Thomas Sandu, Nicolas Denz, Bernd Page

ISSN 0005-1144
ATKAAF 50(1-2), 17-27 (2009)

Model-Driven Software Development and Descrete Event
Simulation — Concepts and Example

UDK 004.942
IFAC 2.8.1

Original scientific paper

Model-driven software development (MDSD) is a current direction in software engineering that underlines
the importance of models in contrast to program code. Since models have always been of central importance
in simulation, some aspects of MDSD are especially helpful to support discrete event simulation (DES) stud-
ies. In this paper a case study concerning the development of an MDSD-compliant domain architecture for
DES is presented. This includes code generation facilities for the object oriented simulation framework
DESMO-J based on a new UML profile for DES and using techniques and tools from MDSD. On the basis
of these experiences a discussion about general prospects and drawbacks of applying MDSD to the develop-
ment of simulation models as well as interactive simulation tools is lead. A modeling cycle for building sim-
ulation studies that makes the use of model-driven techniques possible is proposed.

Key words: DES, MDSD, UML, Process-oriented simulation, Software engineering

1 INTRODUCTION

The employment of model-driven software de-
velopment (MDSD) leads to a change of prevail-
ing software development practice. The application
of MDSD promises improvements by stressing the
importance of models in relation to pure program
code. This leads to a higher abstraction level com-
pared to code-centric approaches. The source code
of the application is generated from models. In the
ideal case it even does not have to be manually
adapted or extended. In order to benefit from
MDSD a domain-specific language (DSL) needs to
be designed that makes it possible to use elements
of a previously crafted metamodel for describing
the needed application. In order to achieve a con-
trollable complexity of graphical models and trans-
formations, the assigned domain-specific modeling
language must support only a precisely defined do-
main.

The objective of discrete event simulation (DES)
is to illustrate the behavior of real systems in order
to understand them and make forecasts about them.
Ever since practitioners in this field have employed
various kinds of models. Simulation applications
are often implemented using graphical simulation
environments, but also by employing general pur-
pose programming languages and simulation frame-
works.

AUTOMATIKA 50(2009) 1-2, 17-27

In this paper, a generative infrastructure for the
model-driven development of process-oriented dis-
crete event simulation programs is proposed. The
platform consists of the Java-based simulation
framework DESMO-J (Discrete Event Simulation
and MOdelling in Java, for details see [1]) devel-
oped at the University of Hamburg, the test frame-
works JUnit [2] and FIT (Framework for Integrat-
ed Test, [3]) and some specific helper classes. The
DSL is an extension of the Unified Modeling
Language (UML 2) that is specialized by defining
a simulation-specific profile. The DSL was design-
ed taking in account modeling techniques present-
ed in [4].

Based on these practical experiences, it will be
discussed what general prospects the use of MDSD
can provide for developing simulation programs
and graphical simulation tools. In both cases the
use of MDSD changes the way simulation software
is constructed. In particular, it will be pointed out
how to adapt a simulation modeling cycle to fit
MDSD. Using MDSD and an iterative approach to
software development, can save valuable time by
speeding up the implementation phase. The role of
conceptual models in this context is also discussed.
Since MDSD has some similarities to graphical
simulation tools, it can possibly combine the user-
-friendly modeling facilities of graphical simula-
tion tools with the power and flexibility of general

17

Model-Driven Software Development and Discrete Event Simulation...

T. Sandu, N. Denz, B. Page

purpose programming languages and simulation
frameworks. Another important aspect is the sup-
port for simulation software testing by means of
MDSD techniques.

The paper is organized as follows: In Section 2
the foundations of MDSD and the chosen tools are
introduced. Section 3 reviews related work. Section
4 presents the elaborated domain architecture for
discrete event simulation including the UML pro-
file and a basic reference model. In Section 5 the
scope is extended towards a general discussion of
prospects and drawbacks concerning the use of
MDSD in the DES domain. Section 6 concludes
the paper and provides an outlook to possible fu-
ture work.

2 MODEL-DRIVEN SOFTWARE DEVELOPMENT

This section provides a brief introduction to
model-driven software development. Following the
principles of MDSD, the characteristics and main
roles of a typical software development process in
this field are described.

2.1 Principle of MDSD

The principles of MDSD can be described with
the aid of figure 1. The source code of every soft-
ware that is bound to a particular domain can be
partitioned into three parts. Following [5] these are:

— generic source code
— schematical, repetitive source code
— individual, application specific source code.

Code of a
reference
implementation

Individual
code

Generic
code

Schematical,
repetitive
code

|
Users

The generic code remains the same for all ap-
plications that belong to the particular domain. It
becomes a part of the MDSD platform. The plat-
form supports the generated parts of an application
constructed in a model-driven fashion. The indi-
vidual code is specific for every application of the
domain. It has to be written manually and cannot
be generated.

The objective of MDSD is to find a generative
approach for the construction of the schematical,
repetitive source code by employing models. This
kind of code is not identical for all applications,
but has a common structure or follows the same
design patterns. In order to generate this part of
the application code, an application model is built
by means of a domain-specific language (DSL).
Transformations designed for this DSL translate the
elements of the application model to code that can
be run on the MDSD platform. Being separated
from the generated code, the generic and individ-
ual code is not overwritten in case of re-genera-
tion.

2.2 Characteristics of the Development Cycle

MDSD allows to separate the implementation of
the business logic from the technical infrastructure.
As a result, the development consists of two paral-
lel phases illustrated in figure 2. During the do-
main engineering phase the DSL, the transforma-
tions from model to code and the platform are
built. They constitute the domain architecture and
the technical infrastructure.

DSL
Application A
model
A
Transfor-
mation
Individual
code
v \J
»
Schematical, Platform
repetitive
code >

>
creates

Fig. 1 Principle of MDSD adopted from [5]

18

AUTOMATIKA 50(2009) 1-2, 17-27

T. Sandu, N. Denz, B. Page

Model-Driven Software Development and Discrete Event Simulation...

Domain engineering
(Iteration n+1)

)
|
O

\]

] Feedback

Integration
and feedback

Application engineering

(Iteration n)

Fig. 2 Domain and application engineering with MDSD adopted from [6]

The application engineers use the DSL to model
the needed functionality and business logic of the
software product. They cannot merely rely on the
generated artifacts but have to extend them by
manually written code. Frequent feedback between
the two phases leads to a continuous improvement
of the domain architecture. Since the application
engineering phase in the context of MDSD is not
accomplishable without a first version of the DSL,
it is necessary that the domain engineering phase
starts one iteration in advance.

Due to the use of graphical models and code
generation, MDSD heavily relies on tool support.
In the case study described in the following, the
UML editor MagicDraw 11.6 has been chosen to
create the graphical models and the Eclipse plat-
form as an extensible development environment.
The Eclipse subproject UML2, an EMF-based im-
plementation of the UML 2.x metamodel, was
adopted as an implementation of the UML meta-
model. The open source MDSD framework open-
Architecture-Ware 4.1.2 (0AW) was used for creat-
ing the generator and for other MDSD specific
tasks. Details about these tools and their applica-
tion in this study are provided in [7].

3 RELATED WORK

Traditionally there is a close link between ob-
ject oriented modeling and the domain of discrete
event simulation (see also [4]). Current approaches
are frequently based on UML and partly include
code generation facilities, [8] e.g. present a UML
tool that is able to generate simulation code for the
process-oriented DES library JavaSim from class
and sequence diagrams. Other simulation world
views or diagram types are not supported, but the
tool incorporates random variables and simulation
statistics.

[9] applies modified UML 1.x activity diagrams
to agent-based simulation modeling. They incorpo-

AUTOMATIKA 50(2009) 1-2, 17-27

rate a large number of modeling elements like ob-
ject nodes and send-/receive-signal actions and de-
fine their own extensions for timed states and
»emergency-rules« anticipating some UML 2.0 el-
ements. However, the extended notation can be
handled and executed exclusively by their graphi-
cal simulation tool SeSAm. [10] employ class, stat-
echart, collaboration and so called story diagrams
to model and simulate production systems with
their UML case tool Fujaba. However, none of the
above approaches explicitly references MDSD pro-
cesses and techniques.

A more "MDSD-like’ approach is the work of
[11] who use UML 2.0 component and statechart
models for the performance analysis of network
systems. The UML 2.0 compatible case-tool Tau
Telelogic is used as an editor. There is a code gen-
erator based on the Velocity template engine that
generates simulation programs for the process-ori-
ented SimmCast framework.

[12] describes the advantages of combining the
OMG standard Model-DrivenArchitecture (MDA)
and DES. MDA can be seen as a specialization of
MDSD with a strong focus on platform independ-
ence. This can be achieved by using platform in-
dependent models (PIM) that are transformed to
platform specific models (PSM). The authors use
the proprietary tool SIMplicity for modeling and
transformation that can generate code for the High
Level Architecture (HLA). Unlike the open source
framework oAW, SIMplicity binds the user to a
HLA-compliant platform (the predecessor Distrib-
uted Interactive Simulation (DIS) is also support-
ed). The transformations cannot be manipulated by
the user. A major advantage of this interpretation
of MDSD is the possibility to alter the domain ar-
chitecture at any time.

In [13] MDSD and simulation are used to pre-
dict the quality of service of models based on their
architectural design. A DSL for modeling compo-

19

Model-Driven Software Development and Discrete Event Simulation...

T. Sandu, N. Denz, B. Page

nent-based architectures allows not only the speci-
fication of structural features but also of perform-
ance related information. The system supports the
use of random variables, so uncertainty and non-
predictable behavior can be modeled. After build-
ing and parameterizing all required models, these
are evaluated with a simulation program based on
DESMO-J. In contrast to the work presented here,
the scope of this evaluation is to identify models
with better quality of service and not to construct
arbitrary simulation programs. Using the approach
presented in this paper, the constructed programs
can be used for any simulation specific task de-
pending on the constructed models and the manu-
ally implemented behavior.

4 DOMAIN ARCHITECTURE FOR DISCRETE
EVENT SIMULATION

In the following, an example of a domain archi-
tecture for process-oriented DES is presented. As a
basis, a typical simulation modeling cycle for the

Formal specification of
the conceptual model

!

Formal conceptual
model

l Replace by

Implementation

Computer model

use with MDSD needs to be refined. The employed
DSL consisting of a new UML profile for DES is
described. Additionally is shown how to use it for
implementing a reference simulation model.

4.1 A Simulation Modeling Cycle Including MDSD

The MDSD development phases can be merged
with a typical simulation modeling cycle such as
that presented in [14]. If the domain architecture
has not been implemented yet, the phases of do-
main engineering and application engineering are
both necessary. In this case, the simulation-specific
activities, like problem definition and data collec-
tion, become a part of the application engineering
phase. If the domain architecture is already built
and does not need improvement, the domain engi-
neering phase can be omitted. The application en-
gineering phase can then be incorporated in the
simulation development process. In both cases the
implementation phase of the simulation develop-
ment cycle needs to be refined. A possible refine-
ment is shown in figure 3.

Formal specification of
the conceptual model

Formal, conceptual
model

Code generation

Generated artifacts

Manual -
implementation

Computer model

Execution of
software tests

Tested
computer model

Fig. 3 Refinement of the simulation cycle from [14]

20

AUTOMATIKA 50(2009) 1-2, 17-27

T. Sandu, N. Denz, B. Page

Model-Driven Software Development and Discrete Event Simulation...

A more detailed discussion of the combination
of the MDSD and simulation development cycles
can be found in [7].

4.2 A DSL for Process-Oriented Simulation

In [7] a domain architecture for process-oriented
discrete event simulation has been developed. The
elements of the DSL are displayed in figures 4 and
5. The DSL was created by defining a UML pro-
file that partly implements the simulation-specific
extension stereotypes proposed in [4].

The DSL supports two important UML diagram
types for DES, i.e. class and activity diagrams. In
a class diagram the classes representing the simu-
lation model and the processes can be marked with
the stereotypes <<Model>> and <<SimProcess>>.
The <<Platform>> stereotype indicates that a
class is part of the platform or manually imple-
mented, so nothing is generated from it. Oper-
ations can also be marked by stereotypes. <<life-
Cycle>> indicates that an operation describes the
behaviour of a simulation process. Stereotypes of
attributes are shown in figure 5. The stereotype
<<location>>, for instance, marks an attribute
that describes the location of a simulation entity
within the model’s environment.

Activity diagrams are employed to describe the
lifecycle of simulation processes. Elements of ac-
tivity diagrams such as object nodes or send and

receive signal actions have been specialized with
stereotypes according to the terminology of pro-
cess-oriented simulation. The stereotype <<hold>>
e.g. marks an action that passivates a simulation
process for a certain period of time. An object node
with the stereotype <<queue>> represents a wait-
ing queue.

To validate the well-formedness of models cre-
ated with the DSL, the UML profile includes con-
straints that have to resolve to true, before the code
is generated. One example constraint shown in fig-
ure 4 ensures that every simulation process class is
connected to the simulation model class. Another
constraint checks that every class with the <<Sim-
Process>> stereotype has only one operation
marked with <<lifeCycle>>,

4.3 A Simulation Study Implemented with MDSD

As a reference model, a teaching example from
[14] that was previously implemented in the pro-
cess- and event-oriented modeling styles has been
chosen. The model was reimplemented by means
of MDSD [7] to illustrate the possibilities of the
constructed domain architecture. According to the
principles of MDSD described in [5], a straightfor-
ward, yet typical example has been chosen. The
reference model was implemented in parallel to the
definition of the domain architecture in order to
ensure the appropriateness of the architecture and
the quality of the generated code.

I
<<profile>>
SimulationProfile
<<metaclass>>
Class
<<metaclass>>
Operation <<stereotype>>
<<stereotype>> 1 get location
Platform [Operation]
[Class]
<<stereotype>>
lifeCycle
<<stereotype>> [Operation]
Model
[Class]
-name : String <<stereotype>> B
~description : String SimProcess |_ _|oAW check
[Class] this.ownedBehavior.typeSelect(
— L. uml::Activity).size == 1
-~ ~
—
L7 N
0AW check
0AW check this.ownedOperation.typeSelect(DiscreteEventProfile::proc
this.attribute.select(e|e.name == essBehaviour).size == 1,
"model").size == 1;

Fig. 4 First part of the DSL

AUTOMATIKA 50(2009) 1-2, 17-27

21

Model-Driven Software Development and Discrete Event Simulation...

T. Sandu, N. Denz, B. Page

<<profile>>
SimulationProfile
<<metaclass>> <<metaclass>> <<metaclass>>
_—e Property CallBehaviorAction ||CentralBufferNode
b § s i
<<stereotype>>
Array <<stereotype>>
[Property] ll:'ocation <<stereotype>>
[Property] hold
[CallBehaviorAction]
<<stereotype>> <<stereotype>>
NumberOfQueueLocations AssociatedProcess
[Property] [Property]
<<stereotype>>
<<stereotype>> queue
<<stereotype>> Constrl.:jctorlmtlallzed [CentralBufferNode]
QueueRef [Property] #queueNamelnModel : String
[Property] = -
oAW check
this.name.endsWith("Queue") && this.name.length > "Queue".length;

Fig. 5 Second part of the DSL

In [14, p. 119] the model is introduced as fol-
lows: »Hamburg is Germany’s principal seaport
and largest overseas trade and transshipment cen-
ter. Here container bridges charge a multitude of
so-called feeder ships with containers for transport
to overseas destinations, e.g. to ports within the
Baltic Sea. These feeder ships travel different

routes to supply several ports successively. In each
of the visited ports, a different number of contain-
er bridges is available for unloading the containers
meant for this destination. [...] The objective of
simulation such a scenario is to gather information
about bottlenecks among the container bridges as
well as the ships’ waiting times in each port.«

==Model==
) ContainerShipmentModel
<<Constructc d: —
#model +init()
+dolnitialSchedules()
1
<<Constructorinitialized>>
#model
<<SimProcess>>
Ship
—route : int
<<Array>>-numberCfContainers : int
<<Constructorinitiali underTest : boolean = false
~harbourFrom : int = 0
~travelTime : double = 0
<<lifeCycle>>+lifeCycle()
#processedShip
<<AssociatedProcess>>
-currentPassage
<<Platform=> . =createdCrane
Passage <=SimProcess>>
<<get location>>+getHarbour() : int Crane
<<Ci Initialized 1 ur : int
—unloadingTime : double = 0
<<AssociatedProcess>> <<lifeCycle>>+lifeCycle()

#processingCrane

Fig. 6 Definition of the model class and the simulation processes

22 AUTOMATIKA 50(2009) 1-2, 17-27

T. Sandu, N. Denz, B. Page

Model-Driven Software Development and Discrete Event Simulation...

Compute number
of ce i

<<queue>>
Cranes
{gueueNamelnModel = idleCraneQueue}

processingCrane : Crane

crane

Determine number

of ports

Compute travel
time

<<hold>>
Navigate to
next port
Insert into ship
waiting queue

[at least one crane available]

[no further ports]

==queug=>
Ships
{gueueNamelnModel = shipQueue}

Determine if
crane is available

from q

ueue

Comp next |

destination

Activate
crane

>

Wait for end
of loading

Fig. 7 Lifecycle of a feeder ship process

In figure 6 the classes of the simulation model
(ContainershipmentModel) and the processes
(ship and Crane) are defined. From this class di-
agram, not only simulation classes are generated.
The code generation also comprises helper classes
for the realization of the simulation processes’ be-
havior as well as test classes.

Figure 7 illustrates the definition of the behav-
ior of a feeder ship process as an activity diagram.
Elements from the DSL are the Navigate to
next port action and the object nodes Ships
and Cranes. The object nodes are marked by
<<queue>> and have a tagged value named
queueNameInModel. Tagged values are attributes
defined by stereotypes and provide extra informa-
tion for the correct generation of the code. The
value of queueNameInModel represents the attrib-
ute name of the accessed queue as defined in the
model class.

AUTOMATIKA 50(2009) 1-2, 17-27

From every action in the activity diagram, an ab-
stract action class is generated. It has to be sub-
classed to define the actual behavior of the respec-
tive action. To realize the complete behavior of the
simulation process, instances of the subclasses are
executed in the order imposed by the activity dia-
gram. JUnit test classes are also generated for
every action class. They use mock objects of their
assigned simulation process and most of them
need to be subclassed for concrete implementa-
tions.

After the code generation the application engi-
neers are informed which classes need to be sub-
classed and what names these subclasses must be
given. This information is also generated and de-
pends on the constructed UML models. In the 0AW
framework, these hints are contained in a so-called
recipe file that can be interpreted with the aid of a
specific Eclipse plug-in.

23

Model-Driven Software Development and Discrete Event Simulation...

T. Sandu, N. Denz, B. Page

Define if ship
is waiting

<E [Ship is waiting]

[No ship waiting]

Insert crane
into idle queue

Remove next
ship from queue

{{q usue>>
Ships
{queueNamelnModel = shipQueue}

processedShip : Ship

Wait for e Determine unloading
activation Cranes time
{queueNamelnModel = idleCraneQueue}

<<hold>>
Unload ship

Fig. 8 Lifecycle of a crane process

Figure 8 illustrates the crane process which is
interacting with the ship process. It is only present-
ed here in order to make the simulation model eas-
ier to understand.

5 COMBINATION OF MDSD AND DES

Building DES programs in an MDSD style pro-
vides advantages but also drawbacks. In the fol-
lowing, the combination of both fields is discussed,
based on the experiences from constructing the
above domain architecture. In this discussion, po-
tential benefits for the construction of graphical
simulation tools is identified. A complementary dis-
cussion with a slightly different focus in the con-
text of MDA can be found in [12].

5.1 Code Generation and Prototyping Save Time

MDSD makes it possible to generate all entities
and other important elements of a simulation pro-
gram from conceptual models. Once the initial ef-
fort of creating the code generation infrastructure
is completed, the designer of a simulation applica-
tion can concentrate on creating a good representa-
tion of the real system. Changes in the conceptual
models are synchronized to changes in the source
code. Only custom behavior has to be implement-
ed manually while common actions such as adding

24

a new server to an existing queuing model are per-
formed automatically.

An argument against MDSD is the large effort
in the early stages of the simulation study. Before
being able to generate vital parts of the simulation,
the DSL and the transformations need to be con-
structed. In DES understanding and studying the
domain is traditionally time-consuming and com-
plex. However, the deep understanding of the real
system needed by a simulation developer can help
him create a good metamodel and DSL. If a do-
main architecture can be re-used, the simulation
developer can fully concentrate on the system
under study. Since many application parts are gen-
erated, the implementation phase becomes shorter.

Following [5], an MDSD project needs a manu-
ally created reference implementation of important
aspects of the domain, i.e. one or two manually
implemented simple use cases that should cover all
elements of the DSL. The transformations can be
derived from this reference implementation and the
code generation is based on the manually crafted
code. In terms of quality this code should be supe-
rior to the code generated by former CASE tools
(Computer Aided Software Engineering, see e.g.
[15]). In simulation the reference implementation
consists of a model representation lacking details
compared to a productive simulation model. The
need for a reference implementation encourages the

AUTOMATIKA 50(2009) 1-2, 17-27

T. Sandu, N. Denz, B. Page

Model-Driven Software Development and Discrete Event Simulation...

designer to construct early prototypes, which sup-
ports an early elimination of misunderstandings re-
garding the real system. Summarizing, a reference
implementation and an iterative approach to MDSD
lead to an improvement of simulation software
quality and can save valuable time.

5.2 Larger Importance of Conceptual Models

In code-centric simulation modeling, the formal
MDSD models replace the traditional conceptual
models. These models are of greater importance
than their predecessors, since they do not only il-
lustrate the structure and behavior of the real sys-
tem, but are directly linked to the simulation pro-
gram. Without using MDSD the conceptual models
and the source code need to be synchronized man-
ually. Changes of the MDSD models result in a
generative update of the simulation program. After
regenerating the application code, the application
developers implement the parts of the program
which need to be implemented manually. This wor-
flow guarantees that the MDSD models always rep-
resent the latest version of the source code and are
not only employed for documentation or for the
first steps of the implementation.

5.3 Construction of Graphical Simulation Tools

The employed domain-specific language has to
cover the concepts and entities of the analyzed do-
main. This can be done on a textual but also on a
graphical basis. Choosing a graphical DSL has
some well-known advantages such as an easier un-
derstandability and validation by domain experts
and a higher level of abstraction. However, models
built with a DSL become more complex than mere
conceptual models since the mapping from the ele-
ments of the DSL to code has to be unambiguous.

MDSD has many strengths when combined with
powerful object oriented frameworks. The code
generated from the models constructed with the
DSL does not directly implement the behavior of
simulation elements, but instantiates the predefined
elements from the used frameworks and takes care
of the relations between these elements and their
parameterization. A DSL covering all aspects of the
analyzed domain and the assigned transformations
can be regarded as a basic graphical simulation tool
for one particular domain. A significant advantage
over traditional simulation tools is the result of the
code generation. The result is an object oriented
application, that can be modified and extended
manually.

An obvious disadvantage of MDSD is the fact,
that it often leads towards hard to use graphical

AUTOMATIKA 50(2009) 1-2, 17-27

languages supported by rather general tools like
UML editors (as opposed to graphical simulation
tools such as e.g. Extend [16]). More user friendly
ways to design the executable simulation model
and to set parameters of its components have to be
found. The GMF plug-in for the Eclipse platform
simplifies the creation of a special purpose graphi-
cal editor for a DSL. The tool allows to generate
user friendly graph editors from the data structures
describing the DSL metamodel. Thus the rapid pro-
totyping of graphical simulation tools is supported.
The resulting editors are Java applications and can
be extended manually in order to reach the usabil-
ity level of graphical simulation tools. Thereby
simulation programmers can easily build special-
ized tools for domain experts without a program-
ming background.

Figure 9 shows an editor generated with GMF.
The input data for the generation is a meta-model
for describing the behavior of simulation process-
es. In general GMF supports any kind of meta-mo-
del and could therefore be used to build graphical
editors for other simulation world-views as well
(e.g. transaction-oriented modeling). Without prior

truck.data._diagram X

j — Palette —

. [Select
(*, Zoom
[=) Note

& Adtivate
4 Passivate
< Hold

& D e
4 Start

< Stop
4 Decision

4 ControlFlow

4 Insertinto truck waiting queue

Loading dock free

4 Notify loading dock

|I|I| truck gueLe
TruckProcess

&

4 Wait for e.nd of loading

4 Leave Ic;ading dock|

.
- A

Fig. 9 4 simple GMF editor for modeling the behavior of
simulation processes

25

Model-Driven Software Development and Discrete Event Simulation...

T. Sandu, N. Denz, B. Page

knowledge of GMF it was possible for one of the
authors to generate this editor within three man-
-days of work. The representation of the diagram
is Eclipse EMF which is also supported by the em-
ployed 0AW framework.

An MDSD domain architecture for discrete event
simulation can furthermore be used as a basis for
a traditional domain-specific graphical simulation
tool. MDSD frameworks like 0AW are very flexi-
ble and powerful and allow to easily implement
importers for any kind of model representation. The
generator can create components used by the sim-
ulation tool during its execution. Thereby, manu-
facturers of simulation software can profit from the
best practices of MDSD and a change of platforms
or modeling styles might become easier.

5.4 Assistance for Model Testing

Following [17] model testing is a challenging
task in simulation. MDSD can ease the creation of
software tests significantly because the generative
approach also allows to generate test code. The
generation of partially implemented test classes al-
ready eases the development of tests. Generated
parts of the test classes show the inexperienced
user which part of the application should be test-
ed, and what test strategies should be used. Fur-
thermore, the use of MDSD allows to specify the
elements to be tested in the conceptual models. The
semantics of this marking depends on the design
of the transformations. For example certain data
collectors can be marked to write debug reports or
to be automatically compared to real system data
in operational validation.

Besides unit tests, it is also possible to generate
parts of integration or acceptance tests. These black
box tests ensure that the overall application exhibits
the expected behavior. Therefore, they are quite ap-
propriate to test the behavior of complete simula-
tion models. Rather positive experiences with the
FIT Framework for Integrated Test by Ward Cun-
ningham [3] have been made. They are reported in
detail in [7].

MDSD also eases the subsequent refactoring of
existing applications towards better testability. This
is due to the fact, that the architecture of the con-
structed application is encapsulated in the transfor-
mations. Therefore, it can be refined more easily
than in conventional applications, since it is only
necessary to adapt the transformations. A single
change of the domain architecture affects many
generated artifacts. If the focus is on better testa-
bility, the improvement of the architecture towards

26

a better testable structure can thereby be simplified
throughout the whole application.

6 CONCLUSIONS

In this paper, the benefits and drawbacks of ap-
plying model driven software development in the
domain of discrete event simulation have been dis-
cussed. An implementation of a domain architec-
ture for DES and an operational generative infra-
structure have been presented. This implementation
comprises a new UML profile for process-oriented
simulation as the domain-specific DSL and code
generation facilities for the object oriented simula-
tion framework DESMO-J. In this context, several
MDSD-specific tools and technologies have been
applied and evaluated. Additionally an example
from the field of harbor logistics has been imple-
mented as a reference model.

Based on these experiences, conclusions have
been drawn on the general applicability of MDSD
to DES. As a benefit, the generative approach of
MDSD can help saving time during model devel-
opment and further encourage early prototyping in
simulation. Additionally, MDSD stresses the im-
portance of models in code-centric simulation ap-
proaches and provides support for model testing.

However, due to its rather technical orientation,
MDSD cannot replace traditional domain-specific
graphical simulation tools. Instead, it provides an
intermediate level between code-centric and graph-
ical model development. On the one hand, MDSD
supports the developer of large simulation pro-
grams in schematical routine tasks on the basis of
models. On the other hand, MDSD-related concepts
and tools like GMF or oAW can ease the rapid pro-
totyping of graphical simulation tools for domain
experts.

In future work, the presented concepts should be
applied in other and larger simulation studies, and
the presented DSL should be adapted accordingly.
More domain-specific editors for DESMO-J mod-
els can be built based on the GMF framework.
Another interesting direction for future research is
an investigation of the applicability of MDSD to
later phases of a simulation study such as experi-
mentation, result analysis, and validation.

REFERENCES

[1] B. Page, T. Lechner and C. Sonke. Objektorientierte
Simulation in Java. Mit dem Framework DESMO-
-J. Libri Books on Demand, 2000.

AUTOMATIKA 50(2009) 1-2, 17-27

T. Sandu, N. Denz, B. Page

Model-Driven Software Development and Discrete Event Simulation...

(2]
(3]
(4]

(3]
(6]

(7]

(8]

(9]

[10]

www.junit.org. JUnit.org. http://www.junit.org (in
January 2009), 20009.

Ward Cunningham. Framework for Integrated Test.
http://www.fit.c2.com (in January 2009), 2007.

B. Page and N. Knaak, Applications and Extensions
of the Unified Modeling Language UML 2 for dis-
crete Event Simulation. In International Journal of
Simulation, number 6 in 7, pages 33-43, 2006.

T. Stahl and M. Volter, Model-Driven Software
Development. Wiley, West Sussex, 2006.

J. Bettin. Prozess aus wirkungen von MDSD.
http://www.sigs.de/publications/0s/2004/MDD/bettin
_MDD_2004.pdf (in April 2007), 2004.

T. Sandu, Modell getriebene Entwicklung von
Simulations programmenam Beispiel des DESMO-
-J-Frameworks. University of Hamburg, 2007. Diplo-
marbeit.

L. B. Arief and N. A. Speirs. A UML Tool for an
Automatic Generation of Simulation Programs. In
WOSP 2000, Ontario, Canada, 2000.

C. Oechslein, F. Kliigl, R. Herrler and F. Puppe, UML
for Behaviour-Oriented Multi-Agent Simulations.
In B. Dunin-Keplicz and E. Nawarecki, editors,
Proceedings of the CEEMAS, number 2296 in Lecture
Notes in Artificial Intelligence, pages 217-226, Berlin,
2001. Springer.

H. J. Kohler, U. Nickel, J. Niere and A. Ziindorf,
Integrating UML Diagrams for Production Control

[11]

[14]

[15]
[16]

[17]

Systems. In Proc. of the 227 International Conference
on Software Engineering (ICSE), pages pp. 241-251,
Limerick, Ireland, 2000. ACM Press.

N. De Wet and P. Kritzinger, Using UML Models for
the Performance Analysis of Network Systems. In
Proceedings of the Workshop on Integrated-reliability
with Telecommunications and UML Languages
(WITUL), Rennes, Brittany, France, 2004.

S. Parr and R. Keith-Magee, How To Apply MDA To
Simulation. In SimTecT 2004 Simulation Conference,
2004.

S. Becker, H. Koziolek and R. Reussner, Model-
-Based Performance Prediction with the Palladio
Component Model. In Workshop on Software and
Performance (WOSP 2007), 2007.

B. Page and W. Kreutzer, The Java Simulation
Handbook. Simulations Discrete Event Systems
with UML and Java. Shaker Verlag, Aachen, 2005.

Computer-aided software engineering: Case in the
’90s. Communications Of The ACM, 35(4), 1992.

Imagine That Inc. Extend.
http://www.imaginethatinc.com (in April 2007), 2007.

C. M. Overstreet, Model Testing: Is it only a Special
Case of Software Testing. In E. Yiicesan, C. H. Chen,
J. L. Snowdon, and J. M. Charnes, editors, Proceed-
ings of the 2002 Winter Simulation Conference, pages
641-647, 2002.

Razvoj programske podrske zasnovane na modelu za simulacije diskretnih sustava — koncepti i pri-
mjeri. Razvoj programske podrske zasnovane na modelu (MDSD) postaje prevladavajuéa paradigma u pro-
gramskom inZenjerstvu. Kako su modeli uvijek imali sredi$nju ulogu u simulacijama, neki su aspekti na mo-
delu zasnovanog razvoja programske podrSske od posebno velike pomo¢i pri simulacijama diskretnih sustava
(DES). U ovome se radu opisuje primjer razvoja arhitekture za DES po MDSD konceptu. To ukljucuje generi-
ranje koda za objektno orijentirani simulacijski okvir DESMO-J zasnovan na novom UML profilu za DES te
koristenje tehnika i alata za MDSD. Na osnovi primjera, razmatrani su opée prednosti i nedostaci primjene
MDSD za razvoj simulacijskih modela i interaktivnih simulacijskih alata. Predlozen je modelski ciklus za si-
mulacijske studije koji omogucuje primjenu navedenih na modelu zasnovanih tehnika.

Kljuéne rijec¢i: DES, MDSD, UML, simulacije prilagodene procesu, programsko inzenjerstvo

AUTOMATIKA 50(2009) 1-2, 17-27

AUTHORS’ ADDRESSES:
Thomas Sandu, Nicolas Denz, Bernd Page

University of Hamburg, Department of Informatics
Vogt-Kolln-Strasse 30, 22527 Hamburg, Germany
e-mail: thomas.sandu@itemis.de

Received: 2008-07-07
Accepted: 2009-01-16

27

