinom u hladnijem dijelu godine. Maritimni tip ima ravnornjemljeg raspored dana s grmljavinom u toku godine, dakle i nesto više veći broj dana s grmljavinom zimi, a bitno je uočiti dva izraženija maksimuma: ljeti (lipanj ili srpanj) i u jesen (studeni).

Razmotrimo sada jedan poseban primjer iz unutrašnjosti naše zemlje. Na sl. 4 prikazan je prosječan godišnji hod broja dana s grmljavinom za Sarajevo (na 630 m nadmorske visine) i za Bjelasnicu (na 2.067 m nadmorske visine). Razdoblje promatranja i ovdje je 20 godina, kao i u prethodni dva primjera, samo je početak motrenja 1952. godina, jer za 1951. godinu nema podataka za Bjelasnicu. Godišnji je hod dana s grmljavinom u obje meteorološke postaje kontinentalnog tipa. Prisjetimo se da smo kao opće pravilo naveli da je grmljavinje, kao i broja dana s grmljavinom (sl. 1) više u planinama, nego u okolnim nižim prostorima. Godišnji hod dana s grmljavinom Sarajeva i Bjelasnice, međutim, pokazuje odstupanje od tog pravila. Sarajevo u godišnjem prosječku ima veći broj dana s grmljavinom od Bjelasnice. Razlog tomu svakako je višestruk. Promatrane i prace dana s grmljavinom u Sarajevo rezultat njegova kontinskog položaja. Naime, ako je došlo do grmljavinje u okolnim planinama, moguće je da se zvučni efekt čuo i u kotlini, tj. u Sarajevu, gdje je to registrirano kao dan s grmljavinom. Osim toga, kontinski položaj Sarajeva mogao je utjecati i na drugi način: Ljeti se konkavni oblici reljefa često jako zagrijavaju (kontinski efekt), što dovođe do jače konvekcije, a time i do veće mogućnosti pojave grmljavinskih nepogoda i grmljavine općenito. Naprotiv, zimi je u kotlinama česta inverzija, pri čemu je atmosfera stabilna, što je moglo utjecati na nešto veći broj dana s grmljavinom na Bjelasniču u hladnijem dijelu godine.

Razlika je u hladnom dijelu godine ipak mala, a to se može objasniti poznatom činjenicom da su zimi planine u unijenom postaju u prosjeku malo oblačne, tj. «otoci» vedrine. Još jedan faktor mogao je utjecati na povećanje broja dana s grmljavinom u Sarajevu, a to je sam svagda. Grad svakako modificira lokalnu klimu, jer u manjoj ili većoj mjeri mijenja klimatske elemente. Mnoge istraživanja pokazala su da na gradovima ima više grmljavinskih nepogoda, nego u okolnom području. Tako je npr. na Nür-bergom (SR Njemačka) utvrđeno 14% više grmljavinskih nepogoda nego u ruralnoj okolini, nad St. Loui- som (SAD) 20-30% više grmljavinskih nepogoda nego u okolici itd. (1). Sljedeće rezultate pokazala su istraživanja u Hamburgu (SR Njemačka), Londonu (Velika Britanija) itd., a uzroci su direktni i indirek- tni. U gradu su izmjenjena termička svojstva podloge, tj. to nastaju ili se pojačavaju već postojeća vertikalna gibanja zraka, dok emisija golemih količina polutanata, od kojih su većina i jezgre kondenzacije, omogućuju bržu i lakšu kondenzaciju (4). U svakom slučaju, prosječan godišnji hod broja dana s grmljavinom u Sarajevu i Bjelasnici dobar je primjer odstupanja od općeg pravila, zbog modificatora kao što su reljef, urbana izgradnja i dr.
Summary

SPATIAL DISPOSITION AND ANNUAL RUN OF NUMBER OF DAYS WITH THUNDERSTORM IN YUGOSLAVIA

by Daniel Orešić

In preface, we have worked out some physical basis and meteorological conditions on thunderstorms.

Then, we have average annual number of thunderstorm days in Yugoslavia.

Mostly, they are in mountain areas, and increased number of thunderstorm days in Vojvodina shows, a greater importance of thermic convection in that continental area.

In the following text, we have analysed and shown annual run of number of thunderstorm days, in chosen places in Yugoslavia.

We point out the differences between Zagreb, a continental type, and Hvar, a maritime type in annual run of number of thunderstorm days. Continental type is characterized by one explicit maximum in summer (June), and a very few thunderstorm days during cold period of year.

Maritime type has a more stable disposition of thunderstorm days during a year, a slight increase of thunderstorm days in winters. It is important to notice 2 more explicit maximums: in summer (June or July), and in Autumn (November). Annual run of number of thunderstorm days in Pula shows a transitive character.

Annual run of number of thunderstorm days for Dubrovnik, Hvar and Split are maritime types, and differences between them are caused by local modificatory influences (relief). Annual run of number of thunderstorm days of Sarajevo and Bjelašnica is an example of deviation from general rule, that there is more thunderstorm in mountain areas.

Possible reasons for the larger number of thunderstorm days in Sarajevo, may result from its basin location, and modificatory influence of the city itself.