NEKE NAZNAKE OSNOVNE GEOMORFOLOŠKE PROBLEMATIKE
KARAŠIČKE PODRAVINE

A. Saler

Osobine geomorfološkog položaja

Karašička Podravina je tipično nizinsko područje u kojem reljefna energija ne prelazi vrijednost od 10 — 15 m/km². U cjelini je izdužena dinarskim smjerom pružanja (SZ — JI), a gladno joj obliježje daje centralno položena i šumom obrasla fluviijalno-močvarna nizina uz rijeke Karašicu i Vučicu, dužine oko 40 a širine 10 km. U geotektonskom smislu Karašička Podravina se poklapa s dijelom Dravske grabe (I. Šimon, 1973.) koja je obilježena izrazito diferencijalnim mladim supsidencijskim pokretima. Ovi pokreti utjecali su na formiranje predgorskih supsidencija uz Karašicu i Vučicu.

U morfostrukturalnom smislu prostor Karašičke Podravine ulazi u kategoriju akumulacijsko-tektonske reljefa (Bognar A., 1980.), unutar kojega se izdvajaju slijedeći genetski tipovi: fluviijalna (poloj, mlada i starija virm-ska terasa Drave) i fluviijalno-močvarna nizina (Karašičko-vučićka supsidencija). Zajedničko obilježje čitavom nizinskom prostoru uz rijeku Dravu daje prevladavajući utjecaj akumulacijskih procesa, naglašen izraženim neo-

¹) Termin »Karašička Podravina« prvi je upotrijebio A. Bognar (1973) kao homogenu mikroregionalnu cjelinu u okviru mezoregionalnog prostora Slavonske Podravine, unutar teritorija Istočnhrvatske ravnice. Obzirom na dominantni utjecaj rijeke Karašice i njenih pritoka na razvoj i fiziomomiju najvećeg dijela istraživanog kraja, afirmacija spomenutog termina u potpunosti je opravdana.
tektonskim i recentnim spuštanjem (oko 200 m debeo kompleks fluvijalnog nanosa — Mutić R., 1975.; 15 — 20 m debele naslage lesa i lesu sličnih sedimenta na starijoj virmskoj terasi rijeke Drave — Bognar A., 1978.).

Osnovni dijelovi reljefne strukture

U okviru submorfološke regije Karašičke Podravine izdvojiti treba mikro-morfološke regije fluvijalne nizine i fluvijalno-močvarne nizine. Unutar fluvijalne nizine razlikuju se morfofacijalne cjeline poloja (viši i niži nivo) i terasa (mlađa i starija virmska) rijeke Drave.
Prilikom razmatranja geomorfološkog položaja nekog prostora, u obzir svakako treba uzeti i vremensku (razvojnu) dimenziju, koja je bez sumnje veoma značajna pretpostavka razumijevanja suvremenih prilika i prostornih odnosa. Možemo reći da je današnja slika reljefa istraživanog kraja rezultat prvenstveno veoma mladih procesa, osobito onih, vezanih za period mladog pleistocena i holocena. Tokom pleistocena kraj je ulazio u južni rub evropske periglacijalne oblasti obilježene nizom karakterističnih periglacijalnih procesa (krioturbacija, kriofrakcija, kriotektonika, akumulacija prašinastog materijala vjetrom i vodom iz kojeg su dijagenetskim procesima nastali facijes fluvijalnih i eolskih nasлага lesa i lesu sličnih sedimentata. Treba, međutim, naglasiti da su svi reljefni oblici s klimamorfološkog aspekta danas "stranci" u navedenom prostoru, koji se nalaze u fazi preoblikovanja i uništavanja.

Sastav i građa Tercijar. Prostor Karašičke Podravine ulazi u okvir Dravske grabe (sl. 2). Obzirom na snažno neotektonsko, a i recentno spuštanje unutar ove tektonske strukture, pojačan je intenzitet akumulacije, tako da je nešto zapadnije od istraživanog područja (kod Virovitice) zabilježena najveća, do sada utvrđena debljina terciarnih (pretežno neogenih) nasлага — preko 6500 m, dok u samoj Karašičkoj Podravini ona

Sl. 2. Shematska tektonska karta Dravske potoline (prema Ž. Pletikapić, 1964.).

Fig. 2. Shematic tectonic map of the Drava depression (according to Ž. Pletikapić, 1964.).

iznosi 4000 — 4500 m (Pletikapić i dr., 1964.). Neogeni marinski i lakustrijski sedimenti predstavljali su uglavnom klastičnim razvojem s dominacijom pijeska, pješćenjaka, lapora, biogenih vapnenaca, gline i laporovitih vapnenaca. Debljina sedimenata povećava se od ruba sinklinale (tj. od kontakta nizine Drave s gorskim masivima Papuka i Krndije) prema njenom središtu duž glavne potolinske zone.

Legend: I. Litologija: 1. Pleistocen. 1.1-fluvijalni les pleistoccenske starosti, pjeskoviti i glinoviti les; 1.2-derazijski les (deblji od 5 m); 1.4-diskontinuirani pokrivač lesu sličnih sedimenta izmišten s kršjem. 2. Holocene. 2.1-eolski pijesci; 2.2-plavine i naplavne ravn; 2.3-fluvijalni les holocene starosti, lesni silt naplavne ravn. II. Tektonika. 1.1-rasjed; 1.2-protostavljeni rasjed, 1.3-relativno spušten blok, 1.4-gotovo horizontalan sloj; 1.5-kota.

Fig. 3. Geological sketch of Karašička Podravina (according to A. Bognar, 1977. and M. Haček — M. Olujić, 1969.).

Legend: I. Lithology: 1. Pleistocene. 1.1-Pleistocene infusion loess, sandy, clayey loess; 1.2-clayey loess; 1.3-derasional loess (thicker than 5 m); 1.4-discontinuous cover of the loess-like sediments mixed with slope debris; 2. Holocene. 2.1-eolian sands; 2.2-alluvial fans and flood plains; 2.3-Holocene infusion loess, flood plain loessy silts. II. Tectonics. 1.1-fault line; 1.2-supposed faults; 1.3-relatively subsided block; 1.4-fast horizontal layer; 1.5-trigonometric point.
Kvartar. Kvartarne naslage (pleistocen i holocen) od dominantnog su značenja u prostoru Karašićke Podravine, gdje se redovito javljaju u krovini neogenih sedimenata. Debljina im je često veća od 100 m, a prema nekim indikacijama (Mutić R., 1975.) i više od 200 m. Površinski sastav obilježen je prevladavajućim fluvijalnim nanosom u području polova i fluvijalno-močvarne nizine, odnosno lesom i lesu sličnim sedimentima u terasnoj nizini rijeke Drave (sl. 3).

Posebnu pažnju zaslužuje les i lesu slični sedimenti, kako zbog svoje rasprostranjenosti (preko 80% površine Karašićke Podravine), tako i zbog činjenice da oni predstavljaju supstrat najplodnijim ratarskim površinama istraživanog kraja. Debljina im prostorno varira u rasponu od 0,5 — 1,0 m (terasa V3) do 15 — 20 m (terasa V1). Naslage su zbog periodički vlažnijih razdoblja tokom pleistocena (kao i danas) u velikoj mjeri izlužene, tako da uđio CaCO₃ nigdje ne premašuje 10% (Bognar A., 1978.). U prostoru Karašićke Podravine izdvojena su dva dominantna genetska tipa lesa i lesu sličnih sedimenata: glinoviti les i lesu slični sedimenti eolskog porijekla na starijoj virmskoj terasi rijeke Drave (V1) i naslage lesa i lesu sličnih sedimenata fluvijalnog porijekla na mlađoj virmskoj terasi Drave (V3), a pretaloženog lesu sličnog sedimenta djelomično i na višem nivou polova. Mjestimično pod utjecajem djelovanja podzemne vode, a u dubljim dijelovima kompakcijom debelih pokrovnih naslaga, izdvajaju se izmjnjene naslage lesa i lesu sličnih sedimenata s pijescima.

Tektonska struktura

Prostor Karašićke Podravine obilježen je, općenito, dinarskim smjerom pružanja osnovnih crta reljefa (SZ — JI). Određeno je to osnovnom tektonskom strukturoformiranom tokom neogena, koja je naslijedila jednu sasvim drugačiju, varističku strukturu, orijentiranu smjerom SI — JZ (Pletikapić Z. i dr., 1964.) i relevantnu za morfološki razvoj prostora u mezozoiku i starijem terciaru. Za alpskih orogenih pokreta nastupilo je spuštanje dijela temeljnog gorja i formirana je Dravsko graba. Obzirom na jak intenzitet spuštanja u toj potolinskoj strukturi, nastali su pogodni uvjeti za sedimentaciju debelog terciarno-kratarnog kompleksa naslaga (5000 — 6000 m). Duboko spušteni glavni sinklinalni pojas mjestimice je, međutim, isprekidan nivoima manjeg intenziteta spuštanja, tzv. strukturnim nosevima i pragovima (npr. Našičko-miholjački prag i dr. — Pletikapić i dr., 1964.). Krajem miocena, osobito za alčkih i rodanskih pokreta, a povremeno i kasnije — u plicenu pa i plocovatara nastupila je faza novih snažnih tektonskih gibanja. Spuštanje glavne potolinske zone se nastavilo, a povremenim nastupima transgresije akumuliran je debeo marinsko-limnički sedimentni plašt. Nakon ovako izraženih tektonskih pokreta uslijedila su u kvartaru veoma snažna radijalna gibanja (Prelogović E., 1975., Bognar A.,
1975.), koja su, uz postojeće egzogene procese, bila odlučujuća za formiranje suvremenih reljefnih odnosa kraja. Za vrijeme tih pokreta predgorski je prostor, kao lokalni erozijski bazis tokova i padinskih procesa u podgorju Papuka i Krndije, prihvatio ogromne količine materijala, što je imalo za posljedicu ulijeganje podloge terciarno-kvartarnog sedimentnog plašta i nastanak mladih supсидencija, koje su morfološki izražene fluvijalno-močvarnim nizinama. Upravo nastanak supsidencijske zone jedan je od bitnih faktora specifičnог razvoja i diferencijacije submorfološke regionalne cjeline Karašičke Podravine od Slatinsko-virovitičke nizine Drave na SZ i Donjo-dravske nizine na JI (sl. 4).

Fig. 4. Shematic relief profiles across Slavonska Podravina (according to A. Bognar, 1975, 1977.).

Tektonika je odigrala izvanredno važnu ulogu u formiranju suvremenih reljefnih odnosa Karašičke Podravine. Tako su fotogeološka istraživanja (Haček M., Olujić M., 1969.) pokazala da se kontaktom podgorja Papuka i Krndije s nizinom Drave pruža jasno izražen sistem rasjeda, koji se unutar istraživanog područja mogu pratiti od Našica do Braćevaca (sl. 3). Njihov nedostatak između Mikleuša i Našica poklapa se sa zonom omeđenom transverzalnom Mikleuškom sinklinalom (s Voćinskim rasjedom) na SZ i Našičkim rasjedom na JI. Osim ovog podgorskog longitudinalnog tektonskog sustava, u prostoru Karašičke Podravine izdvaja se još jedna, sekundarna linija rasjeda dinarskog smjera pružanja. Taj rasjedni sistem u okviru istraživanog kraja može se pratiti uz sam tok rijeke Drave, od Moslavine do Črniko-vaca, da bi se na JI vezao za dinamični tektonski sklop Banskog brda u Baranji. Između dvaju spomenutih rasjednih linija (podgorske i pridravske) uočena je izdužena sinklinala dinarskog smjera pružanja sa strmilim južnim krilom — glavna spuštena zona Dravske grabe.
Analiza reljefa

Nizinjski prostor Karašičke Podravine (nizina rijeke Drave) u morfostrukturnom smislu ulazi u kategoriju akumulacijsko-tektonske reljefne. Ovaj se prostor može nalaziti prema tlocrtu diferencirati na slijedeće tipove reljefa:

(a) poloj rijeke Drave
(b) fluvijalno-močvarna nizina uz Karašiću i Vučiću
(c) terasna nizina rijeke Drave
 c.1. mlada virmska terasa Drave (V 3)
 c.2. starija virmska terasa Drave (V 1)

(a) Poloj rijeke Drave

Prostor Karašičke Podravine obilježen je relativno gustom hidrografskom mrežom. Međutim, osim Drave, a donjci i Karašice i Vučice, radi se uglavnom o tekućicama potočnog karaktera. Sve su one karakterizirane mehanizmom voda srednjeg ili donjeg toka, pa prevladavaju akumulacijski procesi i meandriranje. Usjekanje je izraženo u debelim nasklada lesa na staroj virmskoj terasi. Tu potoci gotovo i nemaju naplavnih ravnih, već su im doline zbog vertikalnog cijepanja lesnih taložina obilježene veoma strmim stranama.

Jedina tekućica koja je formirala tipičnu naplavnu ravan je rijeka Drave. Poloj Drave morfogenetski je najmlađa reljefna jedinica submorfološke regije Karašičke Podravine, koja se i danas oblikuje utjecajem morfološke aktivnosti rijeke Drave. Neznatne je reljefne energije (ispod 5 m/km²), a apsolutna visina mu se kreće između 100 m na SZ (kod Moslavine) i 88 m na JI (kod Črnkovaca). Pad uzdužnog profila rijeke veoma je malen (0,28 m/km), pa dominiraju morfološki procesi lateralne erozije i akumulacije.

Poloj Drave formiran je akumulacijsko-erozijskim radom tekućica uglavnom tokom mlađeg kvartara. Zbog prevladavajućeg taloženja finog suspendiranog nanosa tokova, poloj je redovito pokriven siltano-glinovitim materijalom koji pospešuje zamocvanje tla.

U okvirima istraživane submorfološke regije, između Moslavine i Črnkovaca, morfatomicna cjelina poloja Drave ističe se u vidu diskontinuiranog pojasa uz tok rijeke. Sirina poloja varira od desetak metara (kod Moslavine) do oko 3 km (kod D. Miholjca). Između Viljeva i Žestilošaca poloj, međutim, nije prisutan, tako da se ovdje tok rijeke Drave neposredno dodiruje s
mlađom virskom terasom (Čarda 103 m, Žestilovac 102 m). Naglasiti treba da se općenito javljaju dva nivoa naplave ravn — niži i viši. Apsolutna visina nižeg nivoa najčešće se kreće oko 90 m, dok je izdignutiji nivo uglavnom viši za 2 — 3 m. Kako nulta točka (tj. razina srednje niskog vodostaja) voda Drave ovdje iznosi 88,80 m (Donji Miholjac), to sezonski dolazi od poplavljivanja niže naplavne ravn, a viši nivo je poplavljen samo pri izuzetno visokim vodostajima (tab.1). Srednje vjerojatnost uvjećuje, međutim, redovito zamoćvarivanje dijelova niže naplavne ravn, ali izdignutiji nivo podzemnih voda utječe tada i na zamoćvarivanje šireg prostora poloja, uključujući i udaljene isušene mrtvaje i rukavce. Mrtvaje su najčešće ostaci bivših meandara, koji su regulacijskim radovima tokom 19. stoljeća (J. Mantuano, 1970) probijeni i odvojeni od današnjeg korita. Neke su još i danas ispunjene vodom (Leganska bara, Adica, Stara Drava). U riječnom koritu akumuliraju se pijesci, dok je poloj obično pokriven 0,5 — 1,5 m debelim slojem pjeskovito-lesokilnog mulja. Opća zamoćvarenost prostora utjecala je na rast hidrofilnih vegetacijskih vrsta — šaša, trske, vrbe i topole. Hrast lužnjak, međutim, mnogo je češći u području fluvijalno-močvarne nizine Karašice i Vučice, no u samom polju Drave.

TAB. 1. KARAKTERISTIČNI VODOSTAJI I AMPLITUDE VODOSTAJA NA DRAVI KOD D. MIHOLJCA U PERIODU 1946—1970. (KOTA "0" = 88,80 m)

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
</tr>
</thead>
<tbody>
<tr>
<td>N V</td>
<td>-3</td>
<td>-3</td>
<td>16</td>
<td>50</td>
<td>87</td>
<td>119</td>
<td>92</td>
<td>60</td>
<td>30</td>
<td>1</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>S V</td>
<td>40</td>
<td>46</td>
<td>70</td>
<td>128</td>
<td>154</td>
<td>184</td>
<td>151</td>
<td>116</td>
<td>81</td>
<td>49</td>
<td>84</td>
<td>61</td>
</tr>
<tr>
<td>V V</td>
<td>121</td>
<td>117</td>
<td>155</td>
<td>186</td>
<td>238</td>
<td>261</td>
<td>238</td>
<td>213</td>
<td>171</td>
<td>139</td>
<td>207</td>
<td>150</td>
</tr>
</tbody>
</table>

SREDNJA MJESEČNA AMPLITUDE

<table>
<thead>
<tr>
<th>Maksimalni V V</th>
<th>248</th>
<th>230</th>
<th>370</th>
<th>324</th>
<th>373</th>
<th>440</th>
<th>425</th>
<th>460</th>
<th>420</th>
<th>402</th>
<th>388</th>
<th>304</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimalni N V</td>
<td>-76</td>
<td>-60</td>
<td>-62</td>
<td>-47</td>
<td>20</td>
<td>45</td>
<td>10</td>
<td>-6</td>
<td>-36</td>
<td>-60</td>
<td>-66</td>
<td>-61</td>
</tr>
</tbody>
</table>

APSOLUTE AMPLITUDE

| | 324 | 290 | 432 | 371 | 353 | 395 | 415 | 466 | 465 | 462 | 454 | 401 |

RASPOZIV

<table>
<thead>
<tr>
<th>Datum</th>
<th>SNV</th>
<th>SV</th>
<th>SVV</th>
<th>V V</th>
<th>Datum</th>
<th>NNV</th>
<th>Datum</th>
<th>VVV</th>
<th>Datum</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Srednja godišnja</th>
<th>Maksimalni V V</th>
<th>Datum</th>
<th>Minimalni N V</th>
<th>Datum</th>
<th>Apsolutna amplimata A E V</th>
</tr>
</thead>
</table>
Pritrodični morfološki razvoj poloja vodi ka njegovom širenju, što se nepovoljno odrazilo na gospodarskoj valorizaciji prostora. Takva morfogenzea poloja uvjetovala je učestalu pojavu poplava, tako da je područje poloja stoga, u gospodarskom smislu bio — izuzev mogućnosti ribolova — gotovo neiskorišten prostor. Mogućnost prometnog valoriziranja toka rijeke Drave kao i tradicionalna glad za agrarnim površinama utjecale su u uvjetima stalnih opasnosti od viškova voda i započetnosti, na poduzimanje različitih mjera i akcija oko reguliranja toka i hidrometeorologije poloja Drave. Svojom opsežnošću ističe se tzv. Spannbauers plan s početka 20. stoljeća vezan za prokopavanje plovnog kanala od Barcsa do Dravi do Vukovara na Dunavu. Projekt, razumljivo, nije zbog svoje skupoće i veličine mogao biti realiziran, no istovremeno je uočena mogućnost iskorišćivanja viška voda izgradnjom ribnjačarstva (1903. g. u moćvarnoj nizini Karasice i Vrčice kod Našičke Breznice započela je izgradnja ribogojilišta). U poloju Drave danas se u tom smislu ističe ribnjačarstvo kod D. Miholjca (radovi započeli tek 1960. g.) i to na mjestu gdje je početkom 20. stoljeća postojao živi rukavac rijeke (Turrk, 1976.).

Od posebne je važnosti i činjenica da je u sektoru meandara, gdje je lateralna aktivnost vode najveća, proboj mjestimično podignutih nasipa (npr. Miholjačka skela — Sv. Đurđa i okolina Podr. Podgajaca) u doba visokih voda i najvjerojatnije. Daljnji problem predstavlja sufozijsko djelovanje vode temeljnice (podzemne vode), koja ispirući materijal iz vodonosnih slojeva (pijesci), uzrokuje slijeganje terena. U periodu visokih voda, povšenjem nivoa vode temeljnice mjestimično prodiru podzemne vode i unutar sistema nasipa. Ovakve pojave osobito mogu ugroziti naselja podignuta uz tok Drave (Moslavina, Podr. Podgajci itd.), a sekundarno i frekventnu pro-
metnicu na dionicu Čadavica — D. Miholjac — Valpovo. Relativno visoki nivo vode temeljnice u ovom prostoru u izvjesnoj je mjeri pozitivno djelovao na društveno-gospodarsku valorizaciju poloja, i to prvenstveno u vezi s izgradnjom ribnjaka u poloju Drave kod D. Miholjca.

![Diagram of Drava River between Moslavina and Podgajci](image)

Sl. 5. Umjetne probojnice meandara na rijeci Dravi između Moslavine i Podgajjaca izvedene u 19. stoljeću (prema F. Erdősi, 1977.).

Legenda:
1. korito rijeke probijeno u periodu 1790 — 1838;
2. korito rijeke probijeno u periodu 1838 — 1856;
3. napuštena probojnica;
4. prvobitno korito;
5. planirana, neostvarena probojnica;
6. godina probijanja meandra.

Fig. 5. Man-made meanders on the Drava river between Moslavina and Podgajci in the 19th century (according to F. Erdősi, 1977.).

Legend:
1. main channel in artificial reach cut in 1970 — 1838;
2. main channel in artificial reach cut in 1838 — 1856;
3. abandoned, unsuccessful cut;
4. original trench;
5. planned artificial cut, never executed;
6. year when the channel was cut.

U okvirima istraživanog prostora aluvijalni nanosi ostalih tekućica mogu se izdvojiti jedino u gornjim sektorima tokova, gdje još ne prevladava usijecanje u naslagama lesa i lesu sličnog materijala, akumuliranih na površini starije vurmске terase rijeke Drave. U prostoru mlađe vurmске terase potočne doline su u znatnoj mjeri regulirane (melioracija), a protok vode prema Dravi je ubran. Razumljivo je da je mogućnost izlijevanja i zamočavanja okolnih površina u takvim uvjetima daleko manja. Provodejmem hidrotehničkih zahvata prostor poloja Drave kao i fluvijalno-močvarne nizine Karašice i Vučice, dobio je svakako mnogo na društveno-gospodarskoj važnosti.

(b) Fluvijalno-močvarna nizina Karašice i Vučice

Mikromorfološka regija fluvijalno-močvarne nizine Karašice i Vučice zauzima središnji dio istraživanog kraja. Stalna zamočvenost terena uvjetovala je vjekovnu izolaciju i opću zaostalost prostora, tim više što se istovremeno radi i o zatvorenom šumskom području. Spušteni teren veoma se jasno izdva-ja od okolnog, nešto višeg prostora terasne nizine. Nizina Karašice i Vučice obilježena je dinarskim smjerom pružanja (dužinska os Medinci — Bizovac iznosi oko 50 km, a širinska, u sektoru D. Miholjac — Đuđenovac oko 25 km), i općenito je elipsastog ocrta. Naziv ove reljefne jedinice prema najve-
GEOMORFOLOŠKA PROBLEMATIKA KARAŠIČKE PODRAVINE

83

ćim prisutnim tekućicama u potpunosti je opravdan. obzirom da tokovi Karašice i Vučice znatno utječu na reljefnu individualnost i specifičnost kraja.

Ovaj je prostor u reljefnom smislu izrazito akumulacijski područje, formirano fluvijalnim i organogeno-močvarnim zatrpavanjem tokom mlađeg pleistoceana i holocena. Geomorfološki promatrano, ovdje treba diferencirati niže nivoe koji su međusobno odvojeni nešto povišenim pragovima, pa se generalno može govoriti o jednoj mlađoj potolinskoj sukcesiji u podnožju papučkog i krdijskog masiva, ispunjenoj recentnim fluvijalnim nanosima potoka s gorskog okvira i raspadnutim organogeno-močvarnim materijalom.

Reljefna energija fluvijalno-močvarne nizine ne prelazi vrijednost od 5 m/km², a prosječna nadmorska visina kreće joj se između 110 m na SZ i 100 m na JJ. Tekućice se zbog opće zamoćvenosti terena često gube u najspuštenijim dijelovima, depresijama koje su danas uglavnom hidrotehnički regulirane i pretvorene u ribnjake. Gustoća tokova ovdje je znatno manja, no u prostoru terase. Sve tekućice koje protežu ovim krajem obilježene su smjerom otjecanja ZJZ — ISI i redovito se ulijevaju u Karašicu ili Vučicu. Zanimljiva je pojava da Karašica djelomično teče usječena u višu, stariju virmsku terasu rijeke Drave i otječe prema SI, iako bi u skladu s današnjim visinskim odnosi trebala teći prema JJ, tj. u prostor niže karašičko-vučičke nizine. Ovakav »epigenetski« karakter toka Karašice kao i smjer njenog otjecanja, govori u prilog mlađoj supsdencijskog spuštanja prostora (Bognar A., 1975.).

Spomenuta konstatacija o obilju vode u karašičko-vučičkoj nizini prvenstveno se temelji na relativno gustoj mreži tekućica, njeznom potolinskom karakteru i prevladavajućoj nepropusnosti podloge (ilovačke i gline). Ta je podloga uz male nagibe, u najnižim sektorima uvjetovala zamoćvenjenje terena. Prevladavajućim utjecajima ilovastih i glinovitih čestica formiran je površinski nepropusni sloj debljine i do desetak metara. O tome svjedoči i slijedeći profil:

Ribnjačarstvo Grudnjak DM-3-B-2, x = 5053203, y = 6501500, dubina 105,7 m metara

0,00 — 0,50	nasip
0,50 — 4,00	žuta tvrda ilovača
4,00 — 8,50	siva tvrda ilovača
8,50 — 9,50	sivi sitni pijesak
9,50 — 10,00	sivi sitni šljunak s krupnim pijeskom
10,00 — 105,70	pijesak i šljunak (pleistocen)

(*)KATASTER SJEVERNE HRVATSKE — DRAVA*)

Izgradnja ribogojilišta (Grudnjak, Našićka Breznica) u velikoj je mjeri uvjetovana navedenim osobinama vodorazlijevnosti površinskog sloja. Napredovanje procesa zamoćvarivanja uvjetovano je uz utjecaj tekonike i finolastičnih nanosa, također i šumsko-močvarnim vegetacijskim pokrovom, koji je u velikoj mjeri djelovao na vezanje suspendiranog nanosa i stvaranje kontinuiranog nepropusnog sloja. Organsko raspadanje pospješuje, osim toga, i razvoj i taloženje pelitnih i glinjenih čestica (Turk H., 1977.). Podvodnost prostora, bez sumnje, posljedica je i relativno visokog nivoa vode.
temeljnica. Opća nepropusnost terena uvjetovana je specifičnim uvjetima sedimentacije: obzirom na malu transportnu snagu ovdje izrazito ravnica skih tekućica (sve su obilježene mehanizmom voda donjeg toka s razvijenom tipičnom mrežom rukavaca i ada), razumljiva je dominacija prije spomenutih finoklastičnih naslaga (muljeviti materijal, finije frakcije pijeska, ilovača, gline, pretaloženi lesi slični sedimenti) (sl. 6).

Legenda: 1. humus, 2. dolomitični vapnenac, 3. limonitizirana zrna s fragmentima dolomita i kvarca, 4. glina, 5. pijesak, 6. šljunak, 7. les, 8. treset, 9. silt, 10. lapor.

Fig. 6. Geologic-geomorphological schematic profiles across the area of Karašićka Podravin. I = Duzluk — Drava river, II = Našice — Drava river.

Legenda: 1. humus, 2. dolomitic limestone, 3. limonitic grains with fragments of dolomite and quartz, 4. clay, 5. sand, 6. gravel, 7. loess, 8. peat, 9. silt, 10. marl.

(c) Terasna nizina rijeke Drave

U okviru nizine rijeke Drave ističu se dvije terase virmske starosti. One nisu kontinuirane jer ih prekidaž zone naplavnih ravni potoka, od-

2) Eventualno postojanje starije terase Drave ovdje do sada nije pouzdano dokazano. Ipak, prema nekim izvorima rubni dijelovi Slatinško-voćinskog podriđa mogli bi biti ostatak riške terase rijeke Drave, koja je mlađim pokretima poremećena, a linearnom erozijom i derazijom u velikoj mjeri morfološki preoblikovana (Bognar A., 1973).
nosno prostrana fluvijalno-močvarna nizina Karašice i Vučice. Diskontinuiranost je karakteristična osobito za stariju vrmsku terasu, koja se površinski uočava samo mjestimično u neposrednoj kontaktnoj zoni podgorja i nizine. Vertikalna razlika između nivoa dvaju terasa najčešće iznosi 10—30 m (mlada je na visini 95—115 m, a starija 120—136 m). Prostor terasa, u skladu s dominantnim procesima akumulacije kojima je nastao, gotovo je idealna nizina s reljefnom energijom manjom od 10 m/km². Obje terase najgušće su naseljeni dio kraja, a niz najvećih naselja podignut je na dođiru starije i mlade vrmske terase.

Nastanak dravskih terasa rezultat je kombinacije klimatskih i tektonskih utjecaja na erozijsku i akumulacijsku aktivnost Drave i njenih pritoka. Prema nekim autorima (Malez M., 1973.) starija terasa formirana je tokom drugog (V 2), a mlada za vrijeme trećeg (V 3) vrmskog stadijala. Međutim, prema rezultatima dostupnih sedimentoloških i mineraloloških studija (Mutić R., 1975.) najvjerojatnije je da starija terasa potječe iz V 1, a ne V 2, dok je mlada nasvim sigurno formirana u posljednjem vrmskom stadijalu (V 3). Treba reći, prije svega, da je na šljuncima i pijescima starije vrmske terase eolskom aktivnošću nataložen 15—20 m debeli sloj priravnog prašinastog materijala dijagenetski preoblikovanog u oglinjeni les i lesu slične sedimete. Ova je terasa, stoga, u morfološkom smislu lažno povisena i do 20 m.

Na mladoj vrmskoj terasi, naprotiv, ne postoji tako debelo lesni pljašt, te se ovdje javlja svega 1—2 m debeli nanos lesu sličnog sedimenta dravskog porijekla taložen u V 3, dakle neposredno nakon akumulacije podinskih pjeskoviša. Po jedno slovo sedimentacije sedimetnog terasnog nivoa. Sedimentacijski prijelaz iz šljunka i pijeska u fluvijalni les je postepen, a samo taloženje lesnog materijala može se objasniti fazom sedimentacije suspendiranog nanosa visokih voda rijeke Drave (Bognar A., 1978), koja se krajem trećeg vrmskog stadijala postepeno usijeca zbog sve češćih prodora atlantskih zračnih masa, a time i povećanih protjecanja rijeke koja je na taj način povećala svoju erozijsku snagu. U prilog tome govore slijedeći pokazatelji:

(1) analogija naslaga jednakih debljina i karaktera u drugim dijelovima Panonskog bazena (uz Dunav i ostale rijeke), gdje takve naslage također lažno povisuju terase V 1 za približno jednake vrijednosti debljine lesa;

(2) u spomenutom, dvadesetak metara debelom kompleksu lesa i lesu sličnih sedimenata utvrđen je prekid sedimentacije (reliktni pedološki horizont), tako da je cjelokupan ovaj kompleks bio taložen tokom dvaju stadijala. Naime, reliktni pedološki horizont koji prekida sedimentacijski slijet lesolikih naslaga, bez sumnje je formiran u uvjetima vlažne klime koji su prevladavali u interstadijalu V 2/3. Gornji dio tog lesolikog pokrova starije vrmske terase sedimentiran je, dakle, eolskom aktivnošću u V 3 i vremenski se podudara s nastankom mlade vrmske terase i površinskog sloja fluvijalnog lesa na njoj. Donji dio taložine lesa i lesu sličnih sedimenata akumuliranih na starijoj vrmskoj terasi rijeke Drave potječe, međutim, iz drugog vrmskog stadijala (V 2). Sljuncano-pjeskoviti materijal same starije terase datira, prema tome, iz prethodnog razdoblja zaleđenja kada je vršena akumulacija dravskog materijala, a to je bilo za prvog vrmskog stadijala (V 1).
Taložine terase iz V 2 u istraživanom se kraju morfološki ne mogu izdvojiti. Njihovu odsutnost treba protumačiti izraženim pokretima spuštanja u tom razdoblju, koji su svojim intenzitetom najvjerojatnije nadmašili usijecanje Drave tokom interstadijala V 2/3, pa je ona stoga tada uglavnom i akumulirana. Spomenute taložine zato su utonule i pokrivene mladim sedimentima. Nazal šljunčano-pjeskovitih horizonata u dubljim dijelovima brojnih bušotina potvrđuju djelovanje pretpostavljenih srednje-virmskih procesa spuštanja. Supsidencijski procesi dokazani su i mineraloškom analizom uzoraka bušotine B-12 kod Medinaca (Mutić R., 1975. — bušotina uz SZ rub fluvijalno-močvarne nizine), u kojima je na dubini 90—100 m uočljivo naglo smanjenje udjela tipičnog dravskog nanosa (materiala alpskog porijekla) karakteriziranog granatima, od 60,7% na 33,5%. Istovremeno je, međutim, povećan udio kraćim vodotocima nanešćenog materijala s Papuka i Krndije, što se odrazilo u znatno većem udjelu epidota (mineralida tipičnog za gorske masive savske-dravskog međurječja) — s 12,2% na 31,5% — kao i općenito većem udjelu amfibola (sl. 7). Povećani udio fluvijalno-proluvijalnog materijala papučko-krndijskog porijekla upućuje na sniženje erozijske baze, odnosno, zbog istovremenog izdizanja masiva, na povećanje pada postojećih gorskih tekućica i pojačanu eroziju gorskih masiva. Spuštanje u nizinskom dijelu kraja, kojim je i formiran supersidencijski prostor uz Karašicu i Vučicu karakteristično je bilo i za razdoblje holocena. Zbog neposrednog utjecaja gorskih masiva Papuka i Krndije, uvjetovanog spomenutim izdizanjem i aktiviranjem destrukcijskih procesa u gorskoj zoni, karašičko-vučičku nizinu u kojoj je sprani materijal akumuliran, genetski možemo svrstati u skupinu tipičnih podgorskih supersidencija.

Sl. 7. Lithostratigraphski profil bušotine B-12 kod Medinaca (prema R. Mutić, 1975.).

fig. 7. Lithostratigraphical profile of the bore-hole B-12 near Medinci (according to R. Mutić, 1975.).

Legend: I. Lithology: 1. sandy gravel, 2. sand, 3. silt, 4. clay, 5. infusion loess, 6. clayey silt, 7. clay with charcoal, 8. concretions of limonite, 9. fragments of red silt, 10. fragments of sand or clay; II. Share (portion) of CaCO₃; III. Cycles of sedimentation: 1. gravel, 2. coarse sand, 3. medium-grained sand, 4. fine sand, 5. silt, 6. clay, IV. Heavy minerals: 1. epidote, 2. amphibole, 3. garnets, 4. other minerals; V. Light minerals: 1. quartz, 2. feldspars, 3. other minerals.
Breznica došlo do lokalnog spuštanja u postglacijalu i holocenu. Ovdje je danas razvijena morfološka jedinica fluvijalno-močvarne nizine Vućice i Karašice.

Na površini terase dominiraju naslage lesa i lesu sličnih sedimenata fluvijalnog porijekla debljine 1—2 m, a njih dubinom slijede unakrsne slojevite naslage šljunka i pjeska. Šljunči i pjesci predstavljaju, razumljivo, fluvijalni materijal čijom je akumulacijom terasa formirana. Površinske naslage sivo-žućkaste do svijetlosmeđe beskarbonzne praškaste ilovačaste nastale su fluvijalnim taloženjem krajem virmskog glacijala i objedinjene su u kategoriju tzv. fluvijalnog lesa i lesu sličnih sedimenata (Bognar A., 1978.). Navedeni srijed sedimentacije uočljiv je u brojnim glinokopima poljskih cijelana, na mjestima gdje se kopa pjesak i u profilima bunara.

Jedan karakterističan profil na taložinama ove terase dobro se vidi u pješčari južno od sela Milanovac, na cesti Bare Slavonske — Crnac:

0,00 — 0,70 svijetlosmeđe tinčaste praškaste ilovače
0,70 — 1,40 žućkasti veoma sitan pjesak
1,40 — 1,70 svjetlosmeđi pjesak bogat tinjcima
1,70 — 1,90 pjeskuljaste zelenkaste gline s Fe-Mn konkrecijama
1,90 — 2,30 svjetlosmeđi tinčasti pjesak
2,30 — 2,42 glinoviti sivi pjesak
2,42 — 3,50 svjetlosmeđi pjesak mlađe virmske terase

(prema Malez M., 1973.)

Posljednji izdvojeni horizont tipičan je sediment mlađe virmske terase i njegova je stvarna debljina znatno veća no u opisanom profilu. U dubljim dijelovima pjesak se izmjenjuje sa šljunkom, također dravskog porijekla. Naglasiti treba da se na dnu navedenog profila, dakle na dubini od 3,50 m pojavljuje nivo vode temeljnice. Zato su i svi bunari na toj terasi relativno plitki.

Naslage lesa i lesu sličnih sedimenata koje se na površini mlađe virmske terase opažaju do dubine 1—2 m, fluvijalnog su porijekla. Ukazuju na to i rezultati terenskih i laboratorijskih istraživanja, kojima je utvrđeno da tipičnu lesnu strukturu te naslage imaju samo u površinskim dijelovima, dok dublji slojevi pokazuju karakterističnu fluvijalnu akumulaciju izraženu gustošću izmjenom finopjeskovitih, siltnih i glinovitih slojeva, često s pojavama proslojaka «močvarnog tla». Osim toga, u prilog fluvijalnog porijekla govori i postepeni prijelaz pjeska u podlozi u naslage lesa i lesu sličnih sedimenata, česta izmjena udjela glinovitih, siltnih i pjeskovitih frakcija u vertikalnom i horizontalnom smislu, niske vrijednosti sortiranosti, sličnosti mineraloškog i granulometrijskog sastava fluvijalnog pjeska u podlozi i lesa itd.

Teraša je u samom središtu istraživanog prostora supsidencijskim procesima tokom mlađeg pleistocena i holocena spuštena. Teren terase okružuje 5—10 m niži nivo Karaščko-vučičke nizine. Općenito se može zamijetiti lagani pad terena od JZ (Crnac 103 m) prema SI (D. Miholjac 97 m). U reljefnom smislu, osobito gdje nedostaje starija virmska terasa, posebno
GEOMORFOLOŠKA PROBLEMATIKA KARASIKE PODRAVINE

se ističe kontaktna zona mlađe virmske terase s podgorskim nizom. Tako se JI od Našica može zamijetiti šezdesetak metara visoka nenudacijska strukturna stepenica tektonski predisponirana (Vukujevački Gaj 103 m — podgorski greben kod Vukojevaca 159 m). Absolutna visina mlađe virmske terase varira između 95 i 115 m. Prema poloju Drave terasa završava s 5—10 m visokim strmcem. Reljefna dinamika prostora povećava se samo mjестимично, ulavnom u sjevernijim dijelovima (Podr. Moslavina — Donji Miholjac), gdje je utjecajom SZ vjetrova za sušnijeg razdoblja boreala formiran niz pješćanih dina.

Mlađa virmska terasa izdužena je, poput ostalih reljefnih cijelina Karasike Podravine, pravcem -SZ-JI. Sisecirana je gustom mrežom tekućica koje u pravilu dotječe s gorskih masiva Papuka i Krndije. Kako Drava u okvirima istraživanog kraja predstavlja tok alogeni osoba s daleko većom transportnom i akumulacijskom snagom od lokalnih tekućica, hidrografski situacija veoma je nepovoljna. Negativnu kolnost predstavlja i mlado spuštanje terena uz Karasicu i Vučiću, pa Drava teče nešto izdignutijim prostorom. Formiran je, stoga, niz od nekoliko s Dravom paralelnih tokova, od kojih je najznačajnija Karasica. Ova rijeka teče usporedno s Dravom u dužini od četvrtdesetak kilometara, tako da umjesto kod Čađavice utječe u Dravu daleko istočnije, kod Petrijevaca. Međusobna udaljenost dvojiju usporednih tokova pri tome gotovo i ne prelazi 5 km. Pri izvedenim hidrotehničkim radovima, a i prespektivnim zahvatima, dodatnu poteškoću svakakvo predstavlja velika, središnje položena supsidencijska zona uz Karasicu i Vučiću, koja je kao lokalni erozijski bazis upravo idealan prostor za izlijevanje tekućica.

S t a r i j a v i r m s k a t e r a s a r i j e k e D r a v e relativno je male površine. Može se uočiti samo mjestimично u obliku niza manjih diskontinuiranih i izdignutijih površina na kontaktu nizine Drave i papučko-krndjskog podgorja. Absolutna visina joj se kreće od 120 do 136 m (Čačinci 122 m, Feričanci 127 m, Vukojevci 136 m, Podgorač 136 m). Površina terase blago je nagnut prema JI. S aspekta društveno-gospodarske valorizacije šireg prostora Slavonske Podravine važno je ukazati na značaj kontaktne zone starije i mlađe virmske terase rijekе Drave, a u neposrednoj blizini padina papučko-krndjskog podgorja (odnosno, Z od prostora KarasIKE Podravine, Slatinsko-voćinskog pobrda), gdje je formiran glavni naseobeni pojas kraja (Virovitica, Podravska Slatina, Feričanci, Našice).

Formiranje ove terase tokom prvog virmskog stadijala rezultat je kombinacije klimatskih i tektonskih utjecaja na erozijsku i akumulacijsku djelatnost Drave i njenih pritoka. U površinskom sastavu terase dominiraju naslage lesa i lesu sličnih sedimenta eolskog porijekla. One predstavljaju izuzetno dobar supstrat za razvoj tla većeg poljoprivrednog boniteta. Dva desetak metara debelim naslagama ovih sedimenta terasa je de facto lažno povišena, a njenu stvarnu površinu čini kontaktna zona lesnih taložina i fluvijalnih naslaga pijeska i šljunka u podlozi.

Prevladavajuće litostratigrafske odnose u taložinama starije virmske terase rijekе Drave pokazuje slijedeći profil otkriven kod Našičkog Markovca:
V. O. Markovac Našički DM-4-B-13, x = 5040125, y = 6508600, debljina 200 m.

<table>
<thead>
<tr>
<th>metara</th>
<th>0,00 — 26,00</th>
<th>žuta ilovača</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>26,00 — 30,00</td>
<td>žuti pijesak</td>
</tr>
<tr>
<td></td>
<td>30,00 — 61,00</td>
<td>plava glina</td>
</tr>
<tr>
<td></td>
<td>61,00 — 70,00</td>
<td>muljeviti pijesak</td>
</tr>
<tr>
<td></td>
<td>70,00 — 74,50</td>
<td>plava glina</td>
</tr>
<tr>
<td></td>
<td>74,50 — 200,00</td>
<td>plava glina</td>
</tr>
</tbody>
</table>

(*KATASTAR SJEVERNE HRVATSKO — DRAVA*)

Kontaktna zona starije virmske terase i podgorja obilježena je na mnogim mjestima nizom plavinskih konusa formiranih akumuliranjem materijala gorskih i podgorskih potoka (Radlovac kod Sl. Orahovice, Babina vođa i Zmajevac kod D. Motičine, Vrela i Darna kod Našica itd.). Vodotoci su, prema tome, utjecali na diserciranje terase. Ukazuju na to vetikalni profili karakterizirani sedimentacijskim slijedom tipičnim za potočne i bujičaste plavine. Takvo obilježje ima i profil kroz stariju virmsku terasu Dra- ve kod Fericanaca:

<table>
<thead>
<tr>
<th>metara</th>
<th>0,00 — 0,80</th>
<th>žuckaste do svjetlosmeđe ilovače</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,80 — 1,35</td>
<td>pijesak i šljunak</td>
</tr>
<tr>
<td></td>
<td>1,35 — 1,85</td>
<td>čisti fluvijalni šljunak s valuticama različitih dimenzija</td>
</tr>
<tr>
<td></td>
<td>1,85 — 2,35</td>
<td>smeđe beskarbonatne ilovače poligonalne makrostrukture</td>
</tr>
<tr>
<td></td>
<td>2,35 — 3,70</td>
<td>pjeskovita ilovina</td>
</tr>
<tr>
<td></td>
<td>3,70 — 4,60</td>
<td>fina bijela glina</td>
</tr>
<tr>
<td></td>
<td>4,60 — ?</td>
<td>pijesči i šljunci</td>
</tr>
</tbody>
</table>

(prema Malez M., 1973.)

Sl. 8. Geomorfološka skica Karašićke Podravine.

Fig. 8. Geomorphological sketch of Karašićka Podravina.

Karakteristično je da veći utjecaj dravskog nanosa, oblježenog dominacijom granata i — u nešto manjoj mjeri — amfibola, dolazi do izražaja tekućem dubinama (15, pa i 20 m). Sloj pijeska i šljunka na dubini 0,80—1,85 m naplavina je potoka Iskrice. Pleistocenske je starosti, na što ukazuje oko jedan metar debeli sloj lesolikog materijala (žuckaste do svjetlosmeđe ilovača) u krovini. Upozoriti treba i na sloj smede beskarbonatne ilovača (1,85—2,35 m) koje je nepravilno mrežaste strukture, prošarana bjeličastim glinastim prugama. Ovaj tip poligonalnog tla nosi svojstva »mramorirane ilovine«, jedinstvenog indikatora fosilnog, vlažnog tundra-tla. Početkom trećeg virmskog stadijuma spomenuta je beskarbonatna ilovača bila izložena snažnom periodskom smrzanju (segelacija) i odmržnjavanju (regelacija), što je uvjetovalo nastanak poligonalne makostrukture tla. Takva je ilovina »mramorizirana« svijetlim žilama pa ima nepravilno mrežasti izgled.

Sedimentacijski nivo fine bijele gline (3,70—4,60 m) nastao trošenjem plicenskih lapora, vjerojatno je formiran krajem V 2 ili početkom interstadijuma V 2/3. Materijal od kojeg je nastala ova taložina potječe od plicenskih lapora koji se protežu u relativno širokom pojasu Papuka i Krndije (Malez M., 1973.). Može se stoga pretpostaviti da su te naslage sedimentirane kombinacijom djelovanja deluvijalnih, koluvijalnih i proluvijalnih procesa.

Geomorfološki je zanimljiva pojava da tekuće koje se s gorskog ovira probijaju u ravniciški prostor starije virmanske terase, gotovo nemaju naplavne ravnice, a strane su im veoma strme. To je rezultat pretežno lesnog sastava terena, tako da su zbog vertikalnog cijepanja lesnih naslaga vodotoci usjekli gotovo »kanjonske doline«.

Zaključak

Karašićka Podravina tipičan je nizininski prostor u kojemu reljefna energija ne prelazi vrijednost od 10—15m/km². U okviru ove submorfološke regije treba razlikovati dvije morfološke cjeline: fluvijalnu i fluvijalno-močvarnu nizinu, s time da se unutar fluvijalne nizine izdvajaju morfoplanične cjeline poloja (viši i nizji nivo) i terasne nizine (mlađa i starija virmanske terase) rijeke Drave. Reljef Karašićke Podravine u cjelini je mlađeg nastanka, obzirom da je svoj današnji oblik zadobi tektonskim pokretima i egzogenim modeliranjem od mlađeg pleistoceena na ovamo. U morfostrukturnom smislu prostor Karašićke Podravine ulazi u kategoriju akumulacijsko-tektonskog reljefa.

Suvremeni morfološki procesi s društveno-gospodarskog aspekta posebno su značajni u reljefno najnižim dijelovima — poloju rijeke Drave i fluvijalno-močvarnoj nizini Karišice i Vučice. Stalna opasnost od viškova voda i zamočarenosti u tim područjima nastoji otkloniti regulacijskim i hidromelioracijskim zahvatima (profundovanje riječnih korita, izgradnja laternih kanala, mjestimicih nasipa, ribnjaka itd.). Dodatnu autotohnu vrijednost kraja predstavljaju bogata nalazišta nafte (Benčanci) i plina (Bokšić Lug). Društveno-gospodarsko težište Karašićke Podravine prostor je terasne nizine, gdje su razvijena najveća i najbrojnija naselja.
LITeRATURA

Hidrološki godišnjak SFRJ 1978, Beograd.

Katastar sjeverne Hrvatske — Drava, Rudarsko-geološko-naftni fakultet Sveučilišta u Zagrebu, Zagreb.

Summary

SOME NOTES OF BASIC GEOMORPHOLOGICAL PROBLEMS IN KARAŠIČKA PODRAVINA

by

Antun Saler

Karašička Podravina is typical lowland area with relief energy lesser than 10 — 15 m/km². Within the submorphological region of Karašička Podravina one must differ two micromorphological entities: fluvial plain of Drava river and fluvio-palustrial plain. Fluvial plain is differentiated further in two morphofacial entities: flood plain (including higher and lower level and plain with river terraces (Würm 3 and Würm 1) of Drava river. In general the relief of Karašička Podravina is young, because its present-day features have been formed by combination of tectonic movements and exogenic modelation since later pleistocene onward. From morphostructural point of view it could be included in the category of accumulational-tectonic relief.

Contemporary morphological processes have particular socio-economic relevance in the lowest parts of the area — flood plain of Drava river and fluvio-palustrial plain. There have been made some efforts on regulation and hydro melloration (channel dredging, building of lateral channels, embankments, fishponds etc.) to diminish the dangers of the water surplus and marshiness. Oil fields (Benčanci) and gas exploration (Bokšić Lug) are additional value of the area. Socio-economic concentration in Karašička Podravina is evident on river terraces; this part of the region is the most densely populated and, in agricultural sense, the most intensively used.