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Abstract.  The phase problem is a major challenge when using X-ray crystallography for structure de-
termination. This is especially true when the objects studied are macromolecular crystals, which contain 
many atoms and diffract quite poorly. For this reason, conventional direct methods, which are very suc-
cessful for small and medium-sized molecule crystals, generally fail with protein crystals that do not dif-
fract to atomic resolution. In this paper, we review some of the iterative phase retrieval methods used in 
optics, and present our own results obtained while trying to extend these methods to the field of macro-
molecular crystallography. A binary constraint on density has been incorporated in a new iterative algo-
rithm, as well as into an existing Difference Map, in order to attempt crystallographic phase retrieval. 
Another existing algorithm, Charge Flipping, has been modified to test a connectivity-based phasing ap-
proach. While the results on binary densities could not be extended to realistic cases, the connectivity cri-
terion has shown to possess some phase extension power. 

Keywords: phase problem, iterative methods, flipping algorithm, binary approximation, density modifi-
cation 

 
INTRODUCTION 

Many iterative methods exist for non-periodic object 
reconstruction. From a general point of view, all these 
methods operate by creating some succession of points 
in phase (or density) space, i.e., in the space where pos-
sible solutions are defined. Each point represents a set 
of phases { },h or, equivalently, the corresponding 
density function ρ(x). Usually, a starting point is chosen 
at random and the succession is constructed in such a 
way that, almost for an appreciable percentage of start-
ing points, convergence to the solution occurs. This 
solution, satisfying all the constraints simultaneously, 
must lie at the intersection between two constraint sub-
sets: one defined by the experimental moduli and the 
other determined by a priori constraints (which are 
often easier to express in real space). The generator of 
the succession is a map 

 1: n nρ ρ   (a) (1) 

usually devised in such a way that the solution ρ̂  is a 
fixed point attractor for the iterations:  

 ˆ ˆ( )ρ ρ   (2) 

(in some cases, the attractor can be a limiting cycle 
ˆ ˆ( ) ).n ρ ρ   A fixed point is left unchanged by the ap-

plication of the map, so that once the iterations have 
converged to it, no further evolution occurs. Neverthe-
less, the existence of fixed points does not suffice per se 
to ensure convergence, and it is not possible to set an 
upper bound to the number of iterations needed to reach 
the solution. In this sense, a completely satisfactory 
phase retrieval algorithm has not been proposed yet.  

Given an N-point sampling, a generic density is 
represented by a vector in .N  If we call CR and CMOD 
the two subsets corresponding to the densities consistent 
respectively with real-space constraints and observed 
moduli, the solution must belong to their intersection 
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* .R MODC C C   In absence of supplementary data, the 
starting point is a randomly chosen element in CMOD, 
which is generated simply by Fourier transforming the 
known moduli with random phases. A repeated appli-
cation of the map Г generates a trajectory in phase 
space, which in favorable conditions is likely to end in 
the intersection. When the origin is not fixed from the 
beginning (for example, by specifying some region in 
which the object density has known values) the intersec-
tion is not represented by a point, but rather by a con-
tinuous or a discrete set of points according to the space 
group symmetry (a three-dimensional submanifold of 

),N  since all the possible choices for origin and enan-
tiomorph are equally valid. The trajectory can be 
thought to evolve in real space (object density) as well 
in phase space, since for a given set of moduli there is a 
one-to-one correspondence between points in the two 
spaces.  

Usually, the map used in iterative phasing can be 
constructed by composing elementary operations known 
as vectorial subset projections. The projection of an 
element x U  on a subset of ,U Y U  is written as 

: { }Y x y    and associates to x the set { }y  of its near-
est elements in Y: 

 ( ) { : inf }Y y Y
x y Y y x y x


        (3) 

The set { }y  always contains a single element 
when the subset Y is convex. A set Y is said to be con-
vex when, for every arbitrary pair of points 1 2, ,x x A  
all the points xμ in the segment  

 2 1{ (1 ) ,0 1}μx μ x μx μ      (4) 

also belong to Y. For subsets of the euclidean plane 2  
the meaning is intuitive (see Figure 1).  

It is easy to show that the subset CMOD is not con-
vex. In fact, given two densities ρ1,ρ2 corresponding to 
the observed moduli {F(h)} with the phase sets 

1 2{ },{ },   the densities on the segment 2(1 )μρ μ ρ  
1μρ  in general will not belong to CMOD, since they will 

not correspond to the moduli {F(h)} unless a very spe-
cial choice for 1 2{ },{ },   is made. As a consequence, 
the projection on CMOD is not uniquely defined, since a 
zero-valued F(h) is projected onto the set of points  

lying on the circle of radius Fobs(h) (Figure 2). In Fouri-
er space the projection of a generic element of {F(h)} 
on CMOD can be written: 

1

( )
( )  if F(h) 0

( ): ( )

( )  otherwise

: ( )

h

obs

MOD

iΨobs

MOD MOD

F
F

FF

F e

ρ T T ρ

   



  

h
h

hh

h



 

 (5) 

where the function Ψh is an arbitrary one. It is common 
to select among the many possibilities the projection 
with Ψh = 0, which will be called ΠMOD in the following.  

Another drawback due to non-convexity of the 
CMOD subset is the presence of traps in a sequence of 
iterated projections.1 Traps are fixed points which do 
not correspond to an intersection between the subsets. 
When the map is a simple alternation of projections, Г = 
Π1Π2, and the constraints are non-convex, traps can 
represent a serious problem. If the trajectory of the re-
presentative point gets to a trap, in each successive 
iteration the density will oscillate between 1 1ρ C  and 

2 2 ,ρ C  each being the projection of the other, i.e. 
Π1(ρ2) = ρ1 and Π2(ρ1) = ρ2 (Figure 3). This can be 

 
 

Figure 1. Convex and concave sets in the euclidean plane.
Every point lying on the segment drawn between any two
points of a convex set belongs to the set itself. 

 
 

Figure 2. The Fourier modulus projection represented on the 
Argand plane. The correct modulus subset is a circle of radius 
| |;obsFh  a generic Fh is projected on it by leaving the phase 
angle unchanged and substituting the modulus with the correct 
one. A null vector Fh = 0 would lie at the same distance from 
any point of the circle, and the arbitrary choice made in defin-
ing ΠMOD is to project it with zero phase. 

 
Figure 3. Two trajectories constructed by alternated projec-
tions on non-convex subsets. The succession of points starting 
from a converges to the intersection, while the one beginning 
in b ends in a trap. This means that the representative point is 
projected back and forth between two points lying at a local 
minimum of distance between the sets. 
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viewed as a consequence of the two subsets attaining a 
local minimum of distance; if their boundaries are con-
tinuous, the surface of the subset C1 in ρ1 and that of 
subset C2 in ρ2 will be parallel. In cases of nearly paral-
lel surfaces the evolution is not completely blocked but 
becomes very slow; in that case we say the algorithm 
has entered a tunnel. These undesirable phenomena are 
known as stagnation. 

 

AN OVERVIEW OF SOME EXISTING PHASING 
ALGORITHMS 

Traps and tunnels potentially occur in phasing when 
using the Gerchberg-Saxton (GS) algorithm,2 which 
constitutes the first non-crystallographic phase retrieval 
algorithm ever proposed. The real space constraint al-
lowing image reconstruction is represented by the 
knowledge of the object support S, defined as the region 
in which the density is expected to be non zero. The GS 
map is simply the repeated projection on support and 
moduli subsets: 

 GS S MOD     (6) 

The projection onto the correct support subset is 
obtained by simply setting to zero the density values 
outside the region S:  

 
 if 

:
0 if 

x
S x

ρ x S
ρ

x S


   

 (7) 

The success of the reconstruction obviously relies 
on some knowledge about the object size and shape. An 
upper bound for the support can be inferred from its 
autocorrelation function, directly computable from 
Fourier moduli. In general, for an N-point sampling, a 
necessary (but not sufficient) condition for solution 
uniqueness is that the sum of the dimensions of the two 
subspaces must not exceed the dimension of the search 
space, that is, dim dim ,S MODC C N   otherwise the 
intersection cannot be empty. For this to be true, since 
the subset defined by known moduli has a dimension of 
N, we must have dim / 2;SC N  in other words, the 
problem is well posed only when the object is smaller 
than half of the image. 

The progress of the iterations can be followed by 
monitoring the summed distance error J, which corres-
ponds to the sum of the distances between the current 
density and its projections on the two subsets:  

 ( ) ( ) ( )MOD SJ ρ ρ ρ ρ ρ       (8) 

Since this quantity can vanish only at the intersection of 
the subsets, a trap is characterized by the fact that J 
stabilizes on a non-zero value. A powerful alternative to 

the GS map was introduced by Fienup algorithms,3 the 
most effective being the so-called Hybrid Input-Output 
(HiO):  

 
( ) if 

:
( ) if 

MOD x
x

x MOD x

ρ x S
HiO ρ

ρ β ρ x S

 
    

 (9) 

Density within the support is modified by imposing the 
observed moduli, like in the GS algorithm; the dif-
ference lies in the outside region, where the density is 
no more set to zero but rather to its previous value di-
minished by the feedback term ( ),MOD xβ ρ  which 
increases with the difference between the projected 
density outside the support and its expected value of 
zero. When the intersection has been found, the result-
ing density ρ̂  is consistent with the observed moduli 
and is also zero outside the support, so that no further 
evolution is observed:  

 ˆ ˆ( ) 0 MOD xρ ρ x S      (10) 

Compared to GS, the HiO algorithm does not suf-
fer from traps, and the convergence is faster. In terms of 
projections, the HiO map can be written as  

 (1 ) (1 )MOD S MOD S MODβ         (11) 

Recently a general form of map has been proposed,4 the 
difference map (DM), which avoids stagnation and can 
be applied to any kind of non-convex constraints. The 
HiO algorithm turns out to be a particular case of DM in 
which the support constraint is used and a given choice 
of the parameters is made. The DM operator is defined 
by 

 1DM β     (12) 

 1 2 2 1f f     (13) 

The operator ГDM adds to the density a quantity Δ pro-
portional to the difference of two composed maps. Each 
of these two maps results from the successive appli-
cation of a map fi and a projection Πj on one of the two 
constraint subsets.  

A fixed point ρ̂  of the difference map is characte-
rized by Δ = 0, so that  

 1 2 2 1 1 2ˆ ˆ( ) ( )f ρ f ρ ρ      (14) 

where the element 1 2 ,ρ   lying at the intersection be-
tween the subsets C1 and C2, represents the solution to 
the phase problem. It should be pointed out that here the 
solution does not coincide with the fixed point ˆ.ρ  Since 
in a fixed point Δ must vanish, its norm  

 ( )i iε ρ   (15) 

can be used to follow the progress of the iterations. 
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While the global behavior of the algorithm does 
not depend on the nature of the fi, a careful choice of 
them is necessary to allow convergence. Setting for 
instance f1 = f2 = 1 (the identity map) does not give 
attractive fixed points. A possible choice is to construct 
fi in a way that its operation on ρ produces a point on the 
line joining ρ to Πi(ρ): 

 ( ) (1 ) ( )i i i if ρ γ ρ γ ρ     (16) 

The optimal parameter values are γ1 = –β–1, γ2 = β–1, as 
found by taking into account the local behavior in the 
proximity of a fixed point. It can be shown that the 
difference map can escape traps; these cannot behave 
like fixed points because they do not allow the quantity 
Δ to vanish.  

 

THE BINARY APPROXIMATION 

A possibility for restraining the number of solutions is 
to approximate the electron density in the unit cell to a 
binary function. This approximation is motivated by the 
physical reality of separated solvent and protein regions. 
The densities of the two zones differ in average value 
and in variance, both quantities being greater in the 
protein region. The solvent density can be assumed to 
be flat to a good approximation, while in the protein 
region the density can deviate much from its average 
value.5 Numerical tests show that approximating an 
image with a binary one leads, in Fourier space, to es-
sentially correct phases, while the moduli are more 
seriously affected. In terms of constraint subsets, the 
binary densities subset is not expected to intersect the 
moduli subset, so that an approximate solution would lie 
between the closest points of the two sets. Moreover, 
the (euclidean) distance between these two elements of 
the two sets should be appreciable. However, the two-
value approximation can be justified to some extent if 
the resolution is low (> 4 Å). A search for a binary mask 
has been successful in reconstructing the density at a 
resolution of about 12 Å.6 In that case, a Binary Integer 
Programming (BIP) approach was used, where the main 
drawback is that the computing time grows exponen-
tially with the complexity of the problem (i.e. with the 
number of grid points chosen to sample the electron 
density). In this perspective a more efficient search 
method, as an iterative one, could perhaps help in ex-
tending the resolution limit (at least in the range where 
the binary approximation is justified). A two-valued 
function can be scaled to a binary one (having only 0 
and 1 as possible values), by shifting and scaling its 
values. To operate this scaling in Fourier space one 
needs to know the expected fraction of ones in the unit 
cell, that is, the volume defined by the molecular 
envelope that is to be searched for.  

TWO BINARY ALGORITHMS 

The subset of binary densities 01 { ( ) {0,1} }C ρ  x x  is 
formed by disjoint points (the corners of an hypercube) 
and so it is not convex. The projection of ρ on C01 is the 
element 01 01ρ C  which minimizes the distance  

 2
01 01[ ( ) ( )]k k

k

ρ ρ ρ ρ   x x  (17) 

and this means that the quantities 01| ( ) ( ) |k kρ ρ xx  
must be minimum for every pixel k. This leads to the 
simple expression for the binary projector: 

 01

0 : ( ) 1/ 2

: ( ) {0,1} : ( ) 1/ 2

1 : ( ) 1/ 2

ρ

ρ ρ

ρ


  
 

x

x x

x

 (18) 

This projector is not single-valued and some arbi-
trary choice has to be made about the treatment of den-
sities with value ½ , since they can be indifferently set 
to 0 or 1.  

Here both subsets are non-convex, so that alternate 
projections will fail. In fact, iteration of a map Π01ΠMOD 
rapidly gets to a trap, because many different ρ(x) pos-
sess the same projection. Once ΠMOD(ρn+1) becomes too 
close to ΠMOD(ρn) the evolution stops, since Π01 projects 
both of them on the same point of C01. 

To find a solution to the binary phase problem it is 
thus necessary to avoid that any iteration ρn exactly 
belongs to the subset C01. For this reason in the present 
work a heuristic algorithm inspired to the HiO map, and 
in particular to the feedback concept, was conceived. It 
is based on a map ГB, consisting in the alternate appli-
cation of the two operations ( )γ

MOD  and ( , )
01 ,β δ  each one 

flipping the density or the moduli about their 'expected 
values': 

 ( ) ( , )
01 , , , 0γ β δ

B MOD β γ δ      (19) 

 01

:

: : 1

1 (1 ) : 1

βρ ρ δ

ρ ρ δ ρ δ

β δ ρ δ

 
    
    

 (20) 

 
1

0 0:| | [| | ( | | | | )]h h

MOD MOD
iφ iφ

MOD h h h

T T

F e F γ F F e

  
   h


  (21) 

(The symbols T and T–1 stand for direct and inverse 
Fourier transform, respectively). The ( , )

01
β δ  operator 

leaves unchanged the density values falling into the 
interval [δ,1 – δ], while the remaining are flipped about 
the nearest expected value (0 or 1) (Figure 4); the extent 
by which each pixel value is flipped is proportional to 
the parameter β. A similar operation is carried out in 
reciprocal space on the values of the moduli by the 
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operator ( ) ;γ
MOD  in that case, the expected value of each 

Fourier modulus |Fh| is simply the known quantity 
0| |,Fh  and every modulus is flipped by a quantity pro-

portional to γ. It must be noted that both flipping opera-
tions, in real and reciprocal space, are needed for the 
iterations to converge. Moreover, the previous know-
ledge of the zero-frequency term F0 (which usually is 
experimentally unmeasurable) is also necessary, and a 
separated flipping parameter γ0 was introduced for it. It 
must be observed that, in terms of elementary projec-
tions, the map ГB results to be a rather complex one. The 
real space operation can be written as  

 

01
01

(1 ) :

1 :

{ | ( ) ( ) 1 }

δ

δ

δ

β β ρ Z

ρ Z

Z ρ δ ρ δ

   
   

    x x x

 (22) 

where the domain Zδ is defined as the set of points with 
a density falling outside the range [ ,1 ].δ δ  The flip-
ping in Fourier space, in turn, can be expressed as: 

 
1

(1 )

(1 )
MOD MOD

MOD MOD MOD

γ γ

T T γ γ

    
      


  (23) 

The action of the operators 01  and MOD  is to move 
the density on a point which lies on the segment joining 
the starting density with the projected one (in the case of 

01  this is only an approximate picture).(a) 

The progress of the iterations can be followed by 
means of a type of a summed distance error (SDE): 

                                                 
(a)These expressions show an interesting similarity with the dif-

ference map algorithm discussed below. 

 

11

01
1

| [ ( )] ( ) |

SDE

| [ ( )] ( ) |

pixels

N

MOD k k
k

N

k k
k

ρ ρ

N

ρ ρ

k





    
 
 

  
 







x x

x x  (24) 

The algorithm was implemented in Fortran 90 for the 
two-dimensional case, using the static libraries GFT7 for 
FFT computation. Its behaviour has been studied for 
different values of β, γ, γ0, δ, in order to identify the set 
of parameters giving the quickest convergence. Some 
test results are reported with a 2D trial density (20×20 
pixels). In Figure 5a the SDE plots are shown for 20 
independent runs of the algorithm (each relates to a 

Figure 4. The flipping operation in real space. The values for
a one-dimensional density are reported as a function of a
spatial coordinate. Values greatest than 1 or smaller than 0 are
inverted with respect to their nearest binary value. 

(a) 
 

(b) 

Figure 5. (a) SDE versus iteration number for a non-optimal 
parameter setting (β = 0.5, δ = 0.2, γ0 = 1.2, γ = 1.3). 20 plots, 
corresponding to different runs, are displayed. Three behaviors 
a,b,c can be observed, as discussed in the main text; (b) SDE
for optimized parameters (β = 0.5, δ = 0.2, γ0 = 1.2, γ = 1.6). 
The plots for 100 different runs are displayed. Of the three 
behaviors shown in Figure 8, a (quick convergence to the true 
solution) has become the preferred one. 
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different starting set of random phases). In each run, 
1000 iterations were performed. Three cases can be 
identified: 

(a) convergence to the true solution. It occurs sud-
denly, once the algorithm enters the basin of attraction 
of the solution after a chaotic trajectory. Very low val-
ues of SDE are attained (≈ 0.01). The density evolution 
during a converging run is shown in Figure 6.  

(b) stagnation. At some moment the figure of  
merit begin to decrease, but slowly sets to a non-zero 
value (≈ 0.1) because some kind of trap has been en-
tered. 

(c) the trajectory extends over the performed 1000 
iterations without entering any basin of attraction.  

The dependence of the behaviour on the different 
parameters can be rationalized as: 

• δ affects mostly the speed of convergence, 
which increases with δ until it rapidly goes to zero 
above δ ≈ 4, probably because the basins of attraction of 
the fixed points become very small. 

• β and γ, since they determine the flipping  
magnitude, influence the ability of the algorithm to 
'jump over' local minima (traps). Setting these para-
meters to small values leads to stagnation, while, at the 
other extreme, too high values prevent convergence. 
Since these two quantities play a similar role, they can-
not be optimized independently; in fact, for each β value 
there exists a given range of γ in which convergence is 
possible (Figure 7).  

The situation after choosing the optimal para-
meters can be seen in Figure 5b. Traps are avoided, and 
at the same time the basin of attraction of the true solu-
tion has been enlarged, so that the two unwanted situ-
ations (b) and (c) of Figure 5a are both much less proba-
ble. The number of iterations before convergence (IC) 
probably depends on the ratio between the volume of 
attraction basins and the total volume of the search 
space; the IC distribution (shown in Figure 8) is an expo-
nential one, as expected for a memory-less process.  

The algorithm does not need any knowledge about 
the support, but only about the fraction κ1 of non-zero 
pixels in the solution (which relates to the zero frequen-
cy term through κ1 = F0/N, where N is the number of 
pixels); the object can appear anywhere in the cell and 
obviously the two possible enantiomorph choices are 
equally probable. Since the origin cannot be fixed a 
priori, such a kind of algorithm will always work with a 
P1 cell, independently from crystallographic symmetry, 
which cannot be taken into account. Symmetry can only 
emerge by itself and for this reason it could be used to 
test the correctness of the solution. For other phase 
retrieval algorithms without support it has been shown 

 

Figure 6. Snapshots of the density during its evolution, taken
every 15 iterations. The abrupt change (Figure 6, case (a)) in
the figure of merit (SDE) occurs near cycle 320, when the
density suddenly begins to converge to the correct (binary)
one. According to the color scale used here, negative values
are represented in blue, and positive ones in red. Zero valued
pixels are green. 

 

Figure 7. Optimization plot for the parameter γ0 for fixed 
values of the other three parameters. A similar trend is ob-
served for the general parameter γ. 
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that any attempt to fix the origin results in a reduced 
convergence speed, probably because the solution space 
collapses to a single point.  

An alternative algorithm can be derived as a spe-
cial case of the difference map D = 1 + βΔ with  

 

1 1
01

1 1
01

(1 )

(1 )

MOD

MOD

β β

β β

 

 

        
     

 (25) 

where the binary projector Π01 has been defined accord-
ing to one of the two possible choices in Eq. (18). An 
advantage over the binary flipping algorithm is that the 
zero-frequency term F0 can be unknown, as it will be 
found automatically by the algorithm itself; moreover, 
there is one single parameter to be optimized. 

Various experiments have been conducted with 
different trial densities to determine the influence of β 
on the speed of convergence and to compare the be-
havior of the two algorithms. Two different optimal 
ranges of β have been found, one centered about –1 and 
the other about 0.8 (Figure 9). This is in agreement with 
the literature,4 where the optimum values for the β para-
meter are found to be close to ±1. The comparison be-
tween binary flipping and difference map shows that 
their effectiveness varies greatly with the nature of the 
object to be reconstructed, but the dependence differs 
from one algorithm to the other. The two methods are, 
to some degree, complementary; putting aside very 
simple cases, often one of the two appears to perform 
well in those situations where the other exhibits a very 
slow convergence.  

BINARY APPROXIMATIONS AND REAL CASES 

Once established that a method existed to solve the 
binary problem, a more realistic case was considered, 
consisting in pseudo-molecular data in two dimensions. 
The moduli were obtained by Fourier transforming the 
density of benzene molecules projected onto the mole-
cular plane. The cell was a square of 10 Å edge in 
which one, two or four benzene molecules had been 
placed. Data were used up to a resolution of 2 Å. 

A binary approximation to the real density can be 
constructed by scaling the density and then setting a 
threshold z. The points with values higher than z are 
given the new value of 1 and the others of 0.  

 01 01 01

1 : ( )
( ) ( ( )) ( )

0 : ( )

ρ z
ρ F ρ F

ρ z
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x x h
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The structure factors corresponding to the binary 
density, F01(h), can be assumed proportional to the true 
ones, as in Ref. 6: 

 01( ) ( )F kFh h  (27) 

where the constant k can be calculated from the know-
ledge of the fraction κ1 of non-zero pixels in ρ01: 

 
012

1 1
12

0

( )

,
| ( ) |

i
i

ρ
κ κ

k κ
F N



 
      

  


h

x

h
 (28) 

The data from molecular structures were scaled in 
this way and then given as input to the binary flipping 
algorithm. No convergence was observed, for none of 

 

Figure 8. A histogram showing the distribution of number of
iterations needed for convergence (a sort of trajectory length)
for the binary flipping algorithm. The distribution has an
approximately exponential decay, suggesting a memory-less
process. 

 

Figure 9. Optimization plot for the binary difference map. The 
average number of iterations needed for convergence is shown 
as function of the single parameter β. Two optimal ranges are 
found, the first (centered on β = –1, the global minimum) 
being larger and deeper. 
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the β, γ, δ parameter sets that had worked better for the 
ideal binary cases. This can be explained assuming that 
there is no intersection between the two constraint sub-
sets, that is, no binary density exists that could repro-
duce the non-binary moduli. In fact, binarization of a 
density not only will affect the moduli in the chosen 
resolution sphere (in 2D, a circle), but it will create non-
zero frequency components outside the sphere (where 
the original moduli had been set to be zero). To allow 
the two subsets to intersect in some point, out-of-sphere 
moduli should be allowed to deviate to some extent 
from their expected value of zero; it is not clear, how-
ever, if any physically meaningful solution could be 
found in this way. 

 

A SIMPLIFIED SAYRE EQUATION FOR  
BINARY IMAGES 

Another possibility for phasing diffraction data from a 
binary object can be derived outside the iterative me-
thods context, taking inspiration from the Sayre equa-
tion.8 While this relationship has been derived to exploit 
the atomicity property, it can be shown that it holds, in a 
simplified form, for binary densities too. In fact, the 
Sayre equation presupposes that density and squared 
density are related by convolution with a spread func-
tion g: 

 2ρ g ρ   (29) 

This is true for a density made of identical, well re-
solved, spherical peaks (equal atom structure); neverthe-
less, it is also consistent with a binary function, in which 
case g reduces to a constant. Assuming the density can 
take only the values 0 or a, we have 

 2a ρ ρ  (30) 

which in reciprocal space is equivalent to: 

 1( )hF aV 
  k h k

k

F F  (31) 

where V is the unit cell volume (in the 3D case). This 
convolution relationship would allow the solution 
search to be carried out entirely in reciprocal space, 
borrowing a variety of existing algorithms from the field 
of direct methods. Moreover, a binary approximation to 
a non-binary object can be found by minimizing the 
deviation between the two sides of the equation, while 
iterative algorithms fail in this task. In fact, from the 
lack of intersection between the constraint subsets fol-
lows that only a global minimum of the distance be-
tween the subsets can be searched. But this minimum is 
not qualitatively different from those non-meaningful 
local minima (traps) that a good algorithm is expected 
to avoid. 

MODIFICATIONS OF THE CHARGE FLIPPING 
ALGORITHM  

A possible criticism to the application of the binary 
flipping approach to non-binary density is that, while 
the lowest density region (corresponding to solvent in 
protein structures and to vacuum in small molecule 
structures) can be effectively assumed to be sharply 
distributed around zero, the object (molecular) density 
has a broader distribution. The behavior of the algo-
rithm becomes more interesting after suppression of the 
flipping about the upper value of 1, letting β tend to 1 
and γ to 0, and giving F0 the freedom to vary during the 
iterations: the density of a single benzene ring in the cell 
could be slowly reconstructed. With these modifi-
cations, the algorithm reduces to the known method of 
charge flipping,9 which alternates moduli projection to a 
change in sign of low-valued density: 

 0
δ

CF MOD     (32) 

 0
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ρ δ
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 (33) 

In term of projections, the flip operator can be 
written  

 0 ( )2 1δ
S δ     (34) 

where ΠS(δ) stands for support projection. The important 
thing is that the support S(δ) is a dynamic one, being 
updated at each iteration by selecting the points with ρ ≥ 
δ. The CF algorithm has been proposed in crystallogra-
phy for reconstructing atomic (< 1.2 Å) resolution struc-
tures, but it has been shown to be also applicable to the 
phase retrieval of non-periodic objects that lack atomici-
ty. In both cases, however, the uniqueness of solution is 
guaranteed by the presence of extended regions of den-
sity with near-zero values and by (not strict) positivity. 
For non-atomic objects the algorithm tends more to 
stagnation, so that it has been used in conjunction with 
the HiO map: CF provides support evolution, while HiO 
drives to convergence because it is insensitive to traps. 

The 2D benzene ring at 2 Å resolution does not 
display atomicity, but the presence of a vast majority of 
pixels with small absolute values of density still causes 
the solution to be unique. Because of the lack of atomici-
ty sudden convergence is never observed; what happens 
is instead a slow, gradual approach to the solution. This 
good behaviour is compromised in going from one mo-
lecule to two and four molecules per cell, because the 
ratio of null pixels to the total number of pixels decrea-
ses. With two molecules, although the null pixels still 
occupy more than half of the cell, the algorithm fails in 
reconstructing the rings, whose density is rather flat, and 
shows a preference for 'peaky' solutions with higher 
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density variance (Figure 10). The only way to find a 
solution with the required characteristics is to introduce 
new restraints; for example, an upper limit to density 
values can be used to force density flatness. 

A choice that has been proven to be effective is to 
set a proportionality constant α between average density 
(calculated with the values above the flipping threshold 
δ) and the maximum allowed density s; at each CF 
cycle, the density values are modified by inversion 
about the expected maximum (plateau) value. 

 ( ),  
ρ δ

ρ s η ρ s s α ρ


     (35) 

The value of s is calculated at each cycle. With 
this additional restraint, correct solutions could be found 
for the cases of 2 and 4 molecules per cell (Figure 11). 
The best values for the parameters were α ≈ 1.3, η ≈ 2; 
the first one depends on the expected maximum value 
for the density, and can be varied only in a very narrow 
range if wrong solutions are to be avoided. A 3D case 
was then considered, to test if the modified CF algo-
rithm with upper bound restraint could phase bigger 
structures. Synthetic trial data were calculated with the 
software SHELX10 from the PDB coordinates of one 
molecule of Fatty Acid Binding Protein (FABP, PDB 

code 2HMB11). This protein comprises 131 aminoacids, 
organized in a β structure which defines an internal 
cavity. The reflections were computed from a single 
molecule positioned in a P1 cell (for simplicity, a = b = 
c, α = β = γ = 90° were chosen). Since zero density 
zones (which can be identified here with the solvent 
regions) define the degree of determinacy of the prob-
lem, different tests have been carried out varying the 
length of the cell edge, i.e., the unit cell volume. The 
effect of data resolution was also investigated, across 
the range 20–2.5 Å.  

It has been found that setting an upper bound for 
the density has no or little effect on converging to the 
correct solution, which could be retrieved in a small 
percentage of runs only when the solvent content is very 
high (at least 85 % of the unit cell volume, far too high 
to be found in any real crystal). This probably means 
that, below a given fraction of null pixels, the correct 
solution ceases to be a strong attractor for the CF algo-
rithm, and this happens well before the problem be-
comes underdetermined. In fact it was noted that, even 
starting from the correct phases, there is a tendency to 
escape from the correct solution; the rate of this process 
increases with the flipping threshold δ. Another modifi-
cation of the CF algorithm was tested in the perspective 
of phase extension applied to protein diffraction data. It 
consists in imposing on the electron density a topologi-
cal restraint motivated by very general features of pro-
tein structures. A key process consists in dividing the 
image in the connected components, i.e., separated 
features appearing in density when the isosurface for a 
given cutoff value is constructed. For a given threshold 
κ a mask Ω is defined as 

 { : ( ) }k ρ κ  x x  (36) 

the set of points Ωk can be decomposed in a number M 
of connected components ( ) ,i

kω  each with a given vol-
ume ( ).i

kν  A subset of points ω  is said to be a con-
nected component when every pair of points 

1 2{ , } ωx x  can be joined by a curve entirely contained 
in ω. 

While connected component analysis identifies 
volume segments, without saying nothing about their 
shape, we can define a useful quantity for estimating the 
linear length of density pieces. This topological pro-
perty, named connectivity, is computed by tracing the 
skeleton, that is, the set of lines joining all neighboring 
points above a given threshold.12 With density defined 
on a grid, the procedure is to select grid points having 
density greater than 1.4 standard deviations above the 
mean, connecting by edges the points which are nearest 
neighbors. Two grid points belong to the same graph if 
they are connected by a continuous set of edges.  

 
 

Figure 10. Test of the CF algorithm (δ = 0.2) on the 2D pro-
jection of two benzene molecules (2 Å resolution). Upper
plots: density and its histogram for the true map. Lower plots:
same for the reconstructed map. 

 

Figure 11. Densities reconstructed in four different runs of the
upper-bounded CF algorithm. Four molecules per cell are
present. Four unit cells are shown for clarity. Note the dif-
ferent origin positions, which depend on the (random) starting
point. 
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By means of the skeleton we define the connec-
tivity as: 

number of points in the longest graph
Connectivity = 

total number of points in graphs

(b)
 (37) 

This quantity is obviously a function of the thresh-
old and the phase set. If the threshold is appropriately 
chosen, the global maximum for connectivity should 
coincide with the true phases, for which the electron 
density shows a single continuous polypeptide chain. 
Connectivity values relative to random phase sets are 
smaller than 0.1 while for correct phases a value above 
0.9 is expected. It has been shown that the addition of 
an increasing phase error to the correct phase set always 
decreases the connectivity in a gradual way. 

The connectivity restraint could be exploited into 
an iterative algorithm by selectively eliminating the 
densities that belong to the shortest graphs. Although it 
is impossible to know if those small segments would 
result to be correctly placed in the final density, one 
surely knows that correct density should not show 
small, isolated blobs. The idea is to force the density to 
evolve by growth of the longest fragments rather than 
by fusion of many small segments. An encouraging 
observation is that connectivity only depends on strong 
reflections and it is preserved even if a consistent frac-
tion of moduli are given completely random phases (up 
to 80 % of the weakest ones – test carried out at 4 Å 
resolution).  

An implementation was tried in this work using a 
weaker topological constraint, based on the segment 
volume rather than on graph length. The volume con-
straint is expected to be weaker than connectivity (as 
defined by Baker et al.) because it involves no restric-
tion on the shape of the density; there is no reason to 
think that a general relationship between the volume of 
a connected component and its skeleton length should 
exist. However, for a densities in a neighborhood of the 
solution (so that the phase error is acceptable and con-
nectivity is not too low) some kind of local relationship 
should arise, since the longest elements will also be the 
largest ones. For that reason, one expects that the re-
quirement for the density to display a minimum number 
of volume elements ( )i

kω  could be used to improve or 
extend a set of known phases. Thus, a modified CF 
algorithm was devised, introducing supplementary real 
space operations: 

• a binary mask is created to distinguish between 
points above and below a fixed threshold. 

• a segmentation algorithm is used to identify the 

                                                 
(b)An alternative definition for connectivity is the total number 

of graphs. 

connected components into the density;  

• a sorted list of segments is created on the basis 
of their volume (number of voxels);  

• segments with volume below a certain mini-
mum value νmin are set to zero in the density map. 

The segmentation method used here was essential-
ly the 'burning grass' algorithm described by Lunina et 
al.,13 which consists in the following steps (Figure 12): 

• Initialization: the points above the threshold 
are given a value 1, the others 0. No found components 
are present. 

• Search for a new component: the nodes of the 
grid are scanned until a node with value '1' is found. The 
number of found components is increased by one. A 
'current front' is defined as a set consisting of this node 
only. The new found component is marked with a con-
secutive number m. If no more '1' nodes are present the 
algorithm stops. 

• Isolation of a connected component: the 'future 
front' is defined as the set of the nodes with value 1 that 
are neighbouring to one of the nodes of the 'current 
front'. 

• Propagation of the front: the nodes of the cur-
rent front are marked as belonging to the m-th compo-
nent. The 'future front' becomes the 'current front' and 

 

Figure 12. Flow chart for the 'burning grass' segmentation
algorithm. Each m-th time a new initial point is found, the
propagation loop is entered. The loop defines a 'future front' as
the list of those points which are nearest-neighbors to points of
the 'current front'; these latter are then marked as belonging to
the m-th segment and the procedure is repeated until no more
nearest neighbors are found and all the m-th connected com-
ponents have been isolated. 
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the algorithm goes back to the preceding point. This 
loop is repeated until the 'future front' is empty, then the 
search for a new component is performed. 

This last variant of the CF algorithm has shown some 
phase extension power in a series of error-free tests 
conducted with a starting set of exact phases (Figure 
13), that were extended to cover a larger sphere of ref-

lections. Phases not belonging to the starting set were 
initially given random values, while known phases were 
kept constant in each run. It must be noted, however, 
that the algorithm is not able to improve a set of error-
affected phases if these are given the freedom to vary 
from one cycle to the other. In fact, a divergent behavior 
was always observed in that case, probably because of 
underdeterminacy. For this reason, a phase combination 
step should be introduced; the best way to carry out the 
phase extension would probably follow the density 
modification scheme. 

Acknowledgement. We are grateful to Anke Seydel for care-
fully reading the manuscript. 
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SAŽETAK  

Iterativne metode za rješavanje faznog problema u proteinskoj 
kristalografiji 

Anton Thumigera i Giuseppe Zanottia,b 

aDepartment of Biological Chemistry, University of Padua, Viale G. Colombo 3, 35131 Padua, Italy 
bVenetian Institute of Molecular Medicine (VIMM), Via Orus 2, 35129 Padua, Italy  

Problem faze predstavlja najveći izazov prilikom određivanja strukture rentgenskom difrakcijom. To naročito do-
lazi do izražaja kad su objekti proučavanja makromolekulski kristali koji slabo difraktiraju i sadrže mnogo atoma. 
Zbog toga uobičajene direktne metode, koje su pogodne za kristale malih i srednje velikih molekula, uglavnom ne 
mogu rješiti strukturu proteina čiji kristali ne difraktiraju do atomske rezolucije. U ovom je radu dan pregled nekih 
iterativnih metoda određivanja faza koje se koriste u optici. Prikazani su naši vlastiti rezultati pokušaja korištenja 
tih metoda i u makromolekulskoj kristalografiji. Binarno ograničenje elektronske gustoće ugrađeno je u novi itera-

 
 

Figure 13. Starting and final correlation coefficient for some
runs of the connectivity-restrained CF performed on ideal data
from the protein FABP with an exact starting set. The corre-
lation coefficient was calculated according to the relationship:
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The map correlation coefficient has been reported as a func-
tion of starting and final resolution. Several hundreds of cycles
were carried out, but in many cases the density ceased to
evolve after only 50–100 iterations. 
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tivni algoritam kao i u diferentnu mapu elektronske gustoće s namjerom određivanja kristalografskih faza. Drugi 
postojeći algoritam, “charge flipping”, modificiran je da bi se ispitalo određivanje faza temeljeno na međusobnoj 
povezanosti atoma. Metoda binarnih gustoća nije polučila rezultate u realnim slučajevima no pokazalo se da krite-
rij konektivnosti ima određenog potencijala kao metoda za proširenje faze. 
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