A fixed point theorem for multi-maps satisfying an implicit relation on metrically convex metric spaces

I. Altun ${ }^{*}$ H. A. Hancer ${ }^{\dagger}$ and D. Turkoglu ${ }^{\ddagger}$

Abstract

In this paper, we give a fixed point theorem for multivalued mapping satisfying an implicit relation on metrically convex metric spaces. This result extends and generalizes some fixed point theorem in the literature.

Key words: fixed point, multi-maps, implicit relation, metrically convex metric space

AMS subject classifications: Primary 54H25; Secondary 47H10
Received February 8, 2006 Accepted March 8, 2006

1. Introduction

Let (X, d) be a metric space. Then X is said to be metrically convex if for every pair $x, y \in X, x \neq y$, there is a point $z \in X$ such that $d(x, y)=d(x, z)+d(z, y)$. We need the following lemma in the sequel.

Lemma 1 [[1]]. Let K be a non-empty and closed subset of a metrically convex metric space X. Then for any $x \in K$ and $y \notin K$, there exists a point $z \in \partial K$ such that $d(x, y)=d(x, z)+d(z, y)$, where ∂K denotes the boundary of K.

Let $C B(X)$ denote the family of all non-empty closed and bounded subsets of X. Denote for $A, B \in C B(X)$

$$
\begin{align*}
& D(A, B)=\inf \{d(a, b): a \in A, b \in B\} \tag{1}\\
& \delta(A, B)=\sup \{d(a, b): a \in A, b \in B\} \tag{2}
\end{align*}
$$

and

$$
\begin{equation*}
H(A, B)=\max \left\{\sup _{x \in A} d(x, B), \sup _{y \in B} d(y, A)\right\} \tag{3}
\end{equation*}
$$

[^0]Note that $D(A, B) \leq H(A, B) \leq \delta(A, B)$. Function H is a metric on $C B(X)$ and is called a Hausdorff metric. It is well known that if X is a complete metric space, then so is the metric space $(C B(X), H)$.

Itoh [4] proved a fixed point theorem for non-self maps $F: K \rightarrow C B(X)$ satisfying certain contraction condition in terms of Hausdorff metric H on $C B(X)$ under the boundary condition $F(\partial K) \subset K$. Rhoades [7] generalized this result to a wider class of non-self multi-maps on K. Recently Dhage [2] has proved a fixed point theorem for non-self multi-maps on K satisfying a slightly stronger contraction condition than that in Rhoades [7] and under a weaker boundary condition. In Section 2 of this paper we give an implicit relation and some examples for this relation. In Section 3, we prove a fixed point theorem for non-self multi-maps on K satisfying an implicit relation.

2. Implicit relation

Implicit relations on metric space have been used in many articles (see [3], [5], [6], [8]).

Let R_{+}be the set of all non-negative real numbers and let \mathcal{T} be the set of all continuous functions $T: R_{+}^{5} \rightarrow R$ satisfying the following conditions:
$T_{1}: T\left(t_{1}, \ldots, t_{5}\right)$ is non-decreasing in t_{1} and non-increasing in t_{2}, \ldots, t_{5}.
T_{2} : there exist two constants $a, b \geq 0,2 a+3 b<1$ such that the inequality

$$
\begin{equation*}
T(u, v, v, w, v+w) \leq 0 \tag{4}
\end{equation*}
$$

implies $u \leq \max \{(a+b) v+b w,(a+b) w+b v\}$.
$T_{3}: T(u, 0,0, u, u)>0, T(u, 0, u, 0, u)>0$ and $T(u, u, 0,0,2 u)>0, \forall u>0$.
Remark 1. Note that, if $u=w$ in T_{2}, then the inequality $T(u, v, v, w, v+w) \leq 0$ implies $u \leq \frac{a+b}{1-b} v$.

Now we give some examples.
Example 1. Let $T\left(t_{1}, \ldots t_{5}\right)=t_{1}-\alpha \max \left\{t_{2}, t_{3}, t_{4}\right\}-\beta t_{5}$, where $\alpha, \beta \geq 0$ and $2 \alpha+3 \beta<1$.
$T_{1}:$ Obvious. $T_{2}: \operatorname{Let} T(u, v, v, w, w+v)=u-\alpha \max \{w, v\}-\beta(w+v) \leq 0$. Thus $u \leq \max \{(\alpha+\beta) v+\beta w,(\alpha+\beta) w+\beta v\} . T_{3}: T(u, 0,0, u, u)=T(u, 0, u, 0, u)=$ $u(1-\alpha-\beta)>0$ and $T(u, u, 0,0,2 u)=u(1-\alpha-2 \beta)>0, \forall u>0$. Therefore $T \in \mathcal{T}$.

Example 2. Let $T\left(t_{1}, \ldots, t_{5}\right)=t_{1}-m \max \left\{t_{2}, t_{3}, t_{4}, \frac{1}{2} t_{5}\right\}$, where $0 \leq m<\frac{1}{2}$.
T_{1} : Obvious. $T_{2}:$ Let $T(u, v, v, w, w+v)=u-m \max \{w, v\} \leq 0$. Thus $u \leq$ $\max \{m w, m v\}$ and so T_{2} is satisfying with $a=m, b=0 . T_{3}: T(u, 0,0, u, u)=$ $T(u, 0, u, 0, u)=T(u, u, 0,0,2 u)=u(1-m)>0, \forall u>0$. Therefore $T \in \mathcal{T}$.

Example 3. Let $T\left(t_{1}, \ldots, t_{5}\right)=t_{1}-\left(\alpha t_{2}+\beta t_{3}+\gamma t_{4}\right)$, where $\alpha, \beta, \gamma \geq 0,2 \alpha+$ $2 \beta+\gamma<1$ and $\alpha+\beta-\gamma \geq 0$.
T_{1} : Obvious. $T_{2}: \operatorname{Let} T(u, v, v, w, w+v)=u-(\alpha v+\beta v+\gamma w) \leq 0$. Thus $u \leq(\alpha+\beta) v+\gamma w \leq \max \{(\alpha+\beta) v+\gamma w,(\alpha+\beta) w+\gamma v\}$ and so T_{2} is satisfying with
$a=\alpha+\beta-\gamma, b=\gamma . T_{3}: T(u, 0,0, u, u)=u(1-\gamma)>0, T(u, 0, u, 0, u)=u(1-\beta)>0$ and $T(u, u, 0,0,2 u)=u(1-\alpha)>0, \forall u>0$. Therefore $T \in \mathcal{T}$.

Example 4. Let $T\left(t_{1}, \ldots t_{5}\right)=t_{1}-\alpha t_{2}-\beta \max \left\{t_{3}, t_{4}\right\}-\gamma t_{5}$, where $\alpha, \beta, \gamma \geq 0$ and $2 \alpha+2 \beta+3 \gamma<1$.
$T_{1}:$ Obvious. $T_{2}:$ Let $T(u, v, v, w, w+v)=u-\alpha v-\beta \max \{w, v\}-\gamma(w+v) \leq 0$. Thus $u \leq \max \{(\alpha+\beta+\gamma) v+\beta w,(\alpha+\beta+\gamma) w+\beta v\}$ and so T_{2} is satisfying with $a=\alpha+\beta+\gamma, b=\gamma . T_{3}: T(u, 0,0, u, u)=T(u, 0, u, 0, u)=u(1-\beta-\gamma)>0$ and $T(u, u, 0,0,2 u)=u(1-\alpha-2 \gamma)>0, \forall u>0$. Therefore $T \in \mathcal{T}$.

3. Main result

Now we give our main theorem.
Theorem 1. Let (X, d) be a metrically convex complete metric space and $K a$ non-empty closed subset of X. Let $F: K \rightarrow C B(X)$ be a multi-map satisfying

$$
\begin{equation*}
T(\delta(F x, F y), d(x, y), D(x, F x), D(y, F y), D(x, F y)+D(y, F x)) \leq 0 \tag{5}
\end{equation*}
$$

for all $x, y \in K$, where $T \in \mathcal{T}$. Further, if $F x \cap K \neq \phi$ for each $x \in \partial K$, then F has a fixed point $p \in K$ such that $F p=\{p\}$ and F is continuous at p in the Hausdorff metric on X.

Proof. Let be arbitrary and consider a sequence $\left\{x_{n}\right\}$ in K as follows: Let $x_{0}=x$ and take a point $x_{1} \in F x_{0} \cap K$ if $F x_{0} \cap K \neq \phi$. Otherwise choose a point $x_{1} \in \partial K$ such that

$$
\begin{equation*}
d\left(x_{0}, x_{1}^{\prime}\right)=d\left(x_{0}, x_{1}\right)+d\left(x_{1}, x_{1}^{\prime}\right) \tag{6}
\end{equation*}
$$

for some $x_{1}^{\prime} \in F x_{0} \subset X \backslash K$. Similarly, pick $x_{2} \in F x_{1} \cap K$ if $F x_{1} \cap K \neq \phi$, otherwise choose a point $x_{2} \in \partial K$ such that

$$
\begin{equation*}
d\left(x_{1}, x_{2}^{\prime}\right)=d\left(x_{1}, x_{2}\right)+d\left(x_{2}, x_{2}^{\prime}\right) \tag{7}
\end{equation*}
$$

for some $x_{2}^{\prime} \in F x_{1} \subset X \backslash K$. Continuing this way we have

$$
\begin{equation*}
x_{n+1} \in F x_{1} \cap K \text { if } F x_{1} \cap K \neq \phi, \tag{8}
\end{equation*}
$$

or $x_{n+1} \in \partial K$ satisfying

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+1}^{\prime}\right)=d\left(x_{n}, x_{n+1}^{\prime}\right) \tag{9}
\end{equation*}
$$

for some $x_{n+1}^{\prime} \in F x_{n} \subset X \backslash K$.
By the construction of $\left\{x_{n}\right\}$ we can write

$$
\begin{equation*}
\left\{x_{n}\right\}=P \cup Q \subset K \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
P=\left\{x_{n} \in\left\{x_{n}\right\}: x_{n} \in F x_{n-1}\right\} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
Q=\left\{x_{n} \in\left\{x_{n}\right\}: x_{n} \in \partial K, x_{n} \notin F x_{n-1}\right\} . \tag{12}
\end{equation*}
$$

Then for any two consecutive terms x_{n}, x_{n+1} of the sequence $\left\{x_{n}\right\}$, we observe that there are only the following three possibilities:
(i) $x_{n}, x_{n+1} \in P$,
(ii) $x_{n} \in P, x_{n+1} \in Q$, and
(iii) $x_{n} \in Q, x_{n+1} \in P$.

First we show that $\left\{x_{n}\right\}$ is a Cauchy sequence in K. Now for any $x_{n}, x_{n+1} \in$ $\left\{x_{n}\right\}$, we have the following estimates:

Case 1: Suppose that $x_{n}, x_{n+1} \in P$. Now since $x_{n-1}, x_{n} \in K$, we can use the inequality (5), then we have

$$
\begin{align*}
& T\left(\delta\left(F x_{n-1}, F x_{n}\right), d\left(x_{n-1}, x_{n}\right), D\left(x_{n-1}, F x_{n-1}\right)\right. \\
& \left.D\left(x_{n}, F x_{n}\right), D\left(x_{n-1}, F x_{n}\right)+D\left(x_{n}, F x_{n-1}\right)\right) \leq 0 \tag{13}
\end{align*}
$$

and so
$T\left(d\left(x_{n}, x_{n+1}\right), d\left(x_{n-1}, x_{n}\right), d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right), d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)\right) \leq 0$.
From Remark 1 there exist two constants $a, b \geq 0,2 a+3 b<1$ such that $d\left(x_{n}, x_{n+1}\right) \leq$ $\frac{a+b}{1-b} d\left(x_{n-1}, x_{n}\right)$, where $\frac{a+b}{1-b}<\frac{1}{2}$ since $2 a+3 b<1$.

Case 2: Let $x_{n} \in P$ and $x_{n+1} \in Q$. Then $d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+1}^{\prime}\right)=$ $d\left(x_{n}, x_{n+1}^{\prime}\right)$ for some $x_{n+1}^{\prime} \in F x_{n}$. Clearly,

$$
\left\{\begin{array}{l}
d\left(x_{n}, x_{n+1}\right) \leq d\left(x_{n}, x_{n+1}^{\prime}\right) \tag{15}\\
d\left(x_{n}, x_{n+1}^{\prime}\right) \leq \delta\left(F x_{n-1}, F x_{n}\right)
\end{array}\right.
$$

Now following arguments similar to those in Case 1, we obtain

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}^{\prime}\right) \leq \frac{a+b}{1-b} d\left(x_{n-1}, x_{n}\right) \tag{16}
\end{equation*}
$$

From (15) and (16) it follows that

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq \frac{a+b}{1-b} d\left(x_{n-1}, x_{n}\right) \tag{17}
\end{equation*}
$$

Case 3: Suppose that $x_{n} \in Q$ and $x_{n+1} \in P$. Note that then $x_{n-1} \in P$ and there is a point $x_{n}^{\prime} \in F x_{n-1}$ such that

$$
\begin{equation*}
d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n}^{\prime}\right)=d\left(x_{n-1}, x_{n}^{\prime}\right) \tag{18}
\end{equation*}
$$

Now,

$$
\begin{align*}
d\left(x_{n}, x_{n+1}\right) & \leq d\left(x_{n}, x_{n}^{\prime}\right)+d\left(x_{n}^{\prime}, x_{n+1}\right) \\
& \leq d\left(x_{n-1}, x_{n}^{\prime}\right)+\delta\left(F x_{n-1}, F x_{n}\right) \tag{19}
\end{align*}
$$

On the other hand, since $x_{n-1}, x_{n} \in K$, we can use inequality (5), then we have

$$
\begin{array}{r}
T\left(\delta\left(F x_{n-1}, F x_{n}\right), d\left(x_{n-1}, x_{n}\right), D\left(x_{n-1}, F x_{n-1}\right), D\left(x_{n}, F x_{n}\right)\right. \\
\left.D\left(x_{n-1}, F x_{n}\right)+D\left(x_{n}, F x_{n-1}\right)\right) \leq 0 . \tag{20}
\end{array}
$$

Thus we have

$$
\begin{array}{r}
T\left(d\left(x_{n}^{\prime}, x_{n+1}\right), d\left(x_{n-1}, x_{n}\right), d\left(x_{n-1}, x_{n}^{\prime}\right), d\left(x_{n}, x_{n+1}\right)\right. \\
\left.d\left(x_{n-1}, x_{n+1}\right)+d\left(x_{n}, x_{n}^{\prime}\right)\right) \leq 0 . \tag{21}
\end{array}
$$

Using (18) we have

$$
\begin{align*}
& T\left(d\left(x_{n}^{\prime}, x_{n+1}\right), d\left(x_{n-1}, x_{n}^{\prime}\right), d\left(x_{n-1}, x_{n}^{\prime}\right), d\left(x_{n}, x_{n+1}\right),\right. \\
& \left.d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)+d\left(x_{n}, x_{n}^{\prime}\right)\right) \leq 0 \tag{22}
\end{align*}
$$

and so

$$
\begin{array}{r}
T\left(d\left(x_{n}^{\prime}, x_{n+1}\right), d\left(x_{n-1}, x_{n}^{\prime}\right), d\left(x_{n-1}, x_{n}^{\prime}\right), d\left(x_{n}, x_{n+1}\right)\right. \\
\left.d\left(x_{n-1}, x_{n}^{\prime}\right)+d\left(x_{n}, x_{n+1}\right)\right) \leq 0 \tag{23}
\end{array}
$$

From T_{2} there exist two constants $a, b \geq 0,2 a+3 b<1$ such that

$$
d\left(x_{n}^{\prime}, x_{n+1}\right) \leq \max \left\{\begin{array}{c}
(a+b) d\left(x_{n-1}, x_{n}^{\prime}\right)+b d\left(x_{n}, x_{n+1}\right), \tag{24}\\
(a+b) d\left(x_{n}, x_{n+1}\right)+b d\left(x_{n-1}, x_{n}^{\prime}\right)
\end{array}\right\} .
$$

Therefore using (19) we have

$$
d\left(x_{n}, x_{n+1}\right) \leq d\left(x_{n-1}, x_{n}^{\prime}\right)+\max \left\{\begin{array}{c}
(a+b) d\left(x_{n-1}, x_{n}^{\prime}\right)+b d\left(x_{n}, x_{n+1}\right) \tag{25}\\
(a+b) d\left(x_{n}, x_{n+1}\right)+b d\left(x_{n-1}, x_{n}^{\prime}\right)
\end{array}\right\}
$$

Now from (16) in Case 2 applied to $n-1$, we have

$$
\begin{equation*}
d\left(x_{n-1}, x_{n}^{\prime}\right) \leq \frac{a+b}{1-b} d\left(x_{n-2}, x_{n-1}\right) \tag{26}
\end{equation*}
$$

and hence from (25)

$$
\begin{aligned}
d\left(x_{n}, x_{n+1}\right) \leq & \frac{a+b}{1-b} d\left(x_{n-2}, x_{n-1}\right) \\
& +\max \left\{\begin{array}{c}
\frac{(a+b)^{2}}{1-b} d\left(x_{n-2}, x_{n-1}\right)+b d\left(x_{n}, x_{n+1}\right), \\
(a+b) d\left(x_{n}, x_{n+1}\right)+\frac{b(a+b)}{1-b} d\left(x_{n-2}, x_{n-1}\right)
\end{array}\right\} \\
= & \max \left\{\begin{array}{c}
\frac{(a+b)(1+a+b)}{1-b} d\left(x_{n-2}, x_{n-1}\right)+b d\left(x_{n}, x_{n+1}\right), \\
(a+b) d\left(x_{n}, x_{n+1}\right)+\frac{(1+b)(a+b)}{1-b} d\left(x_{n-2}, x_{n-1}\right)
\end{array}\right\} .
\end{aligned}
$$

This implies

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq \max \left\{\frac{(a+b)(1+a+b)}{(1-b)^{2}}, \frac{(1+b)(a+b)}{(1-b)(1-a-b)}\right\} d\left(x_{n-2}, x_{n-1}\right) \tag{27}
\end{equation*}
$$

Note that $q=\max \left\{\frac{(a+b)(1+a+b)}{(1-b)^{2}}, \frac{(1+b)(a+b)}{(1-b)(1-a-b)}\right\}<1$. To see this, $2 a+3 b<1$ yields

$$
\begin{align*}
& a+b<1-2 b-a \\
& \Rightarrow a+b+a b+b^{2}<1-2 b-a+a b+b^{2} \\
& \Rightarrow \frac{\left(a+b+a b+b^{2}\right)}{1-2 b-a+a b+b^{2}}<1 \tag{28}\\
& \Rightarrow \frac{(a+b)(1+b)}{(1-b)(1-a-b)}<1 .
\end{align*}
$$

Similarly, again from $2 a+3 b<1$ we have

$$
\begin{align*}
& 1>3 b \\
& \Rightarrow \frac{3}{2}>\frac{1}{1-b} \\
& \Rightarrow 1>\frac{1}{2(1-b)}+\frac{1}{4} \\
& \Rightarrow 1>\left(\frac{1}{1-b}+\frac{1}{2}\right) \frac{1}{2} \tag{29}\\
& \Rightarrow 1>\left(\frac{1}{1-b}+\frac{a+b}{1-b}\right) \frac{a+b}{1-b} \\
& \Rightarrow 1>\frac{(1+a+b)(a+b)}{(1-b)^{2}} .
\end{align*}
$$

Now for any $n \in N$, we have

$$
\begin{equation*}
d\left(x_{2 n}, x_{2 n+1}\right) \leq q d\left(x_{2 n-2}, x_{2 n}\right) \leq q^{n} d\left(x_{0}, x_{1}\right) \tag{30}
\end{equation*}
$$

Since n is arbitrary, one has

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq q^{n} d\left(x_{0}, x_{1}\right) \tag{31}
\end{equation*}
$$

Then from Cases 1-3, it easily follows that $\left\{x_{n}\right\}$ is a Cauchy sequence in K. As K is closed, it is complete and hence $\lim _{n} x_{n}=p$ exists. We show that p is a fixed point of F. Without loss of generality, we may assume that $x_{n+1} \in F x_{n}$ for some $n \in N$. Then using (5) we have

$$
\begin{equation*}
T\left(\delta\left(F x_{n}, F p\right), d\left(x_{n}, p\right), D\left(x_{n}, F x_{n}\right), D(p, F p), D\left(x_{n}, F p\right)+D\left(p, F x_{n}\right)\right) \leq 0 \tag{32}
\end{equation*}
$$

and letting $n \rightarrow \infty$ we have

$$
\begin{equation*}
T(D(p, F p), 0,0, D(p, F p), D(p, F p)) \leq 0 \tag{33}
\end{equation*}
$$

From T_{3} we have $D(p, F p)=0$ and so $p \in F p$.
Further, we have

$$
\begin{equation*}
T(\delta(F p, F p), d(p, p), D(p, F p), D(p, F p), D(p, F p)+D(p, F p)) \leq 0 \tag{34}
\end{equation*}
$$

and so

$$
\begin{equation*}
T(\delta(F p, F p), 0,0,0,0) \leq 0 \tag{35}
\end{equation*}
$$

Again from T_{1} and T_{3} we have $\delta(F p, F p)=0$ and so $F p=\{p\}$.
To show the uniqueness of p, let $q(\neq p)$ be another fixed point of F. Then

$$
\begin{equation*}
T(\delta(F p, F q), d(p, q), D(p, F p), D(q, F q), D(p, F q)+D(q, F p)) \leq 0 \tag{36}
\end{equation*}
$$

and so

$$
\begin{equation*}
T(d(p, q), d(p, q), 0,0,2 d(p, q)) \leq 0 \tag{37}
\end{equation*}
$$

Again from T_{3} we have $p=q$.

Finally, we prove the continuity of F at p. Let $\left\{z_{n}\right\} \subset X$ be any sequence such that $z_{n} \rightarrow p$ as $n \rightarrow \infty$. Now

$$
\begin{equation*}
T\left(\delta\left(F z_{n}, F p\right), d\left(z_{n}, p\right), D\left(z_{n}, F z_{n}\right), D(p, F p), D\left(z_{n}, F p\right)+D\left(p, F z_{n}\right)\right) \leq 0 \tag{38}
\end{equation*}
$$

and letting $n \rightarrow \infty$ we have

$$
\begin{equation*}
T\left(\lim _{n} H\left(F z_{n}, F p\right), 0, \lim _{n} H\left(F p, F z_{n}\right), 0, \lim _{n} H\left(F p, F z_{n}\right)\right) \leq 0 \tag{39}
\end{equation*}
$$

From T_{3} we have $\lim _{n} H\left(F z_{n}, F p\right)=0$, showing that F is continuous at p. This completes the proof.

Remark 2. Theorem 1 of [2] follows from Example 1 and Theorem 1.
Remark 3. We can have some new results from other examples and Theorem 1.

References

[1] L. M. Blumenthal, Theory and Applications of Distance Geometry, Clarendon Press, Oxford, 1943.
[2] B. C. Dhage, A fixed point theorem for non-self multi-maps in metric spaces, Comment. Math. Univ. Carolinae 40(1999), 251-258.
[3] M. Imdad, S. Kumar, M. S. Khan, Remarks on some fixed point theorems satisfying implicit relations, Rad. Math. 11(2002), 135-143.
[4] S. Itoh, Multi-valued generalized contraction and fixed point theorems, Comment. Math. Univ. Carolinae 18(1977), 247-248.
[5] V. Popa, Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstratio Math. 32(1999), 157-163.
[6] V. Popa, A general coincidence theorem for compatible multivalued mappings satisfying an implicit relation, Demonstratio Math. 33(2000), 159-164.
[7] B. E. Rhoades, A fixed point theorem for a multi-valued non-self mappings, Comment. Math. Univ. Carolinae 37(1996), 401-404.
[8] S. Sharma, B. Desphande, On compatible mappings satisfying an implicit relation in common fixed point consideration, Tamkang J. Math. 33(2002), 245252.

[^0]: *Department of Mathematics, Faculty of Science and Arts, Gazi University, 06500 Teknikokullar, Ankara, Turkey, e-mail: ialtun@gazi.edu.tr
 ${ }^{\dagger}$ Department of Mathematics, Faculty of Science and Arts, Gazi University, 06500 Teknikokullar, Ankara, Turkey, e-mail: haslan@gazi.edu.tr
 \ddagger Department of Mathematics, Faculty of Science and Arts, Gazi University, 06500 Teknikokullar, Ankara, Turkey, e-mail: dturkoglu@gazi.edu.tr

