A fixed point theorem for multi-maps satisfying an implicit relation on metrically convex metric spaces

I. Altun^{*}, H. A. Hancer[†] and D. Turkoglu[‡]

Abstract. In this paper, we give a fixed point theorem for multivalued mapping satisfying an implicit relation on metrically convex metric spaces. This result extends and generalizes some fixed point theorem in the literature.

Key words: fixed point, multi-maps, implicit relation, metrically convex metric space

AMS subject classifications: Primary 54H25; Secondary 47H10

Received February 8, 2006 Accepted March 8, 2006

1. Introduction

Let (X, d) be a metric space. Then X is said to be metrically convex if for every pair $x, y \in X, x \neq y$, there is a point $z \in X$ such that d(x, y) = d(x, z) + d(z, y). We need the following lemma in the sequel.

Lemma 1 [[1]]. Let K be a non-empty and closed subset of a metrically convex metric space X. Then for any $x \in K$ and $y \notin K$, there exists a point $z \in \partial K$ such that d(x,y) = d(x,z) + d(z,y), where ∂K denotes the boundary of K.

Let CB(X) denote the family of all non-empty closed and bounded subsets of X. Denote for $A, B \in CB(X)$

$$D(A, B) = \inf\{d(a, b) : a \in A, b \in B\},$$
(1)

$$\delta(A,B) = \sup\{d(a,b) : a \in A, b \in B\}$$
(2)

and

$$H(A,B) = \max\{\sup_{x \in A} d(x,B), \sup_{y \in B} d(y,A)\}.$$
(3)

*Department of Mathematics, Faculty of Science and Arts, Gazi University, 06500 Teknikokullar, Ankara, Turkey, e-mail: ialtun@gazi.edu.tr

[†]Department of Mathematics, Faculty of Science and Arts, Gazi University, 06500 Teknikokullar, Ankara, Turkey, e-mail: haslan@gazi.edu.tr

 $^{^{\}ddagger}$ Department of Mathematics, Faculty of Science and Arts, Gazi University, 06500 Teknikokullar, Ankara, Turkey, e-mail: dturkoglu@gazi.edu.tr

Note that $D(A, B) \leq H(A, B) \leq \delta(A, B)$. Function H is a metric on CB(X) and is called a Hausdorff metric. It is well known that if X is a complete metric space, then so is the metric space (CB(X), H).

Itoh [4] proved a fixed point theorem for non-self maps $F: K \to CB(X)$ satisfying certain contraction condition in terms of Hausdorff metric H on CB(X)under the boundary condition $F(\partial K) \subset K$. Rhoades [7] generalized this result to a wider class of non-self multi-maps on K. Recently Dhage [2] has proved a fixed point theorem for non-self multi-maps on K satisfying a slightly stronger contraction condition than that in Rhoades [7] and under a weaker boundary condition. In Section 2 of this paper we give an implicit relation and some examples for this relation. In Section 3, we prove a fixed point theorem for non-self multi-maps on K satisfying an implicit relation.

2. Implicit relation

Implicit relations on metric space have been used in many articles (see [3], [5], [6], [8]).

Let R_+ be the set of all non-negative real numbers and let \mathcal{T} be the set of all continuous functions $T: R_+^5 \to R$ satisfying the following conditions:

 $T_1: T(t_1, ..., t_5)$ is non-decreasing in t_1 and non-increasing in $t_2, ..., t_5$.

 T_2 : there exist two constants $a,b \geq 0$, 2a+3b < 1 such that the inequality

$$T(u, v, v, w, v + w) \le 0 \tag{4}$$

implies $u \le \max\{(a+b)v + bw, (a+b)w + bv\}.$

 $T_3: \ T(u,0,0,u,u) > 0, \\ T(u,0,u,0,u) > 0 \ \text{and} \ T(u,u,0,0,2u) > 0, \\ \forall u > 0.$

Remark 1. Note that, if u = w in T_2 , then the inequality $T(u, v, v, w, v+w) \leq 0$ implies $u \leq \frac{a+b}{1-b}v$.

Now we give some examples.

Example 1. Let $T(t_1, ..., t_5) = t_1 - \alpha \max\{t_2, t_3, t_4\} - \beta t_5$, where $\alpha, \beta \ge 0$ and $2\alpha + 3\beta < 1$.

 $\begin{array}{l} T_1: \ Obvious. \ T_2: \ Let \ T(u,v,v,w,w+v) = u - \alpha \max\{w,v\} - \beta(w+v) \leq 0. \ Thus \\ u \leq \max\{(\alpha + \beta)v + \beta w, (\alpha + \beta)w + \beta v\}. \ T_3: \ T(u,0,0,u,u) = T(u,0,u,0,u) = \\ u(1 - \alpha - \beta) > 0 \ and \ T(u,u,0,0,2u) = u(1 - \alpha - 2\beta) > 0, \forall u > 0. \ Therefore \ T \in \mathcal{T}. \\ \textbf{Example 2. } \ Let \ T(t_1,...,t_5) = t_1 - m \max\{t_2,t_3,t_4,\frac{1}{2}t_5\}, \ where \ 0 \leq m < \frac{1}{2}. \end{array}$

 $T_1: Obvious. T_2: Let T(u, v, v, w, w + v) = u - m \max\{w, v\} \le 0.$ Thus $u \le \max\{mw, mv\}$ and so T_2 is satisfying with a = m, b = 0. $T_3: T(u, 0, 0, u, u) = T(u, 0, u, 0, u) = T(u, 0, 0, 2u) = u(1 - m) > 0, \forall u > 0.$ Therefore $T \in \mathcal{T}$.

Example 3. Let $T(t_1, ..., t_5) = t_1 - (\alpha t_2 + \beta t_3 + \gamma t_4)$, where $\alpha, \beta, \gamma \ge 0, 2\alpha + 2\beta + \gamma < 1$ and $\alpha + \beta - \gamma \ge 0$.

 T_1 : Obvious. T_2 : Let $T(u, v, v, w, w + v) = u - (\alpha v + \beta v + \gamma w) \leq 0$. Thus $u \leq (\alpha + \beta)v + \gamma w \leq \max\{(\alpha + \beta)v + \gamma w, (\alpha + \beta)w + \gamma v\}$ and so T_2 is satisfying with

 $\begin{aligned} & a = \alpha + \beta - \gamma, b = \gamma. \ T_3: T(u, 0, 0, u, u) = u(1 - \gamma) > 0, \ T(u, 0, u, 0, u) = u(1 - \beta) > 0 \\ & and \ T(u, u, 0, 0, 2u) = u(1 - \alpha) > 0, \forall u > 0. \ Therefore \ T \in \mathcal{T}. \end{aligned}$

Example 4. Let $T(t_1, ..., t_5) = t_1 - \alpha t_2 - \beta \max\{t_3, t_4\} - \gamma t_5$, where $\alpha, \beta, \gamma \ge 0$ and $2\alpha + 2\beta + 3\gamma < 1$.

 $T_1: Obvious. T_2: Let T(u, v, v, w, w+v) = u - \alpha v - \beta \max\{w, v\} - \gamma(w+v) \leq 0.$ Thus $u \leq \max\{(\alpha + \beta + \gamma)v + \beta w, (\alpha + \beta + \gamma)w + \beta v\}$ and so T_2 is satisfying with $a = \alpha + \beta + \gamma, b = \gamma. T_3: T(u, 0, 0, u, u) = T(u, 0, u, 0, u) = u(1 - \beta - \gamma) > 0$ and $T(u, u, 0, 0, 2u) = u(1 - \alpha - 2\gamma) > 0, \forall u > 0.$ Therefore $T \in \mathcal{T}$.

3. Main result

Now we give our main theorem.

Theorem 1. Let (X,d) be a metrically convex complete metric space and K a non-empty closed subset of X. Let $F: K \to CB(X)$ be a multi-map satisfying

$$T(\delta(Fx, Fy), d(x, y), D(x, Fx), D(y, Fy), D(x, Fy) + D(y, Fx)) \le 0,$$
(5)

for all $x, y \in K$, where $T \in \mathcal{T}$. Further, if $Fx \cap K \neq \phi$ for each $x \in \partial K$, then F has a fixed point $p \in K$ such that $Fp = \{p\}$ and F is continuous at p in the Hausdorff metric on X.

Proof. Let be arbitrary and consider a sequence $\{x_n\}$ in K as follows: Let $x_0 = x$ and take a point $x_1 \in Fx_0 \cap K$ if $Fx_0 \cap K \neq \phi$. Otherwise choose a point $x_1 \in \partial K$ such that

$$d(x_0, x_1') = d(x_0, x_1) + d(x_1, x_1')$$
(6)

for some $x'_1 \in Fx_0 \subset X \setminus K$. Similarly, pick $x_2 \in Fx_1 \cap K$ if $Fx_1 \cap K \neq \phi$, otherwise choose a point $x_2 \in \partial K$ such that

$$d(x_1, x_2') = d(x_1, x_2) + d(x_2, x_2')$$
(7)

for some $x'_2 \in Fx_1 \subset X \setminus K$. Continuing this way we have

$$x_{n+1} \in Fx_1 \cap K \text{ if } Fx_1 \cap K \neq \phi, \tag{8}$$

or $x_{n+1} \in \partial K$ satisfying

$$d(x_n, x_{n+1}) + d(x_{n+1}, x'_{n+1}) = d(x_n, x'_{n+1})$$
(9)

for some $x'_{n+1} \in Fx_n \subset X \setminus K$.

By the construction of $\{x_n\}$ we can write

$$\{x_n\} = P \cup Q \subset K,\tag{10}$$

where

$$P = \{x_n \in \{x_n\} : x_n \in Fx_{n-1}\}$$
(11)

and

$$Q = \{x_n \in \{x_n\} : x_n \in \partial K, x_n \notin Fx_{n-1}\}.$$
(12)

Then for any two consecutive terms x_n, x_{n+1} of the sequence $\{x_n\}$, we observe that there are only the following three possibilities:

 $(i) x_n, x_{n+1} \in P,$

(*ii*) $x_n \in P, x_{n+1} \in Q$, and

 $(iii) x_n \in Q, x_{n+1} \in P.$

First we show that $\{x_n\}$ is a Cauchy sequence in K. Now for any $x_n, x_{n+1} \in \{x_n\}$, we have the following estimates:

Case 1: Suppose that $x_n, x_{n+1} \in P$. Now since $x_{n-1}, x_n \in K$, we can use the inequality (5), then we have

$$T\left(\delta(Fx_{n-1}, Fx_n), d(x_{n-1}, x_n), D(x_{n-1}, Fx_{n-1}), \\ D(x_n, Fx_n), D(x_{n-1}, Fx_n) + D(x_n, Fx_{n-1})\right) \le 0$$
(13)

and so

$$T(d(x_n, x_{n+1}), d(x_{n-1}, x_n), d(x_{n-1}, x_n), d(x_n, x_{n+1}), d(x_{n-1}, x_n) + d(x_n, x_{n+1})) \leq 0.$$
(14)
From *Remark 1* there exist two constants $a, b \geq 0, 2a+3b < 1$ such that $d(x_n, x_{n+1}) \leq 0$.

 $\frac{a+b}{1-b}d(x_{n-1},x_n), \text{ where } \frac{a+b}{1-b} < \frac{1}{2} \text{ since } 2a+3b < 1 \text{ such that } a(x_n,x_{n+1}) \le \frac{a+b}{1-b}d(x_{n-1},x_n), \text{ where } \frac{a+b}{1-b} < \frac{1}{2} \text{ since } 2a+3b < 1.$ Case 2: Let $x_n \in P$ and $x_{n+1} \in Q$. Then $d(x_n,x_{n+1}) + d(x_{n+1},x'_{n+1}) = \frac{a+b}{1-b}d(x_n,x_n)$

Case 2: Let $x_n \in P$ and $x_{n+1} \in Q$. Then $d(x_n, x_{n+1}) + d(x_{n+1}, x'_{n+1}) = d(x_n, x'_{n+1})$ for some $x'_{n+1} \in Fx_n$. Clearly,

$$\begin{cases} d(x_n, x_{n+1}) \le d(x_n, x'_{n+1}) \\ d(x_n, x'_{n+1}) \le \delta(Fx_{n-1}, Fx_n). \end{cases}$$
(15)

Now following arguments similar to those in Case 1, we obtain

$$d(x_n, x'_{n+1}) \le \frac{a+b}{1-b} d(x_{n-1}, x_n).$$
(16)

From (15) and (16) it follows that

$$d(x_n, x_{n+1}) \le \frac{a+b}{1-b} d(x_{n-1}, x_n).$$
(17)

Case 3: Suppose that $x_n \in Q$ and $x_{n+1} \in P$. Note that then $x_{n-1} \in P$ and there is a point $x'_n \in Fx_{n-1}$ such that

$$d(x_{n-1}, x_n) + d(x_n, x'_n) = d(x_{n-1}, x'_n).$$
(18)

Now,

$$d(x_n, x_{n+1}) \le d(x_n, x'_n) + d(x'_n, x_{n+1}) \le d(x_{n-1}, x'_n) + \delta(Fx_{n-1}, Fx_n).$$
(19)

On the other hand, since $x_{n-1}, x_n \in K$, we can use inequality (5), then we have

$$T\left(\delta(Fx_{n-1}, Fx_n), d(x_{n-1}, x_n), D(x_{n-1}, Fx_{n-1}), D(x_n, Fx_n), D(x_{n-1}, Fx_n) + D(x_n, Fx_{n-1})\right) \le 0.$$
(20)

Thus we have

$$T(d(x'_{n}, x_{n+1}), d(x_{n-1}, x_{n}), d(x_{n-1}, x'_{n}), d(x_{n}, x_{n+1}), d(x_{n-1}, x_{n+1}) + d(x_{n}, x'_{n})) \le 0.$$
(21)

Using (18) we have

$$T\left(d(x'_{n}, x_{n+1}), d(x_{n-1}, x'_{n}), d(x_{n-1}, x'_{n}), d(x_{n}, x_{n+1}), \\ d(x_{n-1}, x_{n}) + d(x_{n}, x_{n+1}) + d(x_{n}, x'_{n})\right) \le 0$$
(22)

and so

$$T\left(d(x'_{n}, x_{n+1}), d(x_{n-1}, x'_{n}), d(x_{n-1}, x'_{n}), d(x_{n}, x_{n+1}), \\ d(x_{n-1}, x'_{n}) + d(x_{n}, x_{n+1})\right) \le 0.$$
(23)

From T_2 there exist two constants $a,b\geq 0$, 2a+3b<1 such that

$$d(x'_{n}, x_{n+1}) \le \max\left\{ \begin{array}{l} (a+b)d(x_{n-1}, x'_{n}) + bd(x_{n}, x_{n+1}), \\ (a+b)d(x_{n}, x_{n+1}) + bd(x_{n-1}, x'_{n}) \end{array} \right\}.$$
(24)

Therefore using (19) we have

$$d(x_n, x_{n+1}) \le d(x_{n-1}, x'_n) + \max\left\{ \begin{array}{l} (a+b)d(x_{n-1}, x'_n) + bd(x_n, x_{n+1}), \\ (a+b)d(x_n, x_{n+1}) + bd(x_{n-1}, x'_n) \end{array} \right\}$$
(25)

Now from (16) in Case 2 applied to n-1, we have

$$d(x_{n-1}, x'_n) \le \frac{a+b}{1-b} d(x_{n-2}, x_{n-1})$$
(26)

and hence from (25)

$$d(x_n, x_{n+1}) \leq \frac{a+b}{1-b} d(x_{n-2}, x_{n-1}) + \max \begin{cases} \frac{(a+b)^2}{1-b} d(x_{n-2}, x_{n-1}) + bd(x_n, x_{n+1}), \\ (a+b)d(x_n, x_{n+1}) + \frac{b(a+b)}{1-b} d(x_{n-2}, x_{n-1}) \end{cases}$$
$$= \max \begin{cases} \frac{(a+b)(1+a+b)}{1-b} d(x_{n-2}, x_{n-1}) + bd(x_n, x_{n+1}), \\ (a+b)d(x_n, x_{n+1}) + \frac{(1+b)(a+b)}{1-b} d(x_{n-2}, x_{n-1}) \end{cases} \end{cases}.$$

This implies

$$d(x_n, x_{n+1}) \le \max\{\frac{(a+b)(1+a+b)}{(1-b)^2}, \frac{(1+b)(a+b)}{(1-b)(1-a-b)}\}d(x_{n-2}, x_{n-1}).$$
 (27)
Note that $q = \max\{\frac{(a+b)(1+a+b)}{(1-b)^2}, \frac{(1+b)(a+b)}{(1-b)(1-a-b)}\} < 1.$ To see this,

2a + 3b < 1 yields

$$\begin{aligned} a+b &< 1-2b-a \\ \Rightarrow a+b+ab+b^2 &< 1-2b-a+ab+b^2 \\ \Rightarrow \frac{(a+b+ab+b^2)}{1-2b-a+ab+b^2} &< 1 \\ \Rightarrow \frac{(a+b)(1+b)}{(1-b)(1-a-b)} &< 1. \end{aligned}$$
 (28)

Similarly, again from 2a + 3b < 1 we have

$$1 > 3b
\Rightarrow \frac{3}{2} > \frac{1}{1-b}
\Rightarrow 1 > \frac{1}{2(1-b)} + \frac{1}{4}
\Rightarrow 1 > (\frac{1}{1-b} + \frac{1}{2})\frac{1}{2}
\Rightarrow 1 > (\frac{1}{1-b} + \frac{a+b}{1-b})\frac{a+b}{1-b}
\Rightarrow 1 > \frac{(1+a+b)(a+b)}{(1-b)^2}.$$
(29)

Now for any $n \in N$, we have

$$d(x_{2n}, x_{2n+1}) \le qd(x_{2n-2}, x_{2n}) \le q^n d(x_0, x_1).$$
(30)

Since n is arbitrary, one has

$$d(x_n, x_{n+1}) \le q^n d(x_0, x_1). \tag{31}$$

Then from Cases 1-3, it easily follows that $\{x_n\}$ is a Cauchy sequence in K. As K is closed, it is complete and hence $\lim_n x_n = p$ exists. We show that p is a fixed point of F. Without loss of generality, we may assume that $x_{n+1} \in Fx_n$ for some $n \in N$. Then using (5) we have

$$T(\delta(Fx_n, Fp), d(x_n, p), D(x_n, Fx_n), D(p, Fp), D(x_n, Fp) + D(p, Fx_n)) \le 0, (32)$$

and letting $n \to \infty$ we have

$$T(D(p, Fp), 0, 0, D(p, Fp), D(p, Fp)) \le 0.$$
(33)

From T_3 we have D(p, Fp) = 0 and so $p \in Fp$.

Further, we have

$$T(\delta(Fp, Fp), d(p, p), D(p, Fp), D(p, Fp), D(p, Fp) + D(p, Fp)) \le 0,$$
(34)

and so

$$T(\delta(Fp, Fp), 0, 0, 0, 0) \le 0.$$
(35)

Again from T_1 and T_3 we have $\delta(Fp, Fp) = 0$ and so $Fp = \{p\}$.

To show the uniqueness of p, let $q \neq p$ be another fixed point of F. Then

$$T(\delta(Fp, Fq), d(p, q), D(p, Fp), D(q, Fq), D(p, Fq) + D(q, Fp)) \le 0,$$
(36)

and so

$$T(d(p,q), d(p,q), 0, 0, 2d(p,q)) \le 0.$$
(37)

Again from T_3 we have p = q.

Finally, we prove the continuity of F at p. Let $\{z_n\} \subset X$ be any sequence such that $z_n \to p$ as $n \to \infty$. Now

$$T(\delta(Fz_n, Fp), d(z_n, p), D(z_n, Fz_n), D(p, Fp), D(z_n, Fp) + D(p, Fz_n)) \le 0$$
(38)

and letting $n \to \infty$ we have

$$T(\lim_{n} H(Fz_{n}, Fp), 0, \lim_{n} H(Fp, Fz_{n}), 0, \lim_{n} H(Fp, Fz_{n})) \le 0.$$
(39)

From T_3 we have $\lim_n H(Fz_n, Fp) = 0$, showing that F is continuous at p. This completes the proof.

Remark 2. Theorem 1 of [2] follows from Example 1 and Theorem 1.

Remark 3. We can have some new results from other examples and Theorem 1.

References

- L. M. BLUMENTHAL, Theory and Applications of Distance Geometry, Clarendon Press, Oxford, 1943.
- [2] B. C. DHAGE, A fixed point theorem for non-self multi-maps in metric spaces, Comment. Math. Univ. Carolinae 40(1999), 251-258.
- [3] M. IMDAD, S. KUMAR, M. S. KHAN, Remarks on some fixed point theorems satisfying implicit relations, Rad. Math. 11(2002), 135-143.
- [4] S. ITOH, Multi-valued generalized contraction and fixed point theorems, Comment. Math. Univ. Carolinae 18(1977), 247-248.
- [5] V. POPA, Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstratio Math. 32(1999), 157-163.
- [6] V. POPA, A general coincidence theorem for compatible multivalued mappings satisfying an implicit relation, Demonstratio Math. 33(2000), 159-164.
- B. E. RHOADES, A fixed point theorem for a multi-valued non-self mappings, Comment. Math. Univ. Carolinae 37(1996), 401-404.
- [8] S. SHARMA, B. DESPHANDE, On compatible mappings satisfying an implicit relation in common fixed point consideration, Tamkang J. Math. 33(2002), 245-252.