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In this paper we study a self-adaptive predictive functional control algorithm as an approach to control of
temperature in an exothermic batch reactor. The batch reactor is situated in a pharmaceutical company in Slo-
venia and is used in the production of medicines. Due to mixed discrete and continuous inputs the reactor is
considered as a hybrid system. The model of the reactor used for the simulation experiment is explained in
the paper. Next, we assumed an exothermic chemical reaction that is carried out in the reactor core. The dy-
namics of the chemical reaction that comply with the Arrhenius relation have been well documented in the
literature and are also summarized in the paper. Furthermore, the online recursive least-squares identification
of the process parameters and the self-adaptive predictive functional control algorithm are thoroughly ex-
plained. We tested the proposed approach on the batch reactor simulation example that included the exother-
mic chemical reaction kinetic model. The results suggest that such implementation meets the control de-
mands, despite the strongly exothermic nature of the chemical reaction. The reference is suitably tracked,
which results in a shorter overall batchtime. In addition, there is no overshoot of the controlled variable (tem-
perature in the reactor core), which yields a higher-quality production. Finally, by introducing a suitable dis-
crete switching logic in order to deal with the hybrid nature of the batch reactor, we were able to reduce
switching of the on/off valves to minimum and therefore relieve the wear-out of the actuators as well as re-
duce the energy consumption needed for control.

Key words: Self-adaptive control, Predictive functional control, Batch reactor, Exothermic chemical reaction,
Hybrid systems

1 INTRODUCTION

Batch reactors that are cooled and heated
through a water jacket are common in chemical,
pharmaceutical, biotechnological and similar indus-
tries. Therefore, many papers discussing tempera-
ture control of such systems have been published.

Batch reactors and similar industrial processes
contain both continuous and discrete components,
for instance, discrete valves, on/off switches, logi-
cal overrides, etc. The continuous dynamics are
often inseparably interlaced with the discrete dy-
namics; therefore, a special approach to modelling
and control is required. Such dynamic systems are
called hybrid systems. At first, hybrid systems were
not treated systematically [1]. In recent years, how-
ever, the topic has received a great deal of atten-
tion from the computer science and control com-
munity. Batch reactors, such as the one we are
dealing with in this paper, can also be regarded as
hybrid systems due to the mixed discrete and con-
tinuous inputs.

Many times in industrial practice the dynamics
of the batch reactor are not known in advance.
Furthermore, often an exothermic (or endothermic)
chemical reaction is carried out in a batch reactor,
which can result in a thermal runaway. Such event
can cause a loss of the batch and even presents a
risk for the plant and operators. For most reaction
systems of industrial interest detailed kinetic mod-
els are not known [2]. In rapidly changing chemi-
cal business, there is often not enough time or fi-
nancial benefit in carrying out detailed kinetic stud-
ies of the reactions.

What is more, sometimes the same reactor has
to be able to deal with different batches and thus
different reaction dynamics. This calls for special
control strategies. The most promising seem to be
the concepts of adaptive control [3], optimal con-
trol [4, 5, 6], and especially model predictive con-
trol schemes [7, 8, 9]. The principle of model pre-
dictive control is based on forecasting the future
behavior of a system at each sampling instant using
the process model.
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cooled through the reactor’s water jacket (tempera-
ture Tj). The heating medium in the water jacket is
a mixture of fresh input water, which enters the re-
actor through on/off valves, and reflux water. The
water is pumped into the water jacket with a con-
stant flow Φ. The dynamics of the system depend
on the physical properties of the batch reactor,
namely, the mass m and the specfic heat capacity
c of the ingredients in the reactor’s core and in the
reactor’s water jacket (here, index j denotes the
water jacket). λ is the thermal conductivity, S is the
contact area and T0 is the temperature of the sur-
roundings.

The temperature of the fresh input water Tin de-
pends on two inputs: the position of the on/off
valves kH and kC. However, there are two possible
operating modes of the on/off valves. In case kC = 1
and kH = 0, the input water is cool (Tin = TC =12 °C),
whereas if kC = 0 and kH = 1, the input water is hot
(Tin = TH =150 °C). Both on/off valves are con-
trolled by the signal kCH that is defined in the fol-
lowing equation. Due to the mixed discrete and
continuous inputs the batch reactor is regarded as
a hybrid system.

(1)

The ratio of fresh input water to reflux water is
controlled by the third input, i.e. by the position of
the mixing valve kM. The value range of the mix-
ing valve is in [0, 1].

k
k k
k kCH
C H

C H
=

+ = =
− = =

⎧
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,
,
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One of the most frequently used approaches in
practice is predictive functional control [10], which
is also treated in this paper. The main advantage
of the approach is the analytical explicit expres-
sion of the control law, which does not require high
computational capabilities and can therefore be im-
plemented in real-time using low-cost hardware on
most systems.

The paper is organized as follows. In Section 2,
the batch reactor and its mathematical model are
presented. Section 3 summarizes the exothermic
chemical reaction dynamics. Next, the recursive
least-squares identification is explained in Section
4. In Section 5, the predictive functional control
algorithm is presented. Finally, the simulation re-
sults and conclusions are discussed in Section 6
and Section 7.

2 BATCH REACTOR

The batch reactor in the experiment is a simula-
tion example of a real batch reactor, which is situ-
ated in a pharmaceutical company and is used in
the production of medicines [11]. The goal is to
control the temperature of the ingredients stirred in
the reactor core so that they synthesize into the
final product. In order to achieve this, the temper-
ature has to follow the reference trajectory pre-
scribed in the recipe as accurately as possible.

A scheme of the batch reactor is shown in Fig.
1. The reactor’s core (temperature T) is heated or

Fig. 1 Scheme of the batch reactor
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2.1 Mathematical model of the batch reactor

We are dealing with a hybrid multivariable sys-
tem with a continuous (kM) and two discrete inputs
(kH and kC) and two measurable outputs (T and Tj).

The temperature of the mixed water or the input
jacket temperature, which is denoted as T*jin, can-
not be measured directly. However, it is possible
to estimate it using the temperature of the input
water Tin, the water jacket temperature Tj, and the
position of the mixing valve kM (see Eq. (4)). T*jin
is constrained in the range between TC and TH
(TC≤T*jin≤TH).

Due to the nature of the system, the time con-
stant of the temperature in the water jacket is ob-
viously much shorter than the time constant of the
temperature in the reactor’s core. Therefore, the
batch reactor is considered as a stiff system.

The mathematical model of the batch reactor is
defined by the following two differential equations
and one algebraic equation.

(2)

(3)

(4)

Here, mj =200 kg stands for the mass of the
water in the jacket, cj =4200 Jkg−1K−1 is the heat
capacity of the water in the pipes, Φ =1.6 kgs−1 is
the mass flow in the pipes of the reactor, λ = 420
Wm−2K−1 stands for the thermal conductivity be-
tween the reactor core and the jacket, λ0=84 
Wm−2K−1 is the thermal conductivity between the
jacket and the surroundings. S = 2 m2 and S0 = 4 m2

denote the conduction surfaces between the reactor
core and the jacket and between the jacket and the
surrounding, respectively. The temperature of the
surroundings is equal to T0 =17 °C.

The aforementioned values of the parameters of
the model are used only to simulate the real batch
reactor in the experiment and are not used for con-
trol design. The parameters of the model used in
the predictive functional control algorithm are esti-
mated online as shown in Section 4.

The variables m and c stand for the mass and
the heat capacity of the ingredients in the core of
the reactor (see Eqs. (15) and (17) in section 3.

T k T k Tjin M in M j
* = + −( )1

m
T
t

S T T Qc j r
d
d

= −( ) +λ

m
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t
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j
j
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j j j
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c

j j j

j

d

d
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− − −( ) − −( )
Φ Φ

Φ
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Qr in Eq. (3) denotes the heat released due to
exothermic nature of the reaction among the ingre-
dients in the core of the batch reactor (see Eq. (18)
in section 3.

3 EXOTHERMIC CHEMICAL REACTION
MODEL

The exothermic reaction considered in this ex-
periment is based on a dynamic model benchmark
originally developed for the Warren Springs Labo-
ratory [12, 2, 13]. A well-mixed liquid-phase reac-
tion system is treated, in which two reactions are
modelled.

A + B → C (5)

A + C → D (6)

The concentration (number of moles) of compo-
nents A, B, C and D changes according to rates of
production of component C (R1) and D (R2) as
given in the equations below.

(7)

(8)

(9)

(10)

The rates of production R1 and R2 depend on the
reactant concentrations and the rate constants k1
and k2.

(11)

(12)

The rate constants k1 and k2 are dependent on
the reaction temperature through the Arrhenius re-
lation.

(13)

(14)k
k k
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2
1

2
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= −
exp

+273.15 °C

k
k k

T1
1
1

1
2

= −
exp

+273.15 °C

R k M MA C2 2
1 1= − −kmol s

R k M MA B1 1
1 1= − −kmol s
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M

t
RD = + 2

d
d
M
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R RC = + −1 2

d
d
M

t
RB = − 1

d
d
M

t
R Ra = − −1 2



The remaining physical variables are calculated
as follows.

(15)

(16)

(17)

(18)

The parameters of the reaction are given below: 

molar weight of the components
wA = 30 kg kmol−1

wB = 100 kg kmol−1

wC = 130 kg kmol−1

wD = 160 kg kmol−1;

molar heat capacity of the components
cA = 75.31 kJ kmol−1 °C−1

cB = 167.36 kJ kmol−1 °C−1

cC = 217.57 kJ kmol−1 °C−1

cD = 334.73 kJ kmol−1 °C−1;

reaction rate constants

k1
1 =20.9057

k2
1 =10000 °C

k1
2 =38.9057

k2
2 =17000 °C;

heat of reaction
ΔH1= −41840 kJ kmol−1

ΔH2= −25105 kJ kmol−1.

4 RECURSIVE LEAST-SQUARES
IDENTIFICATION

In our example the plant parameters are not
known a priori. What is more, the chemical reac-
tion causes the time-varying characteristics of the
process. This is the reason why the parameters of
the plant are estimated online. In our case we used
the standard recursive estimator with exponential
forgetting. To obtain the model in incremental
form, the offset has to be eliminated, which is re-
alized by fitration and differentiation of the meas-
ured signals.

The filtration and differentiation of the measured
variables is realized by the filter transfer function
defined as

Q H R H Rr = − −Δ Δ1 1 2 2

c
c M c M c M c M

M
A A B B C C D D= + + +

M M M M MA B C D= + + +

m w M w M w M w MA A B B C C D D= + + +

(19)

where F(z) = (1— fz—1) p, the parameter f is defined
experimentally (in our example f = 0.95, p = 3),
Δ(z)=1— z —1 is the differential operator and the
sampling time equals Ts = 20 s. The behavior of the
semi-batch reactor which is in continuous form pre-
sented in Eq. 2 and Eq. 3 is now transformed into
the discrete-time domain as follows.

(20)

(21)

Here, superscript f stands for the filtered signals.

Defining the regression vector ψT
f1(k)∈�1×3,

ψT
f2(k)∈�1×2, the output variables yf1and yf2, and

the vectors of identified parameters θT
1 and θT

2 as
follows;

(22)

(23)

(24)

(25)

(26)

(27)

the following incremental model of the semi-batch
reactor in is obtained.

(28)

(29)

The parameters of the model are estimated using
the recursive least-square identification algorithm.
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⎤
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(30)

(31)

(32)

Here, Pi(k), i = 1, 2 denotes the covariance ma-
trix (P1(k)∈�3×3, P2(k)∈�2×2), θi(k), i = 1, 2 de-
notes the vector of identified or estimated process
parameter, γi, i = 1, 2 denotes the forgetting factor
and I1∈�3×3 and I2∈�2×2 are unity matrices. This
means that two recursive identification algorithms
are running in parallel to estimate the process pa-
rameters θ1(k) and θ2(k).

The dynamical behavior of the plant variables
T f

j (k) and T f(k) according to the input jacket tem-
perature T f

jin(k) is given by the transfer functions
Gmj(z) and Gm(z), which are obtained by transform-
ing Eq. 28 into Z-domain and explicitly expressing
the given relations, which are then described as fol-
lows.

(33)

(34)

Here, b0j =θ22θ13, b1j =θ13, b0=θ21θ13, a1=θ22+
+θ11, a0= θ12θ21— θ11θ22 and θ23=0. The parameter
θ23 equals zero (θ23=0) because there is no rela-
tion between variables T f(k) and T*f

jin(k).

Assuming the observability of the process plant,
both transfer functions, Gmj(z) and Gm(z), can be
transformed to the observable canonical form.

Using the recursive least-squares algorithm we
are always faced with the problem of the singular-
ity of the covariance matrix Pi(k), i = 1, 2. The co-
variance matrix is exponentially increasing in the
case of γi <1, i = 1, 2. The problem is solved by cal-
culating the recursive algorithm only in the case of
a satisfied dead-zone criterion in Eq. (35).

G z
T z

T z
b

z a z a
m

f

jin
f( ) = ( )

( )
=

− −*
0

2
1 0

G z
T z

T z

b z b

z a z a
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j
f
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f
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( )
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=
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− −*
1 0

2
1 0

θ θ σ

ψ θ
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fi fi
T

i

k k k

y k k k i

( ) = −( ) + ( ) ⋅

⋅ ( ) − ( ) −( )( ) =

1

1 1 2, ,

P k I k k
P k

i i i fi
T i

i
−( ) = − ( ) ( )( ) −( )1

1
σ ψ

γ

σ ψ

γ ψ ψ

i i fi

i fi
T

i fi

k P k k

k P k k

( ) = −( ) ( ) ⋅

⋅ + ( ) −( ) ( )( )−

1

1
1

(35)

Here, kDZ denotes the factor of the dead-zone,
which is defined heuristically.

5 PREDICTIVE FUNCTIONAL CONTROL
ALGORITHM

In this section the well-known basic algorithm
of predictive functional control is introduced [10],
[14]. In this instance, the prediction of the plant
output is given by its model in the state-space do-
main.

The behavior of the closed-loop system is de-
fined by a reference trajectory, which is given in
the form of a reference model. The control goal,
in general, is to determine the future control action
so that the predicted output trajectory coincides
with the reference trajectory. The coincidence point
is called a coincidence horizon and it is denoted
by H. The prediction is calculated assuming of con-
stant future manipulated variables (u (k) = u (k+1)=
...= u(k+H—1)). This strategy is known as mean-
-level control. The H-step-ahead prediction of the
plant output is estimated in Eq. (36).

(36)

Here, I∈�2×2 is unity matrix.

The reference model is given by the following
difference equation.

(37)

Here, w stands for the reference signal. The ref-
erence model parameters should be chosen to fulfil
the following equation

(38)

which results in a unity gain and where cr=1 and
br has to be equal to 1— ar. This enables reference
trajectory tracking without the control error (the
asymptotic reference tracking).

The prediction of the reference trajectory is then
written in the following form

(39)y k H a y k a w kr r
H

r r
H+( ) = ( ) + −( ) ( )1

c a br r r1 11−( ) =−

x k a x k b w k y k c x kr r r r r r r+( ) = ( ) + ( ) ( ) = ( )1

y k H C A x k A I

A I B u k

m m m
H

m m
H

m m

+( ) = ( ) + −( ) ⋅

⋅ −( ) ( )−

(

)1

ψ ψ γfi
T

i fi DZ ik P k k k i( ) −( ) ( ) > −( ) =1 1 1 2, ,



where a constant and bounded reference signal
(w(k+ i)=w(k), i=1,..., H) is assumed. The main
goal of the proposed algorithm is to find a control
law that enables the controlled signal yp(k) to track
the reference trajectory.

To develop the control law, (39) is first rewrit-
ten as

(40)

Taking into account the main idea of the pro-
posed control law, the reference trajectory tracking
(yr(k+ i)=yp(k+ i), i = 0, 1, ..., H), is given by

(41)

The idea of PFC is introduced by the equiva-
lence of the objective increment vector Δp and the
model output increment vector Δm, i.e.,

(42)

The former is defined as the difference between
the predicted reference signal vector yr(k+H) and
the actual output vector of the plant yp(k).

(43)

Substituting Equation (41) into (44) yields

(44)

The model output increment vector Δm is defin-
ed by the following formula.

(45)

By substituting Equations (44) and (45) into (42)
and making use of Equations (41) and (36) the fol-
lowing control law can be obtained:

(46)

where

(47)

Note that the control law (46) is realizable if
η≠0. This condition is true if the plant is stable,

η = −( ) −( )−C A I A I Bm m
H

m m
1

u k a w k y k

y k C A x k

r
H

p

m m m
H

m

( ) = −( ) ( ) − ( )⎡
⎣

⎤
⎦ +

+ ( ) − ( )

−η 1 1

Δm m my k H y k= +( ) − ( )

Δp r p

r
H

p p

y k H y k

w k H a w k y k y k

= +( ) − ( ) =

= +( ) − ( ) − ( )( ) − ( )

Δp r py k H y k= +( ) − ( )

Δ Δp m=

y k H w k H a w k y kp r
H

p+( ) = +( ) − ( ) − ( )( )

w k H y k H a w k y kr r
H

r+( ) − +( ) = ( ) − ( )( )

controllable and observable. This means that the
PFC control law in its common form can be im-
plemented only for open-loop stable systems. It can
also be proven that the control law is integrative
and the stability conditions can also be given [14].
The sensitivity to the parameter uncertainties is by
introducing the integrative action into the control
law reduced and also the asymptotic tracking of
the reference variable is achieved. In [14] it is
shown that a stable control law can always be ob-
tained for open-loop stable systems, when the co-
incidence horizon H is greater or equals to the rel-
ative order of the controlled system ρ(H≥ρ) as pro-
posed.

The control algorithm in the case of the batch
reactor should provide a fast reference Tref (k) track-
ing of the temperature in the reactor’s core T(k). It
is also very important that the number of on/off
valve switchings should be as small as possible.

The position of the on/off valves (kCH(k)) is de-
fined on supervisory level by introducing the deci-
sion logic which is as follows.

(48)

Here, δe defines the switching threshold (δe = —1
°C). This approach is a rather straightforward way
of dealing with the hybrid nature of the batch re-
actor.

The position of mixing valve kM(k), which acts
as the direct control variable, is calculated in the
next step from Eq. (4).

(49)

Here, Tin(k) is defined with the position of the
on/off valves, whereas T*jin(k) is obtained from the
control law in Eq. (46), where it is denoted by u(k). 

6 RESULTS

The control algorithm has been verified on the
batch reactor simulation example. Simulation work
in [12] concerning the reaction described in sec-
tion 3 suggests that an equimolar initial charge of
the ingredients A and B yields the best results. In
addition, the optimal reaction temperature is 95 °C. 

Therefore, we have established the reference tra-
jectory Tref as a step function that drops from 95

k k
T k T k

T k T kM
jin j

in j
( ) =

( ) − ( )
( ) − ( )

*

if then

else

T k T k k k

k k
ref e CH

CH

( ) − ( ) < ( ) = −

( ) =

δ 1

1
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°C to 25 °C so as to cool the ingredients down
after the reaction has settled.

The initial charge of the ingredients A and B was
MA = MB = 2 kmol. The initial temperature was
T=Tj=T0=17 °C.

In the simulation the following initialization of
the identification algorithm parameters was made:
the signals were sampled with the sampling time
Ts=20 s, the initial covariance matrices are equal
to P1(0) =100 I3 and P2(0) =100 I2. The vectors of
estimated process parameters were initialized as
θ11= θ22= 1 and the other parameters were equal to
zero. The forgetting factors of the identification al-
gorithms were set to γ1= γ2= 0.995, and the factor
of the dead-zone was set to kDZ = 0.01. The initial-
ization of the generalized predictive control algo-
rithm was the following: H =10 and ar = 0.925.
Noise at the batch reactor outputs has also been
presumed in the simulation.

Fig. 2 shows the control signals, i.e. the refer-
ence trajectory Tref , the temperature in the reactor
core T and the temperature in the reactor water
jacket Tj.

Fig. 3 depicts the chemical reaction dynamics,
i.e. the concentrations of the ingredients MA, MB,
MC, MD and the heat generation trajectory.

Fig. 4 and Fig. 5 show the identified process pa-
rameters θ.

7 CONCLUSION

In this study we justified the usability of the self-
-adaptive predictive functional control algorithm.
We tested the algorithm on a batch reactor simula-
tion example that included a well-known exother-
mic chemical reaction kinetic model.

The results suggest that such implementation
meets the control demands, despite the strongly
exothermic nature of the chemical reaction. The
reference is suitably tracked, which results in a
shorter overall batch-time. In addition, there is no
overshoot of the controlled variable T, which yields
a higher-quality production.

Finally, by introducing a suitable discrete switch-
ing logic in order to deal with the hybrid nature of
the batch reactor, we were able to reduce switch-

Fig. 2 Temperature trajectories and valve input signals
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Fig. 4 The identified parameters

Fig. 3 Concentration trajectories and heat generation
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ing of the on/off valves to minimum and therefore
relieve the wear-out of the actuators as well as re-
duce the energy consumption needed for control.
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Fig. 5 The identified parameters

	�	��

	�	��

	�	��

	�	��

	�	��

	�	��

	�	�

	 �			 �			 �			 �			 �				 ��			
����


� �
�

	��
�

	��
�

	��
�

	��
�

	��


	����

	����

	����
	 �			 �			 �			 �			 �				 ��			

� �
�

����




16 AUTOMATIKA 50(2009) 1—2, 7—16

Self-adaptive predictive functional control of temperature in an exothermic... G. Karer, et al.

Samopode{avaju}e prediktivno funkcionalno upravljanje temperaturom egzotermi~kog {ar`nog reak-
tora. U ~lanku se analizira samopode{avaju}i algoritam prediktivnog funkcionalnog upravljanja kao pristup
upravljanju temperaturom egzotermi~kog {ar`nog reaktora. [ar`ni se reaktor nalazi u jednoj slovenskoj farma-
ceutskoj tvrtki gdje se koristi za proizvodnju medikamenata. Budu}i da su ulazi u rektor i kontinuirani i di-
skretni, reaktor je promatran kao hibridni sustav. U ~lanku je opisan model reaktora kori{ten za simulacije.
Nadalje, pretpostavljeno je da se u jezgri reaktora odvija egzotermi~ka reakcija. Opis dinamike kemijske re-
akcije Arrheniusovim jednad`bama dobro je dokumentiran u literaturi, pa je u ~lanku dan samo kratki pre-
gled. Posebno detaljno opisana je metoda najmanjih kvadrata za procjenu parametara modela te samopode-
{avaju}i agoritam prediktivnog funkcionalnog upravljanja. Predlo`eni pristup upravljanju provjeren je simula-
cijom na {ar`nom reaktoru koji uklju~uje kineti~ki model egzoterni~ke kemijske reakcije. Simulacijski rezul-
tati ukazuju da predlo`eno upravljanje ispunjava tra`ene zahtjeve, unato~ jakoj egzotermi~koj naravi kemijske
reakcije. Zadane su reference dobro pra}ene, {to rezultira skra}enjem trajanja {ar`nog procesa. Osim toga, ne-
postojanje nadvi{enja u temperaturi jezgre reaktora osigurava ve}u kakvo}u proizvodnje. Na koncu, uvo|enjem
prikladne logike prekap~anja za prilagodbu hibridnoj naravi {ar`nog reaktora mogu}e je zna~ajno smanjiti
prekap~anje dvopolo`ajnih ventila {to ima za posljedicu smanjenje njihova tro{enja i u{tedu u potro{nji ener-
gije.

Klju~ne rije~i: samopode{avaju}e upravljanje, prediktivno funkcionalno upravljanje, {ar`ni reaktor, egzoter-
mi~ka kemijska reakcija, hibridni sustavi
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