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Abstract 

Optimal QoS path provisioning of coexisted and aggregated traffic in networks is still 

demanding problem. All traffic flows in a domain are distributed among LSPs (Label 

Switching Path) related to N service classes, but the congestion problem of concurrent flows 

can appear. As we know the IGP (Interior Getaway Protocol) uses simple on-line routing 

algorithms (e.g. OSPFS, IS-IS) based on shortest path methodology. In QoS end-to-end 

provisioning where some links may be reserved for certain traffic classes (for particular set of 

users) it becomes insufficient technique. On other hand, constraint-based explicit routing 

(CR) based on IGP metric ensures traffic engineering (TE) capabilities. But in overloaded and 

poorly connected MPLS/DiffServ networks the CR becomes insufficient technique. As we 

need firm correlation with bandwidth management and traffic engineering (TE) the initial 

(pro-active) routing can be pre-computed in the context of all priority traffic flows (former 

contracted SLAs) traversing the network simultaneously. It mean that LSP can be pre-

computed much earlier, possibly during SLA (Service Level Agreement) negotiation process. 

In the paper a new load simulation technique for load balancing control purpose is proposed. 

The algorithm proposed in the paper may find a longer but lightly loaded path, better than the 

heavily loaded shortest path. It could be a very good solution for congestion avoidance and 

for better load-balancing purpose where links are running close to capacity. Also, such 

technique could be useful in inter-domain end-to-end provisioning, where bandwidth 

reservation has to be negotiated with neighbor ASes (Autonomous System). To be acceptable 

for real applications such complicated routing algorithm can be significantly improved. 

Algorithm was tested on the network of M core routers on the path (between edge routers) and 

results are given for N=3 service classes. Further improvements through heuristic approach 

are made and results are discussed. 

Keywords: intra-domain routing, inter-domain routing, traffic engineering in DiffServ/MPLS 

networks, constraint-based routing 

1. Introduction  

With capability in service differentiation techniques (DiffServ networks) the network operator 

can ensure the traffic priorization, specialy to quality voice (VoIP) and video calls (premium 

traffic), as same as for truly differentiated data services. It means that DiffServ classifies 

individual flows in a small number of service classes (at network edges). Also it enables 

‘’soft’’ reservation (allocation) of resources and special handling of packets in the core. 

Together, MPLS (Multi Protokol Label Switching) and DiffServ provide a scalable QoS 

solution for the core of the network; see [1] and  [2].  
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MPLS uses extensions to Resource Reservation Protocol (TE-RSVP) and the MPLS 
forwarding paradigm to provide explicit routing; see [3], [4] and [5].  With OSPF (Open 

Shortest Path First), widely-used IGP routing protocol, some paths may become congested 
while others are underutilized. Such intra-domain routing can be appropriate only for under 
loaded networks. For highly loaded networks we need prediction of congestion probability 
and it has to be done much before the moment of service utilization. Constraint-based routing 
(CR) as a extension of explicit routing allows an originating (ingress) router to compute a 
path (LSP) to egress router (sequence of intermediate LSRs), taking care of constraints such 
as bandwidth, delay and administrative policy; see [12]. With constraint-based label 
distribution protocol (CR-LDP) we can ensure the bandwidth provisioning directives and 
other information (list of router's neighbors, attached networks, actual resource availability 
and other relevant information). It can be distributed for each service class at each link along 
the path (LSP); see [6]. CR process can be incorporated into each ingress router and co-exists 
with the conventional routing technique.  

MPLS/DiffServ aware TE (DS-TE) allows constraint-based routing of IP traffic with final 
task to adjust class load to actual class capacity. But the routing approach above can be 
effective in under loaded networks or in fully connected networks only. For them the WRED 
(Weighted Random Early Detection) is effective congestion avoidance technique. But in some 

networks dropping packets can lead to customer dissatisfaction and SLA violation.As we need firm 
correlation with bandwidth management and traffic engineering (TE) the initial (pro-active) 
routing can be pre-computed in the context of all priority traffic flows (former contracted 
SLAs) traversing the network simultaneously; see fig. 1. It could be a very good solution for 
congestion avoidance and for better load-balancing purpose in core network where links are 
running close to capacity. If we want to obtain quantitative end-to-end guarantees the QoS 
provisioning has to be in firm correlation with bandwidth management; see [7] and [8]. 
Similar approach we need in bandwidth reservation from neighbour ASes (Autonomous 
System), see [14]. It is th main element for optimal end-to-end provisioning. Detail 
explanation of new constraint-based routing approach is given in section 2. CR routing 
technique can be seen as the capacity expansion problem (CEP) in given limits. The 
mathematical model explanation is given in the section 3. In the section 4 we have CEP 
algorithm development and heuristic approach. The comparison of results for different 
algorithm options we can see in the section 5.  
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Figure 1.  An example of  number of  SLAs in the context of new SLA creation. 
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2. LSP Creation During SLA Negotiation 

The service provider in domain (e.g. ISP) wants to accept new SLA that results with priority 

traffic flow between edge routers. A traffic trunk is defined as a logical pipeline within an 

LSP, with reservation of certain amount of capacity to serve the traffic associated with a 

certain SLA. So it is clear that LSP between an ingress/egress pair may carry multiple traffic 

trunks associated with different SLAs; see [10]. In fig. 2 we have situation on the path for the 

example of simultaneous SLA flows from fig. 1. All traffic flows on the path are participating 

possibly in the same time (the worst case). In that sense the network operator (e.g ISP) has to 

find the optimal LSPs for aggregated flows without any possible congestion in the core 

network; see [9]. Each traffic demand can be satisfied on appropriate or higher QoS level. The 

main condition is: the sufficient network resources must be available for the priority traffic at 

any moment.  

During SLA negotiation process the RM (Resource Manager) module has to determine 

the main parameters that characterize the required flow (i.e., bandwidth, QoS class, ingress 

and egress IP router addresses); see [13]. At first RM can apply any shortest path-based 

routing algorithm (e.g. OSPF - Open Shortest Path First) to get initial LSP. The BB 

(Bandwidth Broker) will therefore check if there are enough resources on the calculated path 

to satisfy the requested service class, taking care of all existing flows in the same time (caused 

by former SLAs).  

With such congestion control algorithm the RM can predict sufficient link resources to 

satisfy all traffic demands. If the optimal routing sequence has any link that exceeds allowed 

capacity limits (maximal bandwidth) possible congestion exists; see [15]. It means that link 

capacity on the path cannot be sufficient for such traffic. Such congested link has to be 

eliminated from the path and procedure starts again with next path configuration. 

Alternatively, adding capacity arrangement can be done (if possibly) but it can produce 

significant extra cost. 

If calculation finds the path without any congestion the new SLA can be accepted and 

related LSP is assigned to that flow and stored in database of BB. In opposite the new SLA 

cannot be accepted or must be re-negotiated. In the moment of service invocation such 

calculated and stored LSP can be easily distributed from BB to the MPLS network to support 

explicit routing, leveraging bandwidth reservation and prioritization; see [16].  

In that way the LSP creation should be in co-relation with SLA, to enable better load-

balancing and congestion avoidance in domain. In such CR approach we can observe the 

main difference from usual on-line routing techniques (e.g. OSPF): the optimal LSP need not 

to be necessarily the shortest path solution.  
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Figure 2. Simultaneous flows with possibly congestion on the path. 
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Such technique can be appropriate for inter-domain end-to-end path provisioning in the 
part of optimal bandwidth reservation from neighbor ASes. Capacity reservations are made in 
the most effective way in order to provide bandwidth guarantees for the predicted traffic; 
[11]. Having purchased access to sufficient bandwidth from downstream ASes, the AS needs 
to utilize both: purchased bandwidth and its own network capacity.  

3. Mathematic Model of CEP for Congestion Control and Load Balancing 

Purposes 

The congestion control technique explained above can be seen as the capacity expansion 
problem (CEP) with or without shortages. For full traffic satisfaction we talk about CEP 
without shortages. Transmission link is capable to serve traffic demands for N different QoS 
levels (service class) for i = 1, 2, ..., N. For each load we need appropriate bandwidth amount, 
so it looks like bandwidth expansion. Bandwidth portions on the link can be assigned to 
appropriate service class up to the given limit (maximal capacity). Used capacity can be 
increased in two forms: by expansion or by conversion. Expansions can be done separately 
for each service class or through conversion (redirected amount) to lower quality class. It 
means that it can be reused under special conditions to serve the traffic of lover quality level. 
Bandwidth usage for each service class can be a part of resource reservation strategy. Fig. 2 
gives an example of network flow representation for multiple QoS levels (N) and M core 
routers (LSR) on the path. In the CEP model the following notation is used: 

Fig. 3 gives an example of network flow representation for multiple QoS levels (N) and M
core routers (LSR) on the path. In the CEP model the following notation is used: 

i, j and k = QoS level. We differentiate n service classes (QoS levels).The N levels are 
ranked from i = 1, 2,..., N, from higher to lower. 

 m  = the order number of the link on the path, connecting two successive routers, m = 
1, …., M+1. 

u,v = the order number of capacity points in the sub-problem, 1   u, ..., v   M+1. 

ri,m = traffic demand increment for additional capacity for each router on the path. Any 
traffic demand can also be satisfied by converted capacity from any capacity type k with 
higher quality level. For convenience, the ri.m is assumed to be integer. The sum of traffic 

  

Figure 3. The network flow representation of the CEP model for congestion control purposes. 
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demand for capacity type i between two routers:  

               (3.1)   
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The sum of demands for whole path and for all capacity types has to be positive or zero:  
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It means that we don’t expect reduction of total capacity on the path toward egress router, 

in other words we presume the increase of capacity. Traffic demand can also be satisfied by 

converted capacity from one capacity type to another, partially in combination with expansion 

or in total amount.  

 Ii,m  = amount of capacity (idle capacity or shortage) on the link m, connecting two neighbor 

routers. Possibly positive or negative values. Ii1 = 0, Ii,M+1 = 0 that means: no adding capacity 

is necessary on the links toward edge routers. Those links are not the mater of optimization. 

  xi,m = the amount of adding capacity for each service class on the link m. Possible negative 

values (decrease). 

 Li,m = bandwidth constraints for link capacity values on the link m and for appropriate 

service class i (L1,m , L2,m , … LN,m).  

  yi,j,m = the amount of capacity for quality level i on the link m, redirected to satisfy the traffic 

of lower quality level j. 

  wi,m= weight for the link m and appropriate service class i (QoS level). 

  deli,m= delay on the link m for appropriate service class i. Maximal delay on the path is 

denoted with DELi . 

  As we have nonlinear cost functions (showing the economy of scale) the CEP can be 

solved by any nonlinear optimization technique. Instead of a nonlinear convex optimization, 

that can be very complicated, the network optimization methodology is efficiently applied; 

see [17]. The main reason on such approach is the possibility of discrete capacity values for 

limited number of QoS classes, so the optimization process can be significantly improved. 

The problem can be formulated as Minimum Cost Multi-Commodity Flow Problem 

(MCMCF). Such problem (NP-complete) can be easily represented by multi-commodity the 

single (common) source multiple destination network; see fig. 3.  

Let G (V, E) denote a network topology, where V is the set of vertices/nodes, representing 

link capacity states and A, the set of arcs representing traffic flows between routers. Each link 

on the path is characterized by z-dimensional link weight vector, consisting of z-nonnegative 

QoS weights. The number of QoS measures (e.g. bandwidth, delay) is denoted by z. In 

general we have multi-constrained problem (MCP) but in this paper we talk about one-

dimensional link weight vectors for M+1 links on the path #wi,m, m $ A, i = 1, …, N%. E.g. the 

capacity constraint for each link on the path is denoted with Li,m (L1,m L2,m, … LN,m). For a non-

additive measure (e.g. bandwidth) definition of the single-constrained problem is to find a 

path from ingress to egress node with minimal link weight along the path.  

In the context of MCP we can introduce easily the adding constraint of max. delay on the 

path (end-to-end). As it is an additive measure (more links on the path cause higher delay) it 

can be used as criteria to eliminate any unacceptable routing solution from calculation.  

The flow situation on the link depends of expansion and conversion values (xi,m , yi,j,m). It 

means that the link weight (cost) is the function of used capacity: lower amount of used 

capacity (capacity utilization) gives lower weight. If the link expansion cost corresponds to 

the amount of used capacity, the objective is to find the optimal routing policy that minimizes 

the total cost on the path. 

Definition of the single-constrained problem is to find a path P from ingress to egress 

node such that:  
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where:  Ii,m    Li,m      (3.4) 

!  
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m
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imi DELdel        (3.5) 

satisfying condition: max. delay of    P   DELi           (3.6)        
for  i = 1, …, N ;  m = 1,…, M 

A path obeying the above conditions is said to be feasible. Note that there may be 
multiple feasible paths between ingress and egress node. Generalizing the concept of the 
capacity states for each quality level of transmission link m between LSRs in which the 
capacity states for each service class (QoS level) are known within defined limits we define a
capacity point - "m.  

"m = (I1,m, I2,m, ... , IN,m)      (3.7) 

"1 = "M+1 = (0, 0, ... , 0)      (3.8) 

In formulation (3.7) "m denotes the vector of capacities Ii,m for each service class on link
m, and we call it capacity point. On the flow diagrams (fig. 2.) each column represents a 
capacity point of the node, consisting of N capacity state values (for i-th QoS level). Link 
capacity is capable to serve different service classes. Capacity amount labeled with i is 
primarily used to serve traffic demands of that service class but it can be used to satisfy traffic 
of lower QoS level j (j > i).  

Formulation (3.8) implies that idle capacities or capacity shortages are not allowed on the 
beginning and on the end of optimization. It means that process is starting with new SLA flow 
that must be fully satisfied through the network (to egress node).  

The objective function for CEP problem can be formulated as follows: 
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for  m = 1, 2, ..., M+1;  i = 1, 2, ... , N;  j = i + 1, ... , N. 

In the objective function the total cost (weight) includes some different costs. Expansion 
cost (adding capacity) is denoted with ci,m (xi,m). For the link expansion in allowed limits we 
can set the expansion cost to zero. We can differentiate expansion cost for each service class. 
We can take in account the idle capacity cost hi,m (Ii,m+1), but only as a penalty cost to force the 
usage of the minimum link capacity (prevention of unused/idle capacity). Also we can 
introduce facility conversion cost gi,j,m (yi,j,m) that can control non-effective usage of link 
capacity (e.g. usage of higher service class capacity instead). Costs are often represented by 
the fix-charge cost or with constant value. We assume that all cost functions are concave and 
non-decreasing (reflecting economies of scale) and they differ from link to link. The objective 
function is necessarily non-linear cost. With different cost parameters we can influence on the 
optimization process, looking for benefits of the most appropriate expansion solution.  

4. Algorithm Development 

The network optimization can be divided in two steps. At first step we are calculating the 
minimal expansion weights du,v  for all pairs of capacity points in neighbor links on the path. 
The calculation of weight value between capacity points we call: capacity expansion sub-
problem (CES); see (4.1). The expansion sub-problem for N facilities i = 1, 2, .. , N on the 
path between routers u and v is as: 
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where:   
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for  m = 1, 2, ... , M+1;    i = 1, 2, ... , N;   j = i + 1, ... , N. 

Let Cm be the number of capacity point values at router position m (for link between core 

routers). Only one capacity point for the link that connects to the edge router: C1 = CM+1 = 1.  

The total number of capacity points is: 
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 In the CEP we have to find many cost values du,v(+u, +v+1) that emanate two capacity 

points, from each node (u, +u) to node (v+1, +v+1) for v , u. The total number of all possible 

connections (CES) is:  
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For every CES calculation of many different solutions can be derived depending on Di

value. Many combinations exist and each of them consists of expansion and conversion 

amount solutions for each capacity type. 

The most of the computational effort is spent on computing of the sub-problem values. 

The number of all possible du,v values depends on the total number of capacity points.  

Suppose that all links (sub-problems) are calculated, the optimal solution for CEP can be 

found by searching for the optimal sequence of capacity points and their associated link state 

values. The number of all possible du,v(+u, +v+1) values depends on the total number of 

capacity points. It is very important to reduce that number (Cp) and that can be done through 

imposing of appropriate capacity bounds or by introduction of adding constraints (e.g. max. 

delay). Through numerical test-examples we’ll see that many expansion solutions cannot be a 

part of the optimal expansion sequence. It is the way how algorithm can be significantly 

improved. So we can obtain the near-optimal result with significant computational savings.  

 4.1. Single Location Expansion Problem 

Approach described in chapter above requires solving repeatedly a certain single location 

expansion problem (SLEP) in all possible modifications, looking for the best result. Let 

SLEPi,j (m, Di, ... Dj) be a Single Location Expansion Problem associated with link m for 

facility (capacity) type i, i+1, ... , j and corresponding values of capacity change intention Di,

Di+1, ... , Dj .                                      

For example, in solving SLEP1,3 for three different capacity types we have many 

expansion solutions divided into three different scenarios (expansion strategies):  

A. capacity changes of one capacity type are not correlated with changes of others;  

B. capacity changes of two capacity types depend on each other, but change of the third is 

independent; 
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C. capacity changes for all of three capacity types depend on each other. 

From three expansion scenarios (expansion strategy) many different expansion solutions 
can be derived, depending on Di value. A lot of them are not acceptable and are not part of 
optimal sequence. For this problem an acceptable expansion solution has to satisfy some basic 
properties: 

xi,m   Di,m ! 0     (4.1.1) 

yi,j,m   Di,m " 0        (4.1.2) 

yi,j,m  Dj,m ! 0           (4.1.3) 

Property (4.1.1) implies that the expansion (increase) of capacity type i cannot be 
acceptable if that facility has intention to be reduced on location (link) m (Di,m < 0). Similar 
stays for negative values. 

Expansion (increase) is also possible through conversion, so (4.1.2) and (4.1.3) imply the 
similar restriction as (4.1.1). Zero value of any capacity type means that any change of 
capacity is allowed.   

In scenario A. we have only one possible expansion solution. In scenario B. we can 
combine all three capacity types in couples. In scenario C. we can see that only one expansion 
solution exists. Totally, we have five different expansion solutions with many variations. 

In scenarios B. and C. we have expansion solutions with conversions of capacity from one 
type to another. It can be done as stand-alone expansion or together with expansion. That 
means that the conversion is just complementary with the expansion in satisfying of traffic 
demands. 
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Figure 4. An example of single location expansion solution 
that cannot be a part of the extreme solution. 

 

4.2. Adding properties (the improvement of CEP algorithm) 

The most of the computational effort is spent on computing the du,v sub-problem values. A lot 
of expansion solutions are not acceptable and they are not part of the optimal sequence. The 
key for this very effective approach is in fact that extreme flow theory enables separation of 
these extreme flows which can be included in optimal expansion solution from those which 
cannot be. Any of them, if it cannot be a part of the optimal sequence, is set to infinity. It can 
be shown that a feasible flow in the network given in fig. 4. corresponds to an extreme point 
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solution of CEP if and only if it is not the part of any cycle (loop) with positive flows, in 

which all flows satisfy given properties; see  18!. One may observe that the absence of cycles 

with positive flows implies that each node has at most one incoming flow from the source 

node (positive or negative). This result holds for all single source networks. That means that 

optimal solution of du,v has at most one expansion (or reduction) for each facility.  

Using a network flow theory approach, adding properties of extreme point solution are 

identified. These properties are used to develop an efficient search for the link costs du,v. 

Absence of such cycles with positive flows implies that extreme point solutions for CEP 

satisfy the following properties:  

Ii,m " xi,m # 0     (4.2.1) 

Ii,m " yi,j,m $ 0 (4.2.2) 

Ij,m " yi,j,m # 0  (4.2.3) 

Ij,m " xi,m" yi,j,m = 0     if xi,m " yi,j,m % 0      (4.2.4) 

Ii,m " Ij,m " yi,k,m " yj,k,m = 0 if   yi,k,m " yj,k,m % 0 (4.2.5) 

for:  i, j , k = 1, 2 , 3 i % k % j ;  m = 1, … , M+1 

Properties (4.2.1) to (4.2.5) imply that the capacity of any capacity type is changed 

through an expansion, reduction or by conversion only if it doesn’t make cycles with positive 

flows. 

(4.2.1) and (4.2.2) imply that the capacity of any capacity type can be increased by an 

expansion or by a conversion only if there is no idle capacity. Similar rule exists for reduction 

of idle capacity.  

(4.2.3) implies that capacity can be reduced only if there is no capacity shortage. 

(4.2.4) implies that incoming flow of facility, going to be converted (reduced) in partially 

or excessive expansion solution, has to be zero. If not, cycles with positive flows can be 

occurred; see fig. 4. On that diagram we have idle capacity from previous link (for first and 

second class). The third class is satisfied with capacity conversions of higher classes. On that 

diagram dotted lines mark a cycle with positive flows from the common source. It means that 

such solution is not allowed. One of the capacity values (I2,m or I3,m) must be zero. 

Property (4.2.5) is used for simultaneous multi-conversion solution from scenario C.  

Only one incoming flow of converted (reduced) facility can exist. It means that two incoming 

flows are not allowed in the same time. In the case of simultaneous conversions, incoming 

flows have to be zero. 

We can say that any acceptable SLEP1,3 expansion solution for any CES have to satisfy 

properties (4.1.1) - (4.1.3) and (4.2.1) - (4.2.5). So many expansion solutions are not a part of 

optimal sequence and could be eliminated from further computation; see  19!.  It means that 

any of sub-problem value if it cannot be a part of the optimal sequence is set to infinity.   

                                      

5. Testing Results and Comparison of Different Algorithm Options 

The proposed algorithm is tested on many numerical test-examples, looking for optimal 

routing sequence on the path.  Between edge routers there are maximum M core routers (LSR) 

and the path consists of maximum M+1links. Traffic demands (former contracted SLAs) are 

given in relative amount for each interior router on the path. Demands are overlapping in time 

and are defined for each capacity type (service class). Results obtained by improved algorithm 

(reduction of unacceptable expansion solutions) are compared with results obtained by 

referent algorithm that is calculating all possible expansion solutions for each CES.  

For each test-example we know the total number of capacity points. The number of 

possible CES is well-known, so it is the measure of the complexity for the CEP-problem. 
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Also, for each test-example we can see the number of acceptable sub-problems, satisfying 
basic and additional properties of optimal flow. For all numerical test-examples with 
improved algorithm (denoted with Basic_A) the best possible result (near-optimal expansion 
sequence) can be obtained, same as with referent algorithm (without reduction of 
unacceptable expansion solutions). For N=3 and M=6 algorithm complexity savings in 
percents are on average near 40 % that is proportionally reflected on computation time 
savings; see fig. 5. 

The number of all possible CES values depends on the total number of capacity points as 
resultant of traffic demands. So CEP requires the computation effort of O(NMNd) with linear 
influence of N. In real application we normally apply definite granularity of capacity values 
through discrete values (only integer) of traffic demands Ri. It reduces the number of the 
capacity points significantly. Because of that the lowest step of possible capacity change 
(step_Ii) has strong influence on the algorithm complexity.  

In real situation we can introduce some limitations on the capacity state values, talking 
about heuristic algorithm options: 

a) Only one negative capacity value in the capacity point. Such option is denoted with 
M_H (Minimal-shortage Heuristic option);  

b) Total sum of the link capacity values (for all quality levels) is positive A_H
(Acceptable Heuristic option); 

c) Total sum is positive but only one value can be negative. Such option is denoted with 
R_H (Real Heuristic option); 

d) Algorithm option that allows only non-negative capacity state values is denoted with 
P_H (Positive Heuristic option); 

e) Only null capacity values are allowed. A trivial heuristic option (denoted with T_H) 
allows only zero values in capacity point (only one capacity point).  

  

Figure 5. Trends of algorithm complexity and 
comparison of results (minimal cost). 

  

We compared the efficiency of algorithm in above mentioned options. In figure 5. we can 
see the average values of results for N=3 
and M=6. Only for few test-examples 
any algorithm option can find the best 
expansion sequence, providing the 
minimal cost no matter of algorithm 
option we use. For the most examples 
algorithm option M_H can obtain the 
best result with average saving of 60 %. 
For other algorithm options the 
significant reduction of complexity is 
obvious but deterioration of result 
appears. Only for some of them the final 
results are still in acceptable limits (see 
fig. 5). In the most cases the trivial 
algorithm option (T_H) shows the 
significant deterioration of results. A 
very good fact for all algorithm options 
is that efficiency rises with increase of 
value M; see fig. 6.  

6. Conclusion 

 
In this paper we propose a efficient algorithm for congestion control that can help in network 
and traffic dimensioning. Traffic engineering (TE) can improve QoS capabilities as an 
effective mean for bandwidth guarantee provisioning while optimizing network resource 
utilization. Inappropriate bandwidth reservation or wrong traffic assignment could result in, 
respectively, high cost or poor resource utilization.  
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We can check congestion probabilities on the path with algorithm of very low complexity 

first (e.g. P_H algorithm option). It means that only if congestion possibility appears we need 

optimization with more complex algorithm (e.g. A_H). With the most complex algorithm 

option (Basic_A) we can get the best possible result, so we can be sure if congestion on the 

path could appear or not. In the case of congestion appearance new SLA cannot be accepted 

or adding capacity arrangement 

should be done. It means that SLA re-

negotiation has to be done and 

customer has to change the service 

parameters: e.g. bandwidth (data 

speed), max. delay or period of 

service utilization.  

Figure 6. The complexity savings increase with value M.  

The proposed algorithm for 

congestion control (with different 

options) can be efficiently 

incorporated in explicit intra-domain 

and inter-domain routing for 

DiffServ/MPLS networks. Routing 

process can be in firm correlation with 

bandwidth management and 

admission control only if it starts 

much earlier, possibly during SLA 

negotiation process. 
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