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ABSTRACT

It is well-known that Pascal and Brianchon theorems char-
acterize conics in a Pappian projective plane. But, using
these theorems and their modifications we shall show that
the notion of a conic (or better a Pascal-Brianchon set)
can be defined without any use of theory of projectivities
or of polarities as usually.

Pascal-Brianschonovi skupovi u Pappusovim pro-
jektivnim ravninama

SAZETAK

Poznato je da Pascalov i Brianchonov teorem karakter-
iziraju kivulje 2. reda u Pappusovoj projektivnoj ravnini.
Medutim, koristeéi te teoreme i njihove modifikacije
pokazat ¢emo da se pojam krivulje 2. reda (ili bolje: pojam
Pascal-Brianchonovog skupa) moZe definirati bez pomoci
projektiviteta ili teorije polariteta, kao $to se to obi¢no

radi.
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1 Introduction Desargues theorem is equivalent to the statement of
Theorem 1.1 for(iy,ip,i3,ia,is,ig) = (1,2,3,4,6,5) resp.
We shall operate in a Pappian projective plane of order at(iy, iz, i3,is,is,ig) = (1,2,3,6,5,4) (see [1], [2]).

least 5 and characteristic other then 2.

A simple 6-point AAA3A4AsAs is a set of six points
A1, Ao, Az, A4, As, Ag taken in this cyclic order in
which any two consecutive points and any other point are
non-collinear. We say that this 6-point is Rascalian
6-point and we writeP(Aq, Az, Az, Aq,As, Ag) If AtA2 N
AsAs, AoAz N AsAg andAzA, N AgAy are collinear points.

The Pappus theorem can be stated in the following form:

By the following definitions we shall generalize the notion
of a simple 6-point. Lel be the relation of incidence.

A one-fold specialized simple 6-point@A1A2AzA1As

is a set of five pointA;, Az, Az, A4, As taken in this
cyclic order in which any three points are non-collinear,
and of a linea; such thatAjIa; iff i = 1. We say that this
6-point is aPascalian one-fold specialized 6-poartid we
write P(AlalAl,Az,AG,A4,A5) if ag NA3A4, A1A2 N A4As,

If A1, Ag, As resp. Az, A4, As are collinear points then  aA,A; N AsA; are collinear points.

P(A1L,A2,A3, A4, A5, Ag).

Now, we can prove (see [2]):

A two-fold specialized simple 6-pointd AjArasArAzAy

of type lis a set of four pointé\;, Ay, Az, A4 taken in this
cyclic order in which any three points are non-collinear,
and of two linesa;, a» such thatAiIg; iff i = j. We
say that this 6-point is &ascalian two-fold specialized
6-point of type land we writeP(Aja1A1, AvarAr, Az, Ag)

if ag NA2A3, A1A2 N AsA4, ax N A4A; are collinear points.

Theorem 1.1
P(A1,A2,A3,A4,A5,A6) = P(ALAL A AL AL A),

where (i1,ip,is,ia,is,ig) IS any permutation of
{1,2,3,4,5,6}.

It is well-known that Pappus theorem implies the De- A two-fold specialized simple 6-point#& A1A2AzazAzA4
sargues theorem. More precisely Pappus theorem respof type 2is a set of four point#\, Ay, Az, A4 taken in this
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cyclic order in which any three points are non-collinear, we haveP(Ay, A4,Az,As,W,V), i.e. AsAsNAsW = W/,

and of two linesay, ag such thatAiIa; iff i = j. We say
that this 6-pointis &@ascalian two-fold specialized 6-point
of type 2and we writeP(Aja1 A1, Ap, AzazAz, Ag) if agNas,
A1A2 N AsA4, Ao A3 N A4A; are collinear points.

A three-fold specialized simple 6-poita; Aj ArarArAzazAg
is a set of three non-collinear poinfg, Az, Az and of
three non-concurrent lines, ap, az such thatAIa; iff

i = j.We say that this 6-point isRascalian three-fold spe-
cialized 6-pointand we writeP(Aja; A1, AvaxAz, AzazAz)

if ag NA2Az, A1A2 Nagz, agNAzA; are collinear points.

Now, we can prove some theorems about Pascalian

6-points.

Theorem 1.2
P(Ar1a1A1, A2, Az, A4, As) = P(Ara1A1, A4, Az, Az, As)

Proof. Let agNAzAs = U, A/Ay NA4A; =V, AAzN
AsA1 = W be collinear points (Fig. 1). We must prove
that the pointsy NAzA, = U’, AJALNAAs = V', A4A3N
AsA; =W’ are collinear. Consider two triangles with the
verticesU, Az, A4 resp. W, Az, As. As the linesUW,
A1A2, A4As pass through the point, so by Desargues
theorem the pointé;A; N AAs = V', AgU NAsW = W/,
UA; NWA, = U’ are collinear.

U A, a, U
Figure 1

Theorem 1.3
P(Ara1A1, Az, Ag, A, As) = P(ArauAq, Az, Ay, Az, As)

Proof. We must prove that the collinearity of points
a1 NA3AL = U, AiAoNA4As =V, A2 AzNAsAL =W im-
plies the collinearity of pointay NAA3 = U, AtA2 N
AzAs =V’ ApALNAsA; =W (Fig. 2). By Pappus theorem
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A4A3NWV = U, AsAs NV A, =V’ are collinear points.

Figure 2

Theorem 1.4
P(Ara1A1, Az, Ag, A, As) = P(ArauAq, Az, Az, As, As)

Proof. P(AjaiA1,A2,A3,A4,As) implies by Theorem 1.2
P(AlalAl,A4,A3,A2,A5), i.e. P(AlalAl,A5,A2,A3,A4).
But, Theorem 1.3 implies theR(Ajai1A1,As, Az, A2, Ag)
and finally Theorem 1.2 implieB(Aja1A1, A, Az, As, As).

Obviously, Theorems 1.2, 1.3 and 1.4 imply:

Theorem 1.5
P(AlalAlaA27A3aA47A5) = P(AlalAlvAizaAigvAuvAis)'
where(iy, iz, ia,is) is any permutation of2,3,4,5}

Further, we have:

Theorem 1.6
P(Ara1A1, A2, AzazAz, Ay) <= P(Ar1a1A1, AzazAz, Ar, As).

Proof. We must prove thad; Nag =U, AJAcNAsAL =V,
AxA3 N A4A; =W are collinear points ifag NAgA; = U/,
AAs N ARAL = V', agN A4A; = W' are collinear points
(Fig. 3). If the pointsU, V, W are collinear, then the
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lines AsA4, UW, A1A; pass through the poit and ac- Theorem 2.1 and the definition of ordinary Pascal set im-
cording to Desargues theorem the polos "WA, =U’, ply that any three different points of an ordinary Pascal set
A1As N AAL =V, AU NA4W =W are collinear. Con-  are non-collinear.

versely, ifU’, V', W' are collinear points, then the lines A jine a1 such that P(AjaiAr, A, As,As,As) holds
AoAa, U'W', A1A3 pass through the poilt’ and Desargues i gaid to be atangent of the ordinary Pascal set
theorem implies the collinearity of points’ Ay "\W'Az = (A1, Az, As,As, As) at its point A. According to Theo-

U, AtAoNAgAs =V, AU NAW = W. rem 1.5a is atangent op(Aq, A, Ay, A, Aig ) at the point

A1, where(iy,is,ia,is) is any permutation of2,3,4,5}.

Let us prove:

Theorem 2.2
There is one and only one tangent diAp, Az, Az, A4, As)
at the point A.

Proof. LetV = A1Ao NALAs, W = A)A3NAsA;. A line
a; is a tangent ofp(A1, A2, Az, A4, As) at the pointA; iff
P(Aja1A1,A2, Az, A4, As) holds, i.e. iffAjIa; and iff the
pointsU = a1 NAzA4, V, W are collinear, i.e. ifag = AjU,
whereU = AzAsNVW (Fig. 1).

Theorem 2.3

Let A':)' € p(A17A27A\"37A47A5) \ {A17A27A37A4}- Aline a
) is the tangent of (A1, A2, Az, A4, As) at the point A iff ag
Figure 3 is the tangent of (A1, Az, Az, As, A ) at the point A.

Theorem 1.7 o
P(A1a1Ar, AcanAz, As, Ay) = P(Aran A1, AvapAo, Ag, Ag). Proof. The statment is trivial iy = As.
Let further Ay # As. In virtue of Theorem 1.1

Pr oof. According to Theorem 1.6 we have Ay c p(A1,Az Az, A1 As)\ {A1,A2, Az, Aq} implies Ag €
P(Ara1A1, Az, AvapAr, Ag), i.e. P(ArarAr, As, AcapAz, As) P(AL, A2, A3, AgAs) \ {A1,A2,A3,Ay} and we have
and then Theorem 1.6 impli€éAja;A1, AxaxAz, Ag, Az). P(A1,A2,As, A4, A5, A3), i.e. the pointsg Ay NAAs = U,

AoAs NAsA3 =V, Ag AsNAsA; =W are collinear (Fig. 4).
2 Ordinary Pascal sets

Let A;, A2, Az, A4, As be five points such that any
three of them are non-collinear. Aardinary Pascal
set determined byA;, Az, As, A4, As is the set of
points p(Al,Az,Ag,A4,A5) = {Al,Az,Ag,A4,A5} U {X |
P(A1,A2,A3,A4, A5, X) }.

In virtue of Theorem 1.1 we have(A1,Az,Az, A1, As) =
P(ALL AL, AL AL AL, Where (i1,io,is,i4,i5) is any per-
mutation of{1,2, 3,4,5}.

Now, we have a theorem proved in [2].

Theorem 2.1

P(A1,A2,A3,A1,As) = p(Ar, A, Az, Ay, As) for any dif-
ferent points A,Ay,Az,Ax,As € p(A1,A2,A3,As4,As),

i.e. an ordinary Pascal set is uniquely determined by any
five different of its points. Figure 4
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Let a; be the tangent ofp(A1,A2,A3,A4,As) at the
point A1, i.e. letP(Aja;A1,Az, Az, Aq,As) holds. Then
by Theorem 1.4 we hav@(Aia1A1,A2, Az, As,As), i.€.
a; N AzAs = U/, AtAo NASAL = U, AcAs N A4AL =
W' are collinear points.
PU" A1,A3,A2,V,U), i.e. UALNAYN =U", AjAsnN
VU =W, AsA,NUU’ =W’ are collinear points. But,
this means thaty N AAy = U”, AlAsNA5A4 = W,
AsAr N A4A; = W are collinear points, i.e. we have
P(Ar1a1A1,A3, A2, A5, A1), wherefrom by Theorem 1.5
P(Ara1A1,A2, Az, A4, Az ) follows, i.e. a; is the tangent
of p(A1,A2,Az,A4,Ag) at the pointA;. The proof of the
converse follows by the substitutida < Ag.

On the basis of Theorem 2.3 we can prove:

Theorem 2.4

Let AQ’7A3’7A4'7A5' € D(Al,Az,Ag,A4,A5) \ {Al} be
four different points. A line ais the tangent of
P(A1,A2,A3,As4,As) at the point A iff a1 is the tangent of
p(A1,Ax,Az,Ay,As) at the point A, i.e. the tangent of
an ordinary Pascal set at anyone of its points is uniquely
determined.

Proof. By Theorem 2.1 p(A1,A2,A3,A1,As) =
P(A1, Ay, Az, Ay,As). At least one of the pointé\y,
Az, Ay, Ay is different from the pointg\,, Az, As. Let
be e.g. Ay # Az, A3,As. FromAg € p(Aq, Az, A3,A4,As) \
{A1,A2,A3,A1} by Theorem 2.1p(A1,A2,Az,As,As5) =
P(A1,As,A2,Az,A4) follows and by Theorem 2.3y is
the tangent ofp(A1, A2, Az, A4, As) at the pointAy iff ag
is the tangent op(Ag, Ay, Az, Az, As4) at the pointA;. At
least one of the pointdy, Ay, Ay is different from the
points Ay, As. Let be e.g. Ay # Ax,As. FromAy €
P(A1L, Ay, Az, As,As) \ {A1,A5, A, Ag} by Theorem 2.1
p(A17A5/,A2,A3,A4) = p(Al,A4/,A5/,A2,A3) follows and
by Theorem 2.3 is the tangent op(A1, Ag, Az, Az, Ag)
at the point; iff a; is the tangent op(A1, Ay, As, A2, Az)
at the pointA;. At least one of the point&,, Ay is differ-
ent from the poinid,. Let be e.g.Ay # A2. FromAy €
P(AL,Ax,As, A2, As) \ {A1, Ay, Az, Ao} by Theorem 2.1
p(A17A4/,A5/,A2,A3) = p(Al,A3/7A4/,A5/,A2) follows and
by Theorem 2.3 is the tangent op(A1, Ay, As, A2, Az)
atthe point; iff a; is the tangent op(A1, Az, Ay, As, A2)
at the pointd;. Finally, fromAy € p(A1, Az, Ay, Az, A2) \
{A1,Az,Ay,As} by Theorem 2.3 follows thag; is the
tangent ofp(A1, Az, Ay, Az, A2) at the pointAy iff a; is
the tangent op(A1, Ay, Az, Ay, Ay ) at the pointA;.

If ais the tangent of an ordinary Pascal pett its pointA,
then we say thadaAis aflagof p.

8

Theorem 2.5
If A1a1A; is a flag of an ordinary Pascal set p, then &
the unique point such thatjAc p and AIa;.

By Pappus theorem we have Proof. Suppose that there is a poist such thatd, # Ag;

AxIa; andA; € p. But p contains at least five different
points and there are three different poiAts A4, As € p\
{A1,A2}. Then we haveP(Aja1A1, Az, Az, Ag, As) which
contradicts withAxIa;.

3 One-fold specialized Pascal sets

Let A, A2, Az, A4 be four points such that any three of
them are non-collinear and lat be a line such thadjIag

iff i = 1. An one-fold specialized Pascal séétermined
by the flagAia;A; and the pointsdy, Az, A4 is the set
of points p(Ara1A1, A2, Az, Ag) = {A1,A2,A3,Aq} U {X |
P(AlalAl,Az,Ag,M,X)}.

According to Theorem 1.5 we hapgAja1 A1, A, Az, Ag) =

p(AranAg, Ay, Ay, Aiy), Where(io,is,is) is any permuta-
tion of {2,3,4}.

Theorem 3.1
P(Ara1A1, A2, Az, Aq) = p(AranAr, Az, A3, Ay) for any
point Ay € p(ArarA1, Az, Az, Aq) \ {A1,A2,As}.

Proof. If Ay = A4, the statement is trivial. Let
be furtherAy # As. As Ay € p(Ara1Ar,Az,Az,As) \
{Al,Az,A(:,,A4}, SO we haveP(AlalAl,Az,A\o,,A4,A4/),
wherefrom by Theorem 1.B(AjaiA1, Az, Az, Ay, As) fol-
lows, i.e. A4 € p(AlalAl,Az,A(:,,A4/) \ {Al,Az,Ag,A4/}
holds. LetX € p(AiaiA1,A2, Az, Ag) \ {A1,A2, A3, A4},
i.e, let P(Aja1A1, Az, A3, Aq,X) holds, and letX # Ay.
It is necessary to proveX € p(AjaiA1,Az,Az,Ay) \
{A17A27A37A4/}, i.e. P(AlalAl,Az,Ag,A4/,X). There-
fore, because of Theorem 1.5 we must prove that
P(AlalAl,Az,A4,A3,A4/), P(AlalAl,Az,M,Ag,X) and
Ay # X imply P(Arai1A1, A2, X, Az, Ay ). But, the first two
hypotheses mean that N A4A3 = U, AjAo NAsAy =V,
AcAyNAyAL =W resp.a; NAA3 = U, AjAo NAX =V,
AAs N XA = W' are collinear points (Fig. 5). Con-
sider two triangles with the verticéd/,A;, U resp. Ay,
X, V'. As the linesWAy, A1X, UV’ pass through the
point W' so by Desargues theoredyU N XV = U”,
UWNV'A; =V, WA NAX =W are collinear points.
But,U” =a;NXAg,V = A1ACNA3AY, W = A X NAyAL
and we havé’(Aja;Ag, Az, X, Az, Ay). On the same man-
ner (by the substitutiody < Ay) we can prove thaX €
P(Ara1A1, Az, Az, Aw) \ {A1,A2, Az, Ay } andX # A4 imply
X € p(AraiAg, A2, Az, Aq) \ {A1, A2, Az, As}.
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Figure 5

Theorem 3.2

P(Ara1A1, A2, Az, As) = p(ArarAr, Ay, Ay, Ay) for any
different points A, Ay, Ay € p(A1a1A1, A2, Az, Aq) \ {A1},

i.e, an one-fold specialized Pascal set is uniquely deter-
mined by its flag Aa;A1 and any three of its points, which
are mutually different and different fromy A

Proof. At least one of the pointdy, Az, Ay is differ-
ent from the pointsAz, As. Let be e.g. Ay # Ay, As.
From Ay € p(Ara1A1,A2,A3,A4) \ {A1,A2,A3} by The-
orem 3.1 p(A1a1A1,A2,A3,A) = p(ArarAr, Ay, Az, Az)
follows. At least one of the point®y, Az is dif-
ferent from the pointA;. Let be e.g. Az # A
From Ay € p(Ara1A1, Ay, A2, A3) \ {A1,Ay, Az} by The-
orem 3.lp(Ala1Al,A4/,A2,A3) = p(AlalAl,Ag/,A4/,A2)
follows. Finally, from Ay € p(AraiA1,Az,Ay,A2) \
{A1,Az,Ay} by Theorem 3.1p(Ara1A1,Az, Ay, A2) =
p(AraaA1, Ay, Ay, Ay) follows.

Theorem 3.2 and the definition of one-fold specialized Pas-

cal setp determined by the flagaAimply that any three
different points ofp are non-collinear and thaXIa iff
X = Afor any pointX € p.

A line ay such thatP(Aja;A1, AvaxAz, Az, As) holds is
said to be aangent of the one-fold specialized Pascal set
p(Ara1A1,A2,A3,As) at the point A. According to The-
orem 1.7 therey is a tangent ofp(Ara1A1, Az, Ag, Az) at
the pointA,. The linea; is said to be the tangent of
p(Ara1A1, A2, Az, As) at the pointh;.

Theorem 3.3
There is one and only one tangent @pa; A1, A2, Az, As)
at the point A.

Proof. LetU = a;NAAz, V = AjAoNA3A4. A line
ay is a tangent ofp(Aja1A1,A2,Az,A4) at the pointAy
iff P(AlalAl,AzazAz,Ag,N) hO|dS, i.e. iff U,V,W =
ax N A4A; are collinear points, i.e. iflp = AW, where
W =AA1NUV.

Theorem 3.4

Let be Ay S p(AlalAl,Az,Ag,A4) \ {Al,Az,Ag}. Aline @
is the tangent of (Ara;1A1, Az, Az, Aq) at the point A iff a
is the tangent of (Aga1A1, Az, Az, Ay) at the point A.

Proof. The statement is trivial iy = A4. Let further
Ay # A4. By Theorem 1.5y € p(Ara1A1, Az, Az, Ag) \
{Al,Az,Ag} implies Ay € p(AlalAl,Az,Ag,A4/) \
{A]_,Az,ﬁ(:,} and we haveP(A1a1A1,A4,A2,A4/,A3), i.e.
aaNAAy = U, AlAANAYAs =V, Ao NAAL =
W are collinear points (Fig. 6). Let, be the tan-
gent of p(AjaiA1,A2,Az3,A4) at the pointAy, ie. let
P(Aja1A1, AxazA,A3,A4) hold. Then by Theorem 1.6
we haveP(Aja1A1, Az, AvapPo, Ay), ie. agnay = U/,
A1AsNAAL =W, AsA, N A4A; =W are collinear points.
Consider the triangles with the verticas U’, A; resp.Ag,
W, V. The linesAxAs, U'W, AV pass through the point
W' and Desargues theorem implies thE; "WV = U,
A1A> NV A3 =V, AU’ N AW =W are collinear points.
But,U = a; NAAy, V" = AAA N Ay A3, W' = ap N AzAL
and we haveP(Aja1A1, AxaAr, Ay, Az), i.€e. ay is the tan-
gent of p(Aja1Aq, Ag, Ay, Az) = p(ArarAg, Ap, Ag, Ay) at
the pointA,. The proof of the converse follows by the
substitutionAy < As.

Ay

Figure 6
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Theorem 3.5

Let Ay, Ay € p(AraiAr,A2,A3,A4) \ {A1,A2} be

two different points. A line & is the tangent of
p(Ara1A1,A2, Az, As) at the point A iff a is the tangent
of p(Ara1A1, Az, Az, Ay) at the point A.

Proof. By Theorem 3.2 p(Aja;Aq,Az,Az,Aq) =
p(Ara1A1, A2, Az, Ay). At least one of the pointdg, Ay
is different from the poinfz. Let be e.g.Ay # Az. From
Ay € p(A1a1A1, Az, Az, Ag) \ {A1,A2,As} by Theorem 3.2
p(Ara1A1, A2, Az, A1) = p(AraaAr, Az, Ay, Az) follows and
by Theorem 3.4y is the tangent op(Ara1A1, Az, Az, Ag)
atthe poin#; iff ay is the tangent op(Ara; A1, Az, Ay, Az)
at the pointAy. From Ag € p(Ar1aaA1, A2, Ay, Az) \
{A1,A2,Ay} by Theorem 3.2 it follows thady is the tan-
gent of p(Ara;A1, Az, Ay, Az) at the pointA; iff ay is the
tangent ofp(Ara1An, Az, Ay, Az ) = p(AraaAr, A2, Az, Ay)
at the pointA;.

Theorem 3.6
If az is the tangent of p= p(A1a1A1, A2, Az, A4) at the point
A, then A is the unique point such thabA p and Ala.

Proof. We haveP(Aja;A1, AvaxAz, Az, A1) and therefore
AIap iff i = 2. Suppose that there is a poifs§ € p\
{A1,A2,A3,As} such thatAsIa,. Owing to Theorem 3.2
we havep = p(Aja;A1,A2,A3,As) and by Theorem 3.5
ay is the tangent op(Ara1A1, A2, Az, As) at the pointAy.
Therefore we hav®(Aja1A1, ArxazAz, Az, As) which con-
tradicts withAsIap.

If pis an one-fold specialized Pascal set ant a tangent
of p at its pointAy, then we say thahaxA; is aflag of p.

Theorem 3.7
If ArapxA; is a flag of gA1a1A1,A2, A3, As),
P(Ara1A1, Az, Ag, Ag) = P(AgazAz, A1, A3, As).

then

Proof. The lineay is the tangent op(Aja1A1, Az, Az, Ag)
at the pointA; and soP(Aja1A1, ArazAr, As,As) holds,
wherefrom by Theorem 1.P(AzaxAz,AranAi,As,As)
follows, i.e. a; is the tangent ofp(AxaxAz, A1, Az, As)
at the point A;, and a; N A)A3 = U, AlA N
AsAy =V, ax N AAL = W are collinear points
(Fig. 7). LetX € p(Ara1A1,A2,A3,As) \ {A1, A0, A3, A},
i.e. let P(Asa1A1,A2,A3,A4,X) holds.  We must
prove X € p(AzazAz,Al,Ag,M) \ {A17A27A37A4}, i.e.
P(A2aA2,A1,A3,A4,X).  According to Theorem 1.5
we haveP(AjayAg, A2, X, Az, Ag), i.e. agNXAg = U/,
A1Ao NAsAL =V, ApX N ALA; =W are collinear points.
The linesAsX, VW' , UA; pass through the poitt’ and
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Desargues theorem implies the collinearity of the points
VUNWA; =W, UAGNAX =V, AV N XW =W,
But, we haveW = ap N A4A1, V' = ApAg N A X, W' =
AsAs N XA, i.e. P(AzazAz,Az,A4,A1,X), and Theo-
rem 1.5 impliesP(A2axA2,A1,A3,A4,X). On the same
manner (by the substitution&; «— Ay, a; < ap) it can

be proved thak € p(AxapAz, A1, A, As) \ { A1, A2, Az, Au}
impliesX € p(Ara1A1, Az, Az, As) \ {A1, A2, Az, As}.

Figure 7

Theorem 3.8

Let AvapAs be a flag of fA1a1A1,A2,A3,Ar). Aline & is
the tangent of PA1a1A1, A2, Az, A4) at the point A iff az is
the tangent of PAraxAz, A1, Az, As) at the point A.

Proof. As in the proof of Theorem 3.7 we con-
clude thata; is the tangent ofp(AzapAz,A1,Az,A4)
at the pointA;. We have P(Aja1A1, AvaAr, Az, Ag)
i.e. by Theorem 1.6P(AjaiA1,As,AcaxAz,A4), and
agnNax =U, AAASNAA; =V, AsAoNA4A; =W are
collinear points (Fig. 8). Letag be the tangent of
P(Ara1A1, Ao, Ag, Ag) = p(ArarAr, Az, Az, Aq) at the point
Az.  Then P(Ara1A1,Aza3A3,A2,A4) holds, i.e. a1 N
AzPAo =U’, AiAsNAAL =V, azNAAL =W are collinear
points. The lineW'V, AzA;, A1U pass through the point
U’ and Desargues theorem implies thgf; N AU = U”,
AW NUV =W, WA3NVA, =W are collinear points.
But,U"” = ax NAzAL, W = AcAz N A1 AL, W' = azgN AsAr
and we haveP(ArapAz, AzazAsz, A1, As), i.e. az is the tan-
gent of p(AxazAz, Az, A1, A1) = p(AvapPAo, A1, Az, Ay) at
the pointAs. The proof of the converse follows by the
substitutions\; « Ay, a3 « ap.
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Ay. Therefore, Theorem 3.8 implies that is the tangent
of p(Ara1A1, Ay, Ay, As) at the pointhy iff a4 is the tan-
gent of p(Ayar Ay, A1, Ay, As) at the pointAs. But, Ay
p(Ayay Ay, A1, Ay, As) and Theorem 3.5 implies thaj is
the tangent op(Ayay Ay, A1, Ay, Ag) in the pointAy iff a4
is the tangent op(Ayay Ay, Ay, Ay, As) at the pointA,.

4 Two-fold specialized Pascal sets

Let A1, Ay, Az be three non-collinear points arad, ap
two lines such tha#Ia; iff i = j. A two-fold specialized
Pascal setdetermined by the flag&yaiA;, AaxA, and
the pointAg is the set of pointp(AraiAr, AvazAz, Az) =
{A]_,Az,ﬁ(:,} @] {X | P(AlalAl,AzazAz,A(:,,X)}.

Figure 8

Theorem 4.1
P(AranAg, AcanPo, Az) = p(AranAr, AcapAr, Ay) for any
point Ay € p(AraAr, AcapAo, Az) \ {A1, A2}

Theorem 3.9

If Ar, Ay, Az, Ay € p= p(AraaA1,A2, Az, As) are four

different points and if @ is a tangent of p at the point;A

then p= p(AvayAy,Ar,Az,Ay), i.e. an one-fold spe- S

cialized Pascal set is uniquely determined by anyone of its P 00f- If Ay = Ag, the statement s trivial.

flags AaA and any three of its points which are mutually Letbe furtheiy 7 As. As Ay € P(AranAr, Azaoh, As) \

different and different from the point A. {A1,A2,As}, so we have P(Aia1A1, AxazPo, As, Ay ),
wherefrom by Theorem 1.P(Ajai;A;,AvapPAo, Az, Ag)

Proof. If Ay — A then we use Theorem 3.2. Let be follows, i.e. As € p(A1aiAr, AoaoAz, Ag) \ {A1, A2, Ag }.

further Ay # A;. At most one of the pointdy, Ay, Let now be X € p(Ara1Ar, AzapAz, As) \ {A1, A2, Ag},

Ay is equal toA;. Let be e.g. Ay # Ay.Ay. Then i.e. let we haveP(Aia1A1,AxaAr,Az,X), and let

Theorem 3.2 impliesp = p(Aia1A1,Ar,Ay,Ag). By X # Ag. We must proveX € p(ArarAr, ApaoA2, Ag ) \

Theorem 3.5ay is the tangent op(A1asAr, Ay, Ap,Ay)  1ALA2 Az}, 8. P(AiaiAr, Acaoh, Az, X).  There-

at the point Ay. Therefore, Theorem 3.7 im- fore, because of Theorem 1.6, we must prove that

plies p(AraiAs, A, Ay, Ay) = p(AvarAy, AL, Ay, Az). P(A1a1A1, Az, AoaoPo, Ag ), P(AranAr, Ag, AraoAz, X) and

So we have Ay € p(AyarAy,A1,Ay,Ag) and fi- Az # X imply P(AcaiAr, Az, AvapAz, X). But, the first

nally Theorem 3.2 impliesp(Ayay Ay, A1, Ay, Az) = two hypotheses mean thatNa; = U, AJjAsNAxAz =V,
p(Al/al/Al/,A217A3l,A4/). AzAo N A3/A1 =W resp.agnNaz = U, AJAsNAX = V/,

AszA, N XA =W’ are collinear points (Fig. 9).
Theorem 3.10

Let Ay, Ay, Ay € p = p(Ara1A1,A2,A3,A4) be different U o a
points such that A, Ay, Ay # A4 and let g be the tan-

gent of p at the point A. A line & is the tangent of p at
the point A iff a4 is the tangent of Ay ar Ay, Ay, Az, As)

at the point A, i.e. the tangent of an one-fold specialized
Pascal set at anyone of its points is uniquely determined.

Proof. If Ay = Az, then we use Theorem 3.5. Let be fur-
ther Ay # A;. At most one of the pointdy, Ay is equal
to A1. Letbe e.gA; # Ay. By Theorem 3.5 it follows that
a4 is the tangent op at the pointA, iff a4 is the tangent
of p(Aja1A1, A, Ay, As) at the pointAs. If we apply this
fact to the pointAy, instead of the poindy, then it follows
thatay is the tangent op(Ajai1A1, Ar, Ax, As) at the point Figure 9

11
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By Pappus theorem we hav@(V,W,A;, W' V' Ay),
ie. VWNWV =U, WANVA =V AW N
AV = W” are collinear points. ButU = a; N ay,
V" = AlAy N AX, W' = AyA, N XA;, and we have
P(Ar1a1A1, Az, A2aA2,X).  On the same manner (by
the substitutionAz < Ag) it can be proved thaX
P(ArarA1, AcapAr, Az ) \ {A1, A2, Az} and X # Ag imply
Xe p(AlalAl,AzazAz,Ag) \ {A]_,Az,ﬁ(:,}.

Theorem 4.1 and the definition of two-fold specialized Pas-

cal setp determined by flag&1a;A1 and AzaxA, imply
that any point ofp\ {A1, A2} is not-incident with the lines
ag, az, AP,

A line ag such thatp(Ara1A1, AcaxAz, AzazAz) holds is

said to be aangent of the two-fold specialized Pascal set

p(Ara1A1, AxazAz, Ag) at the point A. The linesa; anday
are said to be the tangentspfAra; A1, AvaxA2, Az) at the
pointsA; andAy, respectively.

Theorem 4.2
There is one and only one tangent dfpa; A;, Avap Az, Az)
at the point A.

Proof. LetU = agNAA3, W = axNA3A;. A line a3
is a tangent ofp(Ara1A1, AvapAz,Az) at the pointAg iff
P(Ara1A1, AxazAz, AzazAg) holds, i.e. iff AgTag and iff
U,V = A1A2Nag, W are collinear points, i.e. ifiz = AzV,
whereV = AjA> NUW.

Theorem 4.3

If az is the tangent of p= p(Ar1a1A1,Axa0A2,A3) at the
point Ag, then A is the unique point such thatA p and
AzIas.

Proof. We haveP(Aja1A1, AxaxAz, AzazAz) and there-
fore Ailas iff i = 3. The pointsa; NA2A3 = U, AjA2N

az =V, axNA3A; =W are collinear. Suppose that there
is a pointAs € p\ {A1,A2,As} such thatAsIas. Then
we haveP(AlalAl,AzazAz,Ag,A4), i.e. agNAA3 =U,
AtAoNAAL=A1AoNagz =V, axNAsAL =W are collinear
points. Therefore we haww’IUV andW’ = a,NUV =W
i.e. finally Ay = agN AW = ag N AJW = Ag, contrary to
the hypothesis.

If pis a two-fold specialized Pascal set axdh tangent of
p at its pointAg, then we say thahzazAg is aflag of p.

Theorem 4.4
If AsazAs is a flag of gAsaiAr,AcapAz,Az), then
P(Ara1A1, AcaAz, Az) = p(ArarAr, AzazAsz, Az).

12

Proof. The lineag is the tangent op(AraiA1, AvaoAz, Az)
at the pointAz and soP(AjaiA1, AvapAr, AzazAg), i.e.
P(Aja1A1, AzazAs, AvapAy) holds, anday is the tangent
of p(Ara1A1,AzazAz,Az) at the pointA,. Moreover, we
have collinear pointsag N A2A3 = U, AsANaz =V,
axNAzA; =W (Fig. 10). LetX € p(AlalAl,AzazAz,Ag)\
{A1,A2,Az}, i.e. letP(Aja;A1, Avap Az, Az, X) hold. Then
a; N AA3 = U, AjAy N AsX =V, a N XAy =W are
collinear points. The linegVA;, UV’, A;X pass through
the pointW and by Desargues theorethA; NV'X =
u”, AWNX~A =V", WUNA)VN' =V are collinear
points. But,U” = a; NAzX, V/ = AlAsN XA, V =
a3 N A2A; and we haveP(Aja1A1, AzazAz, X, Az), i.e.
P(Ara1A1, AzsazAs, Az, X) because of Theorem 1.7. Hence
X € p(Ara1A1,AzazAz, A2) \ {A1,A2,Az}. On the same
manner (by the substitution® «— Az, az <> ag) we can
prove thatX € p(AjaiA1,AzazAs, A2) \ {A1,A2,Az} im-
pliesX € p(Ara1Ar, AcaxAz, As) \ {A1,A2,As}.

Figure 10

Theorem 4.5

Let As € p(ArasAg, AvapAo, As) \ {A1, Az, As}. Aline & is
the tangent of PAja1A1, AzapxAp, Az) at the point A iff as
is the tangent of A1a1A1, Az, Az, Aq) at the point A.

Proof. By Theorem 1.7 we havwe(Ajai1A1, AxazAz, Ag, Az),
i.e. aNAA, = U, AAANAJA3 =V, an
AsA1 = W are collinear points (Fig. 11). We must
prove that P(Ajai1A1,AsazAs,Aq,A2) is equivalent to
P(AlalAl,AzazAz,A3a3A3). If agNAzAL = v/, A1Az N
AsA; =V’ agNAA; =W are collinear points, then Pap-
pus theorem implie®(Az,Az,V,U,U’.V'), i.e. AsArnN
uu’ =U", AVNUV' =W, VUNV'Az =W are collinear
points. But,U” = a; N AxA3, W = AjA,Nag, W =
apxNAgA;. Conversely, ifg NAA3 =U", AijA,Naz =W/,
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ax N AsA1 = W are collinear points, then Pappus theo- we suppose tha is a tangent ofp(Ara1A1, AzazAsz, A2)

rem impliesP(U” U, Ay, V,A3,W), i.e. U"U NVAz =U’,
UANAW = V', AV NWU” =W are collinear points.
But,U’ = a1 NA3A4, V' = A1AsNALA, W = azg N AA.

Figure 11

Theorem 4.6

Let AgazAzs be a flag and A a point of
p(ArasA1, AazAr,A3). A line a is a tangent of
p(Ara1A1, ArazAn, Ag) at the point A iff a4 is a tangent of
p(Ara1A1, AzazAsz, A) at the point A.

Proof. The statement is obvious iy € {A1,A2,Ag}.
Let be further Ay # Ag, Az As. We have A4 €
p(A1a1A1, A2a2A2,A3) \ {A1,A2,A3} and Theorem 1.7
implies Az € p(Ar1a1A1,AvaAz, A) \ {A1,A2,As}. Let
us suppose tha, is a tangent ofp(AjaiAr, AvapAz, Az)
at the pointA4. Then, by the definitionas is the tan-
gent of p(AraiA1, AvapA, A4) at the pointAs. There-
fore, Theorem 4.5 implies (by the substitutioigs«— A4,
az < as) thatay is the tangent op(AraiA1, Az, Aa, Ag) =
p(Ara1A1,A2,Az,As) at the pointAs. But AzazAg is
a flag of p(Ata;A1,AvapA2,A3) and Theorem 4.4 im-
plies p(AraiAr,AcaA2,Az) = p(AraaAr, AsazAs, Az).
So we haveAs € p(Ara1Ar,AzazAz,A2) and by Theo-
rem 1.7 we obtairP(AjaiA1, AzazAz, A, A2), i.e. A €
p(Ara1A1, AzazAs, Aq) \ {A1,A3,A4}. Moreover,ay is the
tangent of p(Arai1A1, A2, A3, As) = p(ArarA1, Az, A4, A2)
at the pointA; and Theorem 4.5 implies (by the substitu-
tionsAy — Ag, Az — Aq, Ay — Ap, a3 — ag) thatay is the
tangent ofp(Ara1A1, AzazAs, Aq) at the pointAs. Then, by
the definition,as is a tangent op(Arai1A1, AsazAg, Az) at
the pointAs. As AzazAs is a flag ofp(Ajai A1, AzazAg, Az),
so AgapAy is a flag of p(Ara1A,AzazAs,Ay).  More-
over, As € p(AtaiAr,AxaxAr,Az) implies Ay €
p(Ara1A1, AzasAsz, Az) because of Theorem 4.4. Now, if

at the pointA4, then on the same way as in the first part
of this proof (by the substitution8; < Az, az < ag) it
follows thatas is a tangent op(Aja; A1, AvapA, Az) at the
pointA4.

Theorem 4.7

If Ay, Ay, Ag € p(AraiAr,AcapAr,Az) are dif-
ferent points and @, ay are two tangents of
p(Ara1A1, ArazAr, Ag) at the points A, Ay, respectively,
then F(AlalAl,AzazAz,Ag) = p(Al/al/Al/,A2/a2/A2/,A3/)

i.e. a two-fold specialized Pascal set is uniquely deter-
mined by any two of its flags AaA, BaB and anyone of its
points different from A, B.

Proof. At least one of the pointsAy, Ay is dif-
ferent from A;. Let be e.g. Ay # A;. At first
let be Ay # Az, Then Ay € p(AraiAr, AxaxA2,Asz) \

{A1,A2} implies by Theorem 4.p(Aja1A1, AvapPo, Az) =
p(Ara1Ar, AxazAz, Ay ). As ay is a tangent of
p(Ara1A1, ArazAn, Ag) at the pointAy so ay is the tan-
gent of p(AjaiA1,AxazAx,Ay) at this point. There-
fore, Theorem 4.4 impliesp(Aja1A1,AvapAr,Ay) =
p(AraaA1,AyaxPAy,A2). At least one of the points
A1, Ay is different from Ay. Let be e.g. A1 #
Az. ThenAg € p(AraaAr, Apay Ay, Az) \ {A1,Ax} im-
plies p(AlalAl,Az/az/Az/,Az) = p(AlalAl,Az/az/Az/,A:;/).
Therefore, if we havAy £ Ay, thenp(AjaiAr, AxazAr, Ag) =
p(A1aaA1,AyaxAy,Ay) holds. Asay is a tangent of
p(Ara1A1, ArazAn, Ag) at the pointAy, thenay is a tan-
gent of p(Ara1A1,A2aA2, Ay) at this point. By The-
orem 4.6ay is a tangent ofp(Aja1Ar, Ayay Ay, A2) at
the pointAy, i.e. a tangent op(Aja1A1, Ayay Ay, Ay)
at this point. If we haveAy = A; and then necessar-
ily Ay # Ay then obviously p(AjaiAr, AvazAr, Ag) =
p(Ar1a1A1,AyaxyPAy,As) and we conclude again that
p(AraaAr, Apax Ay, Az) = p(AraiAr, Apay Ay, Ag) and
that ayy is a tangent of p(AjaiAr,ApayAy,Ag) at
the point Ay, Therefore, in every case we have
pP(Ara1Ar, AcazAz, Az) = p(Axaxy Ay, Ara1A1,Ay) and so
Ay € p(AyayAx,Aa;A1,Az). Moreover,ay is a tan-
gent of p(Ayay Ay, AjaiAr,Ag) at the pointAy. Now, let
Ay #£ Ap at first. FromAy € p(AyayAy,AjaiAr,Az) \
{Ay,A1} we obtain p(AyayAy,Ara1A1,Az) =
p(AyayAy,AraaA1,Ay) by Theorem 4.1. Asay is
a tangent ofp(AyayAy,A1a1A1,Ay) at the pointAy
so ay is the tangent of p(AyayAy,AjaiAr,Ar) at
the same pointA;;. Therefore, Theorem 4.4 implies
p(AZ’ ay Ay, ArasAy, Al/) = p(AZ’ ay Ay, Ayay Ay, Al) .
From Ay € p(AiaiAr,AcapPAo,A3) \ {Ar,Ax} =
P(AvayrAr,AraxAy,A1) \ {Ar,A»} we obtain finally

13
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P(Avay Ay, Apap Ay, A1) = p(ArarAy,ArayAy,Ay)
by Theorem 4.1. If we haveAy = A;, then
P(Araran, Ay ay Ay, Ag) = p(AvarAr, Ayay Ay, Ay ) ob-
viously holds.

Theorem 4.8

Let AvayAy, AxaxAy be two different flags of
p(AraaA1, AcaxAz,Az) and let A/,Ay # As. Aline & is
the tangent of PAja1A1, AzaxAp, Az) at the point A iff as
is a tangent of pPAyay Ay, AyaxAy,Ay) at this point, i.e.

the tangent of a two-fold specialized Pascal set in anyone

of its points is uniquely determined.

Proof. At least one of the pointdy/, Ay is different from
A1. Let be e.g Ay # Ag. Atfirst, let Ay # Ay. According
to proof of Theorem 4.7 we hav® Aja1 A1, AcaxAn, Az) =
|’.)(A1611A17 A2a2A2, Az/) = p(AlalAl, Az/ ay Az/ R Az) .
Then Az € p(AraiA1,AxyayAx,A) \ {A1,A»} and
Theorem 4.1 implies p(AiaiA1,AxayAy,Az) =
p(Ara1A1, Ayay Ay, Az). Moreover, AyayAy is a
flag of p(Ara1A1,AxaA2,A3) and therefore a flag of
p(Ara1A1, ArazAy,Ay). So, Theorem 4.6 implies that
az is a tangent ofp(Ara1A1, AvaxAz,Ay) at the point
Ag iff ag is a tangent ofp(AjaiA1, AyaxyAy, Ay) at this
point. Moreover, we conclude thag is the tangent of
p(AraaA1, AxaxAz, Az) at the pointA; iff ag is a tangent
of p(Ara1A1,ArazAz,Ay) at this point and thagg is a
tangent ofp(Ara1A1, Apaxy Ay, A2) at the pointAs iff as
is the tangent ofp(Ajai1A1,AxayAx,Ag) at this point.
Therefore, it follows finally in the caséy # A, that
az is the tangent ofp(Ara1A1, AxaxA2,Az) at the point
Az iff ag is the tangent ofp(Aja;A1,AxayAy,Az) at
this point. In the caséy = A, this statement is triv-
ial. Therefore, we have the conclusion: AbayAy
is a flag of p(AraiAr, AvapA2,Az) and Ay # A1, Az
then p(AlalAl,AzazAz,Ag) = p(AlalAl,Az/az/Az/,Ag)
and az is the tangent ofp(Aja1A1,AraxAz,Ag) at the
point Az iff ag is the tangent op(Ara1A1, Ayay Ay, Az),
i.e. of p(AyaxyAy,A1a1A1,A3) at this point. So, we
have now a flagAyayAy of p(AraiAr, AvapAo,Az) =
p(Ayay Ay, AraaA1,A3) and Ay # Ay,Az and on the
same manner (by the substitutioAs — Ay, Ay — Ag,
Ay — Ay, a1 — ay, a2 — a1, ay — ay) we conclude that
P(Azay Ay, ArarAr, Ag) = p(AyayAy,AyayAy,Ag) and
that az is the tangent ofp(AyayAyx,A1aiA1,Az) at the
pointAg iff ag is the tangent op(Ayay Ay, Ayay Ay, Az),
i.e. of p(Ayap Ay, Ayay Ay, Az) at the pointAz.

14

5 Pascal sets

Now, we shall investigate the mutual relationships between
different types of Pascal sets.

Theorem 5.1
a) If AvarAr is a flag of gA1,A2,A3,A4,As5), then
P(A1L,A2,A3,Aq,A5) = p(A1a1A1, A2, Az, Ag).

b) If As € p(AlalAl,Az,A37A4) \ {Al,A27A37A4}, then
P(Ara1A1, A2, Az, Ag) = P(A1, A2, A3, A4, As).

Proof. The hypothesis of a) resp. b) is that
P(Aja1A1,A2,A3,A4,As) holds, wherefrom by The-
orem 1.4 P(Ara1A1,A2,A3,As5,A4) follows, i.e, the
points a; N AzAs = U’, AjAo N AsAy = U, AAz N
A4A; = W' are collinear. We must show that ¢
P(A1, A2, Az, Ag, As) iff X € p(AranAr,Az,A3,Ay). This
is obvious if X € {A1,A2,A3,A4,As}. Let be fur-
ther X # A1,A2,Az,A4,As. We must show that
P(Al,Az,Ag,A4,A5,X) implies P(AlalAl,Az,Ag,A4,X)
and conversely thatP(Aja1A1,A2,Az,A4,X) implies
P(A1,A2,A3,A4,A5,X). The first statement was proved
in fact in the proof of Theorem 2.3 (instead &%

it must be takenX). Let us prove the second state-
ment. P(Ara1A1, Az, Az, Aq,X) implies by Theorem 1.5
P(AlalAl,Ag,Az,X7A4), i.e. apNAX = u”, A1Az3 N
XA =W, AsA, N A4A; =W are collinear points (Fig. 4)
with X instead ofAg). By Pappus theorem we have
P(A1,A2,U" W U’ Ag), i.e. AilANWU' =U, AU N
U'Az =V, U"'W' N AzA; =W are collinear points. But,
U =A1ANALA5 V = Ao XNAsA3, W = XA1NAzA; and
S0 P(A1,A2, X, A4,As,Az) holds and Theorem 1.1 implies
P(A1,A2,A3,As4,As5,X).

Theorem 5.2

If A1, Az, As, A4 are four different points of an ordi-
nary Pascal set p andiathe tangent of p at the point
A1, then p is equal to the one-fold specialized Pascal set
p(Ara1A1,A2,A3,A4). Conversely, if A Ax, Az, A4, As

are five different points of an one-fold specialized Pas-
cal set p, then p is equal to the ordinary Pascal set
P(A1, A2, A3, A4, As).

Proof. Let p be an ordinary Pascal sét;, Ap, A3, Az € p
four different points and; the tangent ofp at the point
A;1. There is a poinfs € p\ {A1,A2,A3,A1} and by The-
orem 2.1 we haveg = p(A1,A2,A3,As4,As). By Theo-
rem 2.4a; is the tangent ofp(Ag, Az, Az, A4, As) at the
pointA;. So Theorem 5.1 impliep(A1, Az, Az, As,As) =
p(Ara1A1,A2,A3,A4). Conversely, letp be an one-fold
specialized Pascal set aid, Az, Az, A4, As € p five dif-
ferent points. By Theorem 3.10 there is the tangent
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a; of p at the pointA; and according to Theorem 3.9
we havep = p(AraiA1,A2,A3,A1). As we haveAs ¢
P(A1a1A1, A2, Az, Aq) \ {A1,A2,A3,A1}, so Theorem 5.1
implies p(AraiA1, A2, Az, A1) = p(A1,A2,A3, A1, As).

Theorem 5.3
a) Let Aa;A; be a flag of A1, Az, Az, As, As).

b) Let A € p(ArarA1, A2, Az, As) \ {A1, A2, A3, A4}

In both cases a lineds the tangent of (A1, A2, Az, A4, As)
at the point A iff it is tangent of gAja1A1, Az, Az, A4) at
the same point.

Proof. The hypothesis of a) resp. b) is that
P(Ara1A1,A2,A3,A4,As) holds, wherefrom by Theo-
rem 1.5p(A1a1A1, A2, As, Az, As) follows, i.e. a1 NAsAz =
U, AiANA3AL =V, AcAsNA4AL =W are collinear points
(Fig. 12). We must show tha®(AzazAz, A1, Az, A4, As)
holds iff P(Aia1A1,AvaxAz, Az, Asg). The hypothe-
sis P(AxazA2,A1,A3,A4,As) implies by Theorem 1.5
P(AzazAz,A4,A1,A3,A5), i.e. axNAA3 = W, AcA4 N
AzAs = V', AsA1 N AsA, =W are collinear points. Using
the Pappus theorem we haR¢A;,U, W'V’ Aq, Az), i.e.
AUNV/ AL =U" UWNAA3 =V, WV NAA; =W are
collinear points. ButJ” = a; NAA4, V = A1Ar N A4Az,
W = a; N AgA1 and soP(Aja1A1, AzapAz, Ag,Az) holds,
wherefrom by Theorem 1R(Aja1A1, AvaxAz, Az, Ag) fol-
lows. Conversely, letP(Aja;Aq, AvapAr,Ag,Az), i.e.
P(A1a1A1,A2a2A2,A3,A4) holds. ThenU”, V, W' are
collinear points. The Pappus theorem implies now
P(A1,A3,U.V,U" Ag), i.e. AJAsNVU" =W, AU N
U"As = V', UV NAA =W are collinear points. But,
W = ayNAAg, V/ = AoAy NA3As, W = AzA1 N AsA
and SdD(AzazAz,A4,A1,A3,A5), P(A2a2A2,A1,Ag,A4,A5)
holds.

Figure 12

Theorem 5.4

Let p; be an ordinary Pascal set and; an one-fold spe-
cialized Pascal set such thag p- p2 and let A € p1 = p».
A line & is the tangent of pat the point A iff it is the
tangent of p at this point.

Proof. Let A1, Az, As, As € p1\ {A2} = p2\ {A2}
be four different points and le; be the tangent of
p2 at the pointA;. Then by Theorem 2.1 we have
p1 = P(A1,A2,A3,A4,As) and by Theorem 3.9p; =
p(Ara1A1,A2,A3,As4) holds. Moreover, by Theorems 2.4
and 3.10 it follows thatp; and p(A1,A2,A3,A4,As)
resp. pz and p(A1a1A1,A2,A3,A4) have the same tan-
gent at the pointAy. As As € p2 \ {A1,A2,A3,Aq} =
p(AlalAl,Az,Ag,Aq)\{Al,Az,Ag,A4}, SO by Theorem 5.3
b) it follows thatay is the tangent op(A1, Az, Az, As, As)

at the pointd; iff ay is the tangent op(A1a1A1, Az, Az, Ag)

at the same point.

Theorem 5.5
a) If AyaxAy is a flag of gA1a1A1,A2,A3,A4), then
P(A1a1A1, Az, Ag, Ag) = p(ArdnAa, AodPo, Ag).

b) If Aq € p(AlalAl,AzazAz,Ag) \ {Al,Az,Ag}, then
P(Ara1A1, ApaoA2, Ag) = p(ArauAa, Ao, Ag, Aa).

Proof. The hypothesis of a) resp. b) implies
P(Aja1A1, AazAr, Aq,A3) by Theorem 1.7, i.e. a3 N
AAL=U, AJAoNA4A3 =V, apNA3A; =W are oollinear
points (Fig. 13).

Figure 13

We must prove thatX € p(AjaiAg,Az,Az Aq) iff
X € p(AraiAg, AvapAo, Az). The statement is ob-
vious if X € {A1,A2,A3,As}. Let be now X #
A1, A2, Az, As. Because of Theorem 1.5 and 1.6
we must show that P(AjaiA1,As,A1,A2,X) holds
iff P(Ara1A1,As, AvapA2,X) holds. If we have
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P(Ara1A1, Az, Aq, A2, X), then ag N A4A2 = U, AlAz N
AX =V, AsAsN XA =W’ are collinear points. As
the linesW/Ag, AjA,, UW pass through the point,
so Desargues theorem implies thatU N AW = U”,
UW NWA =V, WA; NAzA; =W are collinear points.
But, U" =a;Nay, V' = AJAzNAX, W = AzAo N XA
and so P(Aja1A1,As, AvapAz,X) holds.  Conversely,
if P(Aja1A1,As,AvapA2,X) holds, then u”, v, w”
are collinear points. As the line&/’Az, A1V, U"W
pass through the poinfA, so by Desargues theorem
AU NVW=U, U'W' NWh =V, WA NAV =W
are collinear points. But) = a;NA4A2, V' = AjJAsNAX,
W = AsAsN XA and we havé(AjaiAr, Az, Ag, Az, X).

Theorem 5.6

If A1, Ap, Ag are three different points of an one-fold spe-
cialized Pascal set p and aa, are the tangents of p at the
points A, A, respectively, then p is equal to the two-fold
specialized Pascal set fya; A1, AvapAz, Az). Conversely,

if A1, Ao, Az, A4 are four different points of a two-fold spe-
cialized Pascal set p and,ahe tangent of p at the point
A, then p is equal to the one-fold specialized Pascal set
P(Ara1A1, Az, Az, Ag).

Proof. Let p be an one-fold specialized Pascal s&f,
Ay, Az € p three different points andy, ay the tan-
gents ofp at the pointsAs, Ay, respectively. There is a
pointAs € p\ {A1,A2,As} and by Theorem 3.9 we have
p = p(AraiA1,A2,A3,A1). According to Theorem 3.10
a4 is the tangent op(Ara1A1, A2, Az, As4) at the pointAy.
Therefore, Theorem 5.5 impligg(Aja1A1, A2, Az, A1) =
p(AraaA1, AcaxA2,Az).  Conversely, letp be a two-
fold specialized Pascal sef1,Az,A3,A4 € p four dif-
ferent points anda; the tangent ofp at the pointA;.
According to Theorem 4.8 there is the tangemt of

p at the pointAy and because of Theorem 4.7 we
have the equalityp = p(Aja1A1, AxazAr,Az). As As €
P(A1a1A1, A2axA2,Az) \ {A1,A2,As}, so Theorem 5.5 im-
plies p(AlalAl,AzazAz,Ag) = p(AlalAl,Az,A37A4).

Theorem 5.7

Let AvapAs be a flag of pA1a1A1,A2,A3,Ax). Aline & is
the tangent of PAja1A1, A, Az, As) at the point A iff it is
the tangent of PAra1A1, AvapAz, Az) at the same point.

Proof. The hypothesi®(AjaiAr, AvasAz, Az, As) is the

two-fold specialized Pascal set such that=p p2 and let
Az € p1 = pz2. Aline & is the tangent of pat the point A
iff it is the tangent of pat this point.

Proof. Let A1,A2, A1 € p1\ {As} = p2\ {As} be three
different points and let;, a; be the tangents op, at
the pointsA;, Az, respectively. Then by Theorem 3.9 we
havep: = p(Ar1aiA1,A2,AsA4) and by Theorem 4.1, =
p(Ara1A1, AxazAz, Az). Moreover, by Theorem 3.10 resp.
Theorem 4.8 it follows thap; and p(AiaiA1, A2, Az, As)
resp. pz and p(Ara1A1, AxaxA2,Az) have the same tan-
gent at the pointAs. As A4 € p2 \ {A1,A2, A3} =
P(A1a1A1, A2axA2,Az) \ {A1,A2,A3} so by Theorem 4.5 it
follows thatas is the tangent op(Aja1A1, A2, Az, As) at
the pointAs iff it is the tangent ofp(Ara1A1, AvaxAz, Az)

at this point.

Any ordinary Pascal set, any one-fold specialized Pascal
set and any two-fold specialized Pascal set are said to be
a Pascal setBecause of Theorems 5.1 and 5.5 any Pascal
set is simultaneously an ordinary Pascal set, an one-fold
specialized Pascal set, and a two-fold specialized Pascal
set.

6 Pascal-Brianchon sets

A simple 6-line aayazasasag is a set of six linesy, ap,

as, as, as, ag taken in this cyclic order in which any two
consecutive lines and any other line are non-concurrent.
We say that this 6-line is &rianchonian 6-lineand we
write B(ay,ap,as, a4, as,ag) if the lines(a; Nay)(asNas),
(apNag)(asNasg), (azNas)(agNay) are concurrent.

The Pappus theorem can be stated now in the dual form:

If a1, a3, as resp. ap, a4, ag are concurrent lines then
B(a1,a2,a3,a4,8s, ).

Now, we shall dualize the whole above-mentioned
theory. E.g. atwo-fold specialized simple 6-line
atArapapAvazazay of type 1lis a set of four linesas,

ay, as, a4 taken in this cyclic order in which any three
lines are non-concurrent, and of two poimts, A, such
that AiIa; iff i = j. We say that this 6-line is &ri-
anchonian two-fold specialized 6-line of typeahd we
write B(ajAjaz,axAxap,az,a4) if the lines Aj(ax N az),

same as the hypothesis of Theorem 4.5 and so the proofai Naz)(azNas), A2(asNap) are concurrent. Awo-

is the same as the proof of Theorem 4.5.

Theorem 5.8
Let m be an one-fold specialized Pascal set and g
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fold specialized Brianchon setetermined by two flags
arAra1, apAzaz and a lineag such thatAiIa; iff i = j is
the set of lined(ajAra1, a2A0az,a3) = {ag,az,a3} U {x|
B(atArag, aAzaz,a3,x) } .
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Atangent of a Pascal set at one of its points has for the dualof b, then the ordered paiip,b) is said to be &ascal-

the notion of goint of contacbf a Brianchon set with one
of its lines.

Now, we can prove:

Theorem 6.1

Brianchon setlf A € pis a pointandi € b a line such that
AaAis a flag ofp, i.e. aAais a flag ofb, then we say that
(Aa) is aflag of (p,b).

According to Theorems 2.1, 3.9, 4.7 and their duals the
following theorem follows:

The set of tangents of a Pascal set is a Brianchon set. Con-
versely, the set of points of contact of a Brianchon set is a 1 Neorem 6.2

Pascal set.

Proof. It suffices to prove only the first statement. Let
p be the given Pascal set aldai;A1, AcaxAz, AsazAsz
three different flags ofp. Let AaA be any flag of
p. We shall prove that is a line of the Brianchon
set B(ajA1a1,a2A282,a3). The statement is trivial if
A€ {A1,Ax,As}, i.e. ac€ {a,a,a3}. Let be now
A #£ A Ap Ag, e, a#£ ag,ap,az. We must show that
B(ajArag,aA0ap,a3,a8) holds. By the hypothesis we
have P(AlalAl,Az,Agagag,A), P(A2a2A2,A1,AaAAg),
P(AlalAl,Az,AaAAg) and P(AzazAz,Al,AgagAg,A), i.e.
the triples of pointay Naz = V", AJAC NAZA=W, AcAzN
AAL =U; axna=V, AAINAA =W, AJANAZA; =
U, atna= v/, AA NAAs =W, AVANA3A; =V and
anNaz=U" AAINAA =W, AiAsNAA =V are
collinear (Fig. 14). Therefore, we haW’, V'TUW, and
U/, U"IVW, i.e. V', V", W resp.U’, U”, W are collinear
points. As the linesAiAz, (a1 Nag)(azna) = V"V/,
(agnay)(anag) = U"U’ pass through the point/, so
B(ajAsag, a3, a2Az2a2,a) holds, wherefrom by the dual of
Theorem 1.8(a1Ara1,a2Azaz, a3, a) follows.

Figure 14

If pis a Pascal set artwla Brianchon set such thhktis the
set of tangents o, i.e. pis the set of points of contact

A Pascal-Brianchon set is uniquely determined by:

a) any five different of its points;

b) anyone of its flaggA,a) and any three of its points
which are mutual different and different from A;

c) any two different of its flag&,a1), (Az,a2) and any-
one of its points different from;4and A;

d) any two different of its flageAs, a1), (A2,a2) and any-
one of its lines different fromyaand &;

e) anyone of its flag&, a) and any three of its lines which
are mutual different and different from a;

f) any five different of its lines.
Theorems 2.5, 3.6 and 4.3 and their duals imply:

Theorem 6.3
If (A,a) is a flag of a Pascal-Brianchon sép,b) and
A1 € p, & € b, then ATIa implies A = A and Ala; im-
plies a = a.

Let us prove the following theorem.

Theorem 6.4

Let(A1,a1) be a flag of a Pascal-Brianchon sgi, b). If by
is any line such that Afb; and by # a3, then there is one
and only one point X such thatI¥; and X< p\ {A¢}.
Dually, if By is any point such that By and By # A,
then there is one and only one line x such thar»Band
xe€ b\ {a1}.

Proof. It suffices to prove the statement for an ordinary
Pascal sep, any flagAia;A; of p and any lineb; such
thatA1Ib; andb; # &;. Atfirst let us prove the existence
of the required poinX. Let Ay, Az,As,As € p\ {A1} be
four different points. The statement of theorem is obvi-
ous if AiIby, for anyi € {2,3,4,5}. Let be furtherAy,

Az, A4, As non-incident withb;. Put AjA> N A4As = U,
AsAsNbr =W, A AsNUW =V, biNAgV = X. If it
wereX = Ay, then would beP(A1b1A1, A2, Az, As, As) be-
cause of the collinearity of the pointg N AzA; = W,

17
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AAo NALAs = U, AcAsNAsA; = V. But, thenAibiAp Now, the definitions of various types of Pascal and Bri-
would be a flag op, which is in contradiction withp; # a;. anchon sets and of tangents of Pascal sets or of points of
Therefore, we hav¥ # A;. The pointsA1 A, NAAs = U, contact of Brianchon sets imply:

AAsNAsX =V, AsAsN XA =W are collinear and we

haveP(A1, A2,As, Ag,As,X), i.e. X € p. Let nowX’' be  Theorem 6.5 (generalized Pascal theorem)

a point such thaX'1b; and X" € p\ {A1}. Because of A simple 6-pointis a Pascalian 6-point iff it is inscribed to
non-collinearity of any three different points pft follows a Pascal-Brianchon set.

necessarily)<’ = X.

Theorem 6.4 implies that any Pascal or Brianchon set con-Theorem 6.6 (generalized Brianchon theorem)
tainsn+ 1 points resp. lines, whereis the order (finite or A simple 6-line is a Brianchonian 6-line iff it is circum-
infinite) of the projective plane. scribed to a Pascal-Brianchon set.

In virtue of Theorem 6.4 we can define two new notions.

Let (A, a) be a flag of a Pascal-Brianchon $ptb). If cis References

any line such thatIcandc # a, then the poinK such that

XIcandX € p\ {A} is said to behe second intersection [1] LIEBMANN H., Synthetische Geometyieleubner,
of the linec with the Pascal sqd. If c = a, then we say that Leipzig-Berlin, 1934.

Alis the second intersection of the linvith p. If Cis any
point, such thaCIa andC # A, then the linex such that
Cixandx e b\ {a} is said to behe second tangeifitom
the pointC onto the Brianchon sét If C = A, then we say
thata is the second tangent from the po@hbntob.

We shall say that the simple 6-poinfsA2AzA4AsAs,
Ara1 A1ALAALAs, Arai Ar Ao Ao AsAg, Aran At ArAzazAsAy,

[2] VOLENEC V., “Projective definition of conic with-
out use of theory of projectivities”, Glasnik Mat.
12(32)(1977), 323-326.
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the Simp|e 6-lines aiapazazasag, aiAjajarazasas, Faculty of Natural Sciences, University of Zagreb
a1 AjagapAvapazay, ajA1a; axagAgazay OF agAjajaxAcaragAzas Bijenitka 30, Zagreb, Croatia
arecircumscribedo a Pascal-Brianchon s@t, b) if Aj € p e-mail: volenec®@math.hr
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