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Neural network-based soft sensors are developed for kerosene properties estima-
tion, a refinery crude distillation unit side product. Based on temperature and flow mea-
surements, two soft sensors serve as the estimators for the kerosene distillation end point
(95 %) and freezing point.

Soft sensor models are developed using linear regression techniques and neural net-
works. After performing multiple linear regression analysis it is determined that it is not
possible to realize linear models. Within MLP neural networks the number of neurons in
the hidden layer are varied and different learning algorithms are used (back propagation
with variations of learning rate and momentum, conjugate gradient descent, Leven-
berg-Marquardt) as well as pruning and Weigend regularization techniques. Bootstrap
resampling with replacement and cross-validation resampling are used for improving
generalization capabilities. Statistics and sensitivity analysis is provided for both models.
Two developed soft sensors will be used in crude-oil unit as on-line estimators of kero-
sene properties, which so far were available only as infrequent and irregular laboratory
analyzers.
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Introduction

Control systems and optimization procedures
require regular and reliable measurements at the ap-
propriate frequency. At the same time, legislation
dictates strict product quality specifications and re-
finery emissions. As a result, greater number of
process variables need to be measured and new ex-
pensive process analyzers need to be installed to
achieve efficient process control. The quality mea-
sure may only be available as a laboratory analysis
or very infrequent on-line measurement. This can
lead to excessive off-specification products.1

Difficulties in measuring quality (primary)
variables inevitably mean poor control or no control
at all. Measurement difficulties may be caused by a
variety of reasons, including:

– Lack of appropriate on-line instrumentation;

– Process operations depend on laboratory ana-
lyzers, which can be infrequent and irregular, in ad-
dition to long delays;

– Reliability of on-line instruments.

On-line sensors may be available but they may
suffer from long measurement delays (e.g. gas

chromatographs) or be subject to factors that affect
the reliability of the sensor (e.g. drifts and foul-
ing).2,3

In either case, on-line control or optimization
schemes cannot be implemented. Measurement
problems can limit the applicability of feedback
control schemes, so common approach for resolv-
ing this problem is manual process control. Success
of that strategy depends solely on the operator’s
training and experience.

In developing soft sensors, any modeling para-
digm may be employed, including the development
of first principles models. In many cases, only data
based modeling methods are involved.3,4 Using arti-
ficial neural network and genetic programming par-
adigms it is possible to capture non-linear process
characteristics. If sufficiently accurate, the inferred
primary output states may then be used as a feed-
back for automatic control and optimization.5

The application of soft sensors for estimating
hard-to-measure process values is extremely inter-
esting in the process industry, where there are usu-
ally a large number of values measured continu-
ously and quickly, and they may serve as input sig-
nals for the soft sensor. In addition, processes in the
chemical industry usually have relatively slow dy-
namic behavior with a major temporal delay, and,
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since the soft sensor is being realized in a computer,
it may estimate values in advance, long before the
real process output. In this way, it becomes possible
to apply predictive control.6

They can work in parallel with real sensors, al-
lowing fault detection schemes devoted to the sen-
sor’s status analysis to be implemented.7,8 Also,
they can take the place of sensors which have been
taken off for maintenance, to keep control loops
working properly and to guarantee product specifi-
cation without undertaking conservative production
policies, which are usually too expensive.9

Crude oil distillation process description

The crude distillation unit is one through which
the entire crude entering a refinery must be pro-
cessed. Because of the highly competitive market
and stringent environmental laws, strict quality con-
trol of refinery products is essential. This requires
that many properties should be measured online so
that the unit can be effectively controlled through a
feedback mechanism.10,11

Crude distillation unit consists of crude distilla-
tion column at atmospheric pressure, stripping unit,
preheating section that uses a top and bottom
pump-around and overhead condensing system.
Products of the crude distillation unit are: unsta-
bilized naphtha, heavy naphtha, kerosene, light gas
oil (LGO), heavy gas oil (HGO), and atmospheric
residue, as shown in Fig. 1. Kerosene is the second
crude distillation column side-product. It is used for
lighting and heating, and as fuel for jet and
turbo-prop aircraft engines. Variables that directly
or indirectly influence or indicate kerosene proper-

ties are monitored continuously. Based on process
expert knowledge, the following variables have
been chosen as the input variables that could serve
as estimators of distillation end point and kerosene
freezing point:

– unstabilized naphtha temperature (TC7)

– kerosene temperature (TI153)

– kerosene flowrate (FI7152)

– LGO temperature (TI154)

– LGO flowrate (FC3)

– crude oil inlet flowrate (FC5_12).

Kerosene properties were determined by carry-
ing out laboratory assays based on the following
standards:

– freezing point � ASTM D 2386 � 05

– distillation end point � EN ISO 3405

Soft sensor model development

Kerosene distillation end point and freezing
point are the two properties which mainly depend
on kerosene outlet temperature. The kerosene outlet
temperature is not directly controlled, but it is influ-
enced by the kerosene outlet flowrate. The kerosene
properties partially depend on outlet temperatures
and flowrates of its neighboring fractions. There-
fore, the idea was to take the outlet temperatures
and flowrates of light gas oil and heavy naphtha.
Since heavy naphtha in this unit is not dragged
from the column, unstabilized naphtha temperature
from the top of column has been taken as an input.
The last input variable for soft sensor models, crude
oil inlet flowrate, has been taken because the
flowrates of all outlet fractions depend on it along
with the temperatures of those fractions and conse-
quently their properties. Also, it should be kept in
mind that periodically different mixes of crude oil
are used in crude unit production which influences
the work regime of the refinery.

Soft sensor models were developed using lin-
ear regression techniques and neural networks in
Statsoft Statistica 7.1. Firstly, outliers were re-
moved from raw data. Outliers were defined as val-
ues that are more than 1.5 times the interquartile
range away from the 25th or 75th percentile. Data
from plant database were scaled into a range appro-
priate for the network development. The minimax
scaling (–1 to 1) method was used for input and
output variables.

During preliminary testing, 20 data were
resampled. To compare different structure of neural
networks (radial basis function � RBF and
multilayer perceptron � MLP) by implementation
of random selection (Monte Carlo resampling)
equalized division of data on training, selecting and

278 N. BOLF et al., Soft Sensors for Kerosene Properties Estimation and Control in …, Chem. Biochem. Eng. Q. 23 (3) 277–286 (2009)

F i g . 1 – Crude distillation unit



testing subsets was obtained.12,13 Within each
resampling, 100 neural networks were tested from
which 10 with best performance were kept. It was
shown that the MLP network had the best proper-
ties. Therefore, they were used for additional test-
ing to improve generalization capabilities.

During MLP neural networks testing, the num-
ber of neurons in the hidden layer was varied from
1 to 20 and different learning algorithms were used
(back propagation with variations of learning rate
and momentum, conjugate gradient descent, Leven-
berg-Marquardt) as well as pruning and Weigend
regularization techniques. Bootstrap resampling
with replacement and cross-validation resampling
(4-fold, 5-fold and 10-fold)14 were used with the
aim to improve generalization. It was shown that
the best results were achieved with cross-validation
resampling. Also, the best results were achieved us-
ing a combination of back-propagation algorithm in
the first, and conjugate gradient descent algorithm
in the second stage of neural network training.

The full data set was divided randomly into
five. One of the data parts was selected for testing,
and the others were used for training and selecting
in ratio 2:1. The rest went into ignore subset. Since
cross-validation technique was used, the process
was repeated five times. The same procedure was
carried out with 10-fold technique. The train set is
the set of points that are used to fit the parameters
of the model. The select set is used as part of the
model building process to prevent overfitting. The
test set is used as an additional independent set for
validation purpose.

Sensitivity analysis was carried out by treating
each input variable in turn as if it were “unavail-
able”.14 Every model has defined a missing value
substitution procedure, which is used to allow pre-
dictions to be made in the absence of values for one
or more inputs. The basic measure of sensitivity is
the ratio of the error with missing value substitution
to the original error. The more sensitive the network
is to a particular input, the greater the deterioration
we can expect, and therefore the greater the ratio. It
was shown that all six inputs must be taken into ac-
count for both soft sensors.

Results and discussion

Kerosene distillation end point and freezing
point soft sensors were developed based on data
sets consisting of 415 and 167 laboratory assays,
respectively. The data were taken from distributed
control system (DCS) in the period from July 2006
to September 2007. The reason for less data for es-
timation of kerosene freezing point lies in less fre-
quent laboratory analysis. The sampling happens

once daily, so models are necessarily steady state.
The total number of samples after data preprocess-
ing i.e. removing outliers was brought down to 357
and 142, respectively.

After performing multiple linear regression
analysis, it was determined that due to small
(around zero) correlation coefficients it was not
possible to realize linear models for given inputs
and outputs. So, neural network-based soft sensors
were developed.

From a variety of different neural network
structures � linear, RBFs and MLPs � the best re-
sults were achieved with MLPs for both of the soft
sensor models.

Developed MLP neural network for kerosene
distillation end point, Ted, has 6-7-1 architecture,
Fig. 2, and for freezing point, Tfp, 6-5-1 architec-
ture, Fig. 3.

Using 5-fold cross validation resampling for
kerosene distillation end point, Ted, 357 data sets
were distributed as follows: 189 data in training
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F i g . 2 – Neural network architecture for kerosene distilla-
tion end point, Ted

F i g . 3 – Neural network architecture for freezing point, Tfp



dataset, 95 data in selection and 70 in test datasets.
For kerosene freezing point, Tfp, 10-fold cross vali-
dation resampling was used and 142 data sets were
distributed accordingly: 84 data in training dataset,
42 in selection and 13 in test dataset. Selection of
data in subsets was done randomly and with respect
to normal distribution.

Model summary report tables are given for
both models which show performances and errors
of each individual subset of data, train, select and
test data sets, Tables 1 and 2.

The best neural networks, for both, kerosene
distillation end point, Ted and kerosene freezing
point, Tfp, were chosen according to smallest select
error, but it was also important that Train Perf., Se-
lect Perf. and Test Perf. have approximately equal

values for all three data subsets, which indicates
that behaviour of both neural network models in all
three data subsets is equable and both neural net-
works have better generalization abilities.

Neural network weights for Ted and Tfp are
given in Tables 3 and 4, respectively.

In order to investigate the influence of each in-
put variable on the soft sensor outputs sensitivity
tests were carried out.

The ratios for both, Ted and Tfp, Tables 5 and
6, are somewhat higher than one, which indicates
that all input variables have to be taken into
account when developing both models, but also
that their quantitative influence on the output is
scarce.
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T a b l e 1 – Model summary report for kerosene distillation end point, Ted

Profile, Ted Train perf. Select perf. Test perf. Train error Select error Test error Training/members

MLP 6-7-1 0.8083 0.8445 0.8704 0.1469 0.1558 0.1420 BP100,CG61b

T a b l e 2 – Model summary report for kerosene freezing point, Tfp

Profile, Tfp Train perf. Select perf. Test perf. Train error Select error Test error Training/members

MLP 6-5-1 0.7851 0.8407 0.8457 0.1329 0.1546 0.1585 BP100,CG61b

Perf. � equal to � ratio � Error � and Data � ratio

Error � the sum of the squared differences between the target and actual output values on each output unit. This is the standard error function used in
regression problems.

BP100CG161b signifies “one hundred iterations of back propagation, followed by sixty-one iterations of conjugate gradient descent, at which point
training was terminated due to over-learning and the best network in the training run retrieved.”

T a b l e 3 – Neural network weights for kerosene distillation end point, Ted

Ted 2.1 2.2 2.3 2.4 2.5 2.6 2.7 3.1

Thresh 0.73344 0.24877 0.83489 –1.14004 –2.23430 –1.20312 –1.22159 –1.30029

1.1 –1.99096 0.20779 0.58647 –1.57480 –1.41092 0.11584 –1.90024

1.2 0.36353 –0.41322 –1.26291 –1.18202 2.17593 1.17536 1.23081

1.3 0.67389 1.03383 2.41328 –2.86689 0.06285 –0.65123 1.25566

1.4 –1.33421 –0.90676 –2.89738 0.33265 –0.02141 –0.14694 1.90959

1.5 0.21360 0.57702 1.65236 –1.04197 0.83528 –0.02365 –0.45406

1.6 –0.57435 –1.86089 2.50138 1.49651 0.17057 0.68137 –0.71128

2.1 1.07914

2.2 –0.41635

2.3 –0.12893

2.4 –0.22975

2.5 –0.60760

2.6 1.49473

2.7 –1.05711



After sensitivities had been calculated for all
variables, they were ranked in order and, as shown
in Table 5 TLGO and TTOP had the greatest influen-
ce on Ted followed by FLGO, Tkerosene, Fkerosene and
Fcrude oil. Also, Table 6 shows that Tfp is most sensi-
tive to Fkerosene and TTOP, followed by TLGO, Tkerosene,
FLGO and Fcrude oil.

Regression tables for both soft sensor models
show data mean, data standard deviation, error mean,
error standard deviation, absolute error mean, stan-
dard deviation ratio and correlation values. Regres-
sion tables are given for each individual data subset
(train, select and test data set), Tables 7 and 9, and
overall neural networks, Tables 8 and 10. Data
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T a b l e 4 – Neural network weights for kerosene freezing point, Tfp

Tfp 2.1 2.2 2.3 2.4 2.5 3.1

Thresh –0.16071 –0.03047 0.79049 –0.33202 –0.43763 –1.14966

1.1 –3.79436 –3.49958 2.42142 –1.17872 1.52527

1.2 –1.29148 –0.99620 2.34736 –3.25617 6.95270

1.3 –3.21757 –0.74459 3.62094 0.83042 –4.08097

1.4 0.17657 0.47599 0.46709 1.04728 –1.45442

1.5 –0.64563 –1.18868 0.85322 –0.56919 1.36945

1.6 8.10975 –3.21323 –8.80043 –2.13861 –0.09024

2.1 –0.36557

2.2 0.45066

2.3 –0.39957

2.4 0.54328

2.5 0.31215

T a b l e 5 – Sensitivity analysis for kerosene distillation end point, Ted

Ted TLGO Tkerosene TTOP FLGO Fcrude oil Fkerosene

Ratio 1.209777 1.089305 1.159017 1.092740 1.056956 1.058474

Rank 1. 4. 2. 3. 6. 5.

T a b l e 6 – Sensitivity analysis for kerosene freezing point, Tfp

Tfp TLGO Tkerosene TTOP FLGO Fcrude oil Fkerosene

Ratio 1.083358 1.073875 1.155833 1.036225 1.011410 1.329413

Rank 3. 4. 2. 5. 6. 1.

T a b l e 7 – Regression table for each individual data subset
for kerosene distillation end point, Ted

Ted Train Select Test

Data mean 229.0370 228.6000 229.1714

Data � 3.0884 3.1065 2.7722

Error mean –0.0329 0.3645 0.0552

Error � 2.4963 2.6235 2.4128

Abs. e. mean 1.8671 2.1808 1.8657

� ratio 0.8083 0.8445 0.8704

correlation, R 0.5891 0.5410 0.5465

T a b l e 8 – Regression table for overall neural network for
kerosene distillation end point, Ted

Ted Overall

Data mean 228.9328

Data � 3.0616

Error mean 0.1012

Error � 2.5600

Abs. e. mean 1.9731

� ratio 0.8361

correlation, R 0.5545
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Abs e. mean is absolute error mean of neural
network calculated for all data:
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� ratio represents Error � and Data � ratio and
correlation is Pearson product-moment correlation
coefficient (Pearson R � correlation coefficient).

� ratio in Tables 7 and 9 for individual data
subsets corresponds to values of Train Perf., Select
Perf. and Test Perf. in model summary report ta-
bles, Tables 1 and 2.

Absolute error mean for developed neural net-
work for kerosene distillation end point, Ted, given
for all data subsets and for overall neural network
model, indicates that differences between the corre-
sponding values predicted by the model and the ob-
served experimental values are around 2 °C. Also,
standard deviation ratio for that neural network in-
dicates that standard deviation error of developed
neural network is smaller than standard deviation of
experimental values which satisfies the required ac-
curacy of the model.

Even better results were achieved with devel-
oped neural network for kerosene freezing point,
Tfp. With absolute error mean of around 1 °C (for
all data subsets and for overall neural network
model), and smaller standard deviation ratio devel-
oped neural network for kerosene freezing point, Tfp

is even more accurate than neural network for kero-
sene distillation end point, Ted.

Correlation coefficient for both neural net-
works is relatively small, around 0.5, but when
taken into account that the value of ratio for all six
inputs in both neural networks is around 1, in sensi-
tivity analysis table, Tables 5 and 6, it is to be ex-
pected that correlation coefficients can not get any
higher.

The comparison of results achieved by labora-
tory analysis and model prediction for both models
and each data subset, train, select and test are
shown in Figs. 4 through 9. Number of samples is
the number of data in each subset with frequency of
laboratory analysis once a day. Ted and Tfp represent
distillation end point and freezing point tempera-
tures determined experimentally (�) and evaluate
by soft sensor (�), respectively. These data were
omitted during model building procedure for model
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T a b l e 9 – Regression table for each individual data subset
for kerosene freezing point, Tfp

Tfp Train Select Test

Data mean –50.8929 –50.5714 –50.6154

Data � 1.3542 1.4662 1.4956

Error mean 0.0005 –0.0991 –0.0954

Error � 1.0632 1.2326 1.2647

Abs. e. mean 0.8524 1.0112 1.0680

� ratio 0.7851 0.8407 0.8457

correlation, R 0.6197 0.5415 0.5337

T a b l e 1 0 – Regression table for overall neural network for
kerosene freezing point, Tfp

Tfp Overall

Data mean –50.7465

Data � 1.4164

Error mean –0.0702

Error � 1.1477

Abs. e. mean 0.9336

� ratio 0.8103

correlation, R 0.5860



training, prevention of overfitting and validation
purpose.

Distillation end point model results deviate
from experimental data with average absolute devi-
ations of around 2 °C. Also, average absolute devi-
ations from laboratory determined freezing point
temperatures is around 1 °C.

Figs. 10, 12 and 14 represent frequency of oc-
currence for kerosene distillation end point temper-

ature, Ted, obtained by laboratory assays for each
data subset. One can conclude that results have nor-
mal distribution (Gaussian distribution) of around
228 °C in the range from 220 to 238 °C. The aver-
age absolute temperature deviations for kerosene
distillation end point obtained by the soft sensor
model in dependence of distillation end point tem-
peratures, Ted, are shown in Figs. 11, 13 and 15, for
each neural network data subset. Average absolute
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F i g . 4 – Comparison of laboratory assays and model re-
sults for kerosene distillation end point for train-
ing data set

F i g . 5 – Comparison of laboratory assays and model re-
sults for kerosene distillation end point for selec-
tion data set

F i g . 6 – Comparison of laboratory assays and model re-
sults for kerosene distillation end point for testing
data set

F i g . 9 – Comparison of laboratory assays and model re-
sults for kerosene freezing point for testing data
set

F i g . 8 – Comparison of laboratory assays and model re-
sults for kerosene freezing point for selection data
set

F i g . 7 – Comparison of laboratory assays and model re-
sults for kerosene freezing point for training data
set



deviations are calculated the same way as the abso-
lute error mean, Tables 7 through 10, but for each
individual temperature interval. From the diagrams,
it is apparent that the lowest soft sensor model devi-
ations are obtained in the temperature range be-
tween 225 and 232 °C. This was expected since
large amount of experimental data is found in that
range. When approaching margins, the networks’
capability to predict significantly decreases.

Figs. 16, 18 and 20 represent frequency of oc-
currence for freezing point, Tfp, obtained by labora-
tory assays for each data subset. The results are
normally distributed around �51 °C in the tempera-
ture range from �55 to �47 °C. The only deviation
from this is in the testing subset. Since 10-fold
cross validation resampling was used for freezing
point, Tfp, in 142 data it leaves only 13 data in the
testing subset. This is a small data subset and since
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F i g . 1 0 – Distribution of laboratory assay results for kero-
sene distillation end point temperature for train-
ing data set

F i g . 1 1 – Average absolute deviations of kerosene distilla-
tion end point temperature obtained by soft sensor
model and laboratory assays (training data set)

F i g . 1 2 – Distribution of laboratory assay results for kero-
sene distillation end point temperature for selec-
tion data set

F i g . 1 5 – Average absolute deviations of kerosene distilla-
tion end point temperature obtained by soft sen-
sor model and laboratory assays (testing data set)

F i g . 1 4 – Distribution of laboratory assay results for kero-
sene distillation end point temperature for test-
ing data set

F i g . 1 3 – Average absolute deviations of kerosene distilla-
tion end point temperature obtained by soft sensor
model and laboratory assays (selection data set)



the data is chosen randomly it is, at the same time,
hard to achieve normal distribution. It should be
kept in mind that 10-fold cross-validation technique
randomly distributes data ten times and only data
subsets of developed neural network with the best
statistical parameters are shown.

Figs. 17, 19 and 21 depict average absolute
temperature deviations for kerosene freezing point
obtained by the soft sensor model in dependence of

freezing point temperatures, Tfp, for all data subsets.
The lowest soft sensor deviations are obtained in
the temperature range between �52 and �50 °C.
This range provides the majority of experimental
data.

To improve the model performance ten
suboptimal models were generated, sorted and
selected on the basis of their Pearson R � correla-
tion coefficient and aggregated in a network ensem-
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F i g . 1 6 – Distribution of laboratory assay results for kero-
sene freezing point temperature for training data
set

F i g . 1 7 – Average absolute deviations of kerosene freezing
point temperature obtained by soft sensor model
and laboratory assays (training data set)

F i g . 1 8 – Distribution of laboratory assay results for kero-
sene freezing point temperature for selection
data set

F i g . 2 1 – Average absolute deviations of kerosene freezing
point temperature obtained by soft sensor model
and laboratory assays (testing data set)

F i g . 2 0 – Distribution of laboratory assay results for kero-
sene freezing point temperature for testing data
set

F i g . 1 9 – Average absolute deviations of kerosene freezing
point temperature obtained by soft sensor model
and laboratory assays (selection data set)



ble using simple average and non linear combina-
tion via neural networks. It was observed that
Pearson R � correlation coefficient increased negli-
gibly.

Conclusion

Kerosene distillation end point and freezing
point soft sensors are developed based on refinery
data from DCS and laboratory assays.

Since the results achieved by laboratory analy-
sis for distillation end point and freezing point tem-
perature are reported with the measurement uncer-
tainty �1 °C, average absolute deviations of both
model results are acceptable for implementation.
The reason for this small value of correlation coef-
ficient could be in systematic error, which is the
subject of future research. Also, increased predict-
ing capability on the operating window edges will
be possible when new process data and analysis
will be available.

The design of soft sensors in the presence of
small data sets, that is common in industrial prac-
tice, posses a challenge as it regards the verification
and validation of model performance, when the per-
formance are evaluated on a very small test set.

The implementation of soft sensors in refinery
plants is a challenging task. It involves synergy be-
tween plant experts, system analysts and process
operators. Neural networks play an important role
in the development of soft sensors. Well-trained
neural networks can be employed as soft sensors
for on-line estimation and prediction of key process
parameters.
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L i s t o f s y m b o l s

F � volumetric flowrate, m3 h–1

nob � number of observations

ns � number of samples

T � temperature, °C

R � correlation coefficient

� � standard deviation

A b b r e v i a t i o n s

DCS � distributed control system

ed � distillation end point

fp � freezing point

HGO� heavy gas oil

LGO � light gas oil

MLP � multi-layer perceptron

RBF � radial basis function
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