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Abstract. In this paper, we give a fixed point theorem for multi-
valued mapping satisfying an implicit relation on metrically convex met-
ric spaces. This result extends and generalizes some fixed point theorem
in the literature.
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1. Introduction

Let (X, d) be a metric space. Then X is said to be metrically convex if for every
pair x, y ∈ X,x �= y, there is a point z ∈ X such that d(x, y) = d(x, z)+ d(z, y).We
need the following lemma in the sequel.

Lemma 1 [[1]]. Let K be a non-empty and closed subset of a metrically convex
metric space X. Then for any x ∈ K and y /∈ K, there exists a point z ∈ ∂K such
that d(x, y) = d(x, z) + d(z, y), where ∂K denotes the boundary of K.
Let CB(X) denote the family of all non-empty closed and bounded subsets of

X. Denote for A,B ∈ CB(X)

D(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}, (1)

δ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B} (2)

and
H(A,B) = max{sup

x∈A
d(x,B), sup

y∈B
d(y,A)}. (3)

∗Department of Mathematics, Faculty of Science and Arts, Gazi University, 06500
Teknikokullar, Ankara, Turkey, e-mail: ialtun@gazi.edu.tr

†Department of Mathematics, Faculty of Science and Arts, Gazi University, 06500
Teknikokullar, Ankara, Turkey, e-mail: haslan@gazi.edu.tr

‡Department of Mathematics, Faculty of Science and Arts, Gazi University, 06500
Teknikokullar, Ankara, Turkey, e-mail: dturkoglu@gazi.edu.tr



18 I.Altun, H.A.Hancer and D.Turkoglu

Note that D(A,B) ≤ H(A,B) ≤ δ(A,B). Function H is a metric on CB(X) and
is called a Hausdorff metric. It is well known that if X is a complete metric space,
then so is the metric space (CB(X), H).
Itoh [4] proved a fixed point theorem for non-self maps F : K → CB(X) sat-

isfying certain contraction condition in terms of Hausdorff metric H on CB(X)
under the boundary condition F (∂K) ⊂ K. Rhoades [7] generalized this result to
a wider class of non-self multi-maps on K. Recently Dhage [2] has proved a fixed
point theorem for non-self multi-maps on K satisfying a slightly stronger contrac-
tion condition than that in Rhoades [7] and under a weaker boundary condition.
In Section 2 of this paper we give an implicit relation and some examples for this
relation. In Section 3, we prove a fixed point theorem for non-self multi-maps on
K satisfying an implicit relation.

2. Implicit relation

Implicit relations on metric space have been used in many articles (see [3], [5], [6],
[8]).
Let R+ be the set of all non-negative real numbers and let T be the set of all

continuous functions T : R5
+ → R satisfying the following conditions:

T1 : T (t1, ..., t5) is non-decreasing in t1 and non-increasing in t2, ..., t5.

T2 : there exist two constants a, b ≥ 0 , 2a+ 3b < 1 such that the inequality

T (u, v, v, w, v + w) ≤ 0 (4)

implies u ≤ max{(a+ b)v + bw, (a+ b)w + bv}.

T3 : T (u, 0, 0, u, u) > 0, T (u, 0, u, 0, u)> 0 and T (u, u, 0, 0, 2u) > 0, ∀u > 0.

Remark 1. Note that, if u = w in T2, then the inequality T (u, v, v, w, v+w) ≤ 0
implies u ≤ a+ b

1 − b
v.

Now we give some examples.
Example 1. Let T (t1, ...t5) = t1 − αmax{t2, t3, t4} − βt5, where α, β ≥ 0 and

2α+ 3β < 1.

T1 : Obvious. T2 : Let T (u, v, v, w,w+ v) = u− αmax{w, v} − β(w + v) ≤ 0. Thus
u ≤ max{(α + β)v + βw, (α + β)w + βv}. T3 : T (u, 0, 0, u, u) = T (u, 0, u, 0, u) =
u(1−α−β) > 0 and T (u, u, 0, 0, 2u) = u(1−α−2β) > 0, ∀u > 0. Therefore T ∈ T .

Example 2. Let T (t1, ..., t5) = t1 −mmax{t2, t3, t4, 1
2 t5}, where 0 ≤ m < 1

2 .

T1 : Obvious. T2 : Let T (u, v, v, w,w + v) = u − mmax{w, v} ≤ 0. Thus u ≤
max{mw,mv} and so T2 is satisfying with a = m, b = 0. T3 : T (u, 0, 0, u, u) =
T (u, 0, u, 0, u) = T (u, u, 0, 0, 2u) = u(1−m) > 0, ∀u > 0. Therefore T ∈ T .

Example 3. Let T (t1, ..., t5) = t1 − (αt2 + βt3 + γt4), where α, β, γ ≥ 0, 2α+
2β + γ < 1 and α+ β − γ ≥ 0.
T1 : Obvious. T2 : Let T (u, v, v, w,w + v) = u − (αv + βv + γw) ≤ 0. Thus
u ≤ (α+β)v+γw ≤ max{(α+β)v+γw, (α+β)w+γv} and so T2 is satisfying with
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a = α+β−γ, b = γ. T3 : T (u, 0, 0, u, u) = u(1−γ) > 0, T (u, 0, u, 0, u) = u(1−β) > 0
and T (u, u, 0, 0, 2u) = u(1− α) > 0, ∀u > 0. Therefore T ∈ T .

Example 4. Let T (t1, ...t5) = t1 − αt2 − βmax{t3, t4} − γt5, where α, β, γ ≥ 0
and 2α+ 2β + 3γ < 1.

T1 : Obvious. T2 : Let T (u, v, v, w,w+v) = u−αv−βmax{w, v}−γ(w+v) ≤ 0.
Thus u ≤ max{(α+ β + γ)v + βw, (α+ β + γ)w + βv} and so T2 is satisfying with
a = α + β + γ, b = γ. T3 : T (u, 0, 0, u, u) = T (u, 0, u, 0, u) = u(1 − β − γ) > 0 and
T (u, u, 0, 0, 2u) = u(1− α− 2γ) > 0, ∀u > 0. Therefore T ∈ T .

3. Main result

Now we give our main theorem.
Theorem 1. Let (X, d) be a metrically convex complete metric space and K a

non-empty closed subset of X. Let F : K → CB(X) be a multi-map satisfying

T (δ(Fx, Fy), d(x, y), D(x, Fx), D(y, Fy), D(x, Fy) +D(y, Fx)) ≤ 0, (5)

for all x, y ∈ K, where T ∈ T . Further, if Fx∩K �= φ for each x ∈ ∂K, then F has
a fixed point p ∈ K such that Fp = {p} and F is continuous at p in the Hausdorff
metric on X.

Proof. Let be arbitrary and consider a sequence {xn} in K as follows: Let
x0 = x and take a point x1 ∈ Fx0 ∩K if Fx0 ∩K �= φ. Otherwise choose a point
x1 ∈ ∂K such that

d(x0, x
′
1) = d(x0, x1) + d(x1, x

′
1) (6)

for some x′1 ∈ Fx0 ⊂ X\K. Similarly, pick x2 ∈ Fx1 ∩K if Fx1 ∩K �= φ, otherwise
choose a point x2 ∈ ∂K such that

d(x1, x
′
2) = d(x1, x2) + d(x2, x

′
2) (7)

for some x′2 ∈ Fx1 ⊂ X\K. Continuing this way we have

xn+1 ∈ Fx1 ∩K if Fx1 ∩K �= φ, (8)

or xn+1 ∈ ∂K satisfying

d(xn, xn+1) + d(xn+1, x
′
n+1) = d(xn, x

′
n+1) (9)

for some x′n+1 ∈ Fxn ⊂ X\K.
By the construction of {xn} we can write

{xn} = P ∪Q ⊂ K, (10)

where
P = {xn ∈ {xn} : xn ∈ Fxn−1} (11)

and
Q = {xn ∈ {xn} : xn ∈ ∂K, xn /∈ Fxn−1}. (12)
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Then for any two consecutive terms xn, xn+1 of the sequence {xn}, we observe
that there are only the following three possibilities:
(i) xn, xn+1 ∈ P,
(ii) xn ∈ P, xn+1 ∈ Q, and
(iii) xn ∈ Q, xn+1 ∈ P.
First we show that {xn} is a Cauchy sequence in K. Now for any xn, xn+1 ∈

{xn}, we have the following estimates:
Case 1: Suppose that xn, xn+1 ∈ P. Now since xn−1, xn ∈ K, we can use the

inequality (5), then we have

T (δ(Fxn−1, Fxn), d(xn−1, xn), D(xn−1, Fxn−1),
D(xn, Fxn), D(xn−1, Fxn) +D(xn, Fxn−1)) ≤ 0

(13)

and so

T (d(xn, xn+1), d(xn−1, xn), d(xn−1, xn), d(xn, xn+1), d(xn−1, xn)+d(xn, xn+1)) ≤ 0.
(14)

FromRemark 1 there exist two constants a, b ≥ 0, 2a+3b < 1 such that d(xn, xn+1) ≤
a+ b

1− b
d(xn−1, xn), where

a+ b

1− b
< 1

2 since 2a+ 3b < 1.

Case 2: Let xn ∈ P and xn+1 ∈ Q. Then d(xn, xn+1) + d(xn+1, x
′
n+1) =

d(xn, x
′
n+1) for some x

′
n+1 ∈ Fxn. Clearly,

{
d(xn, xn+1) ≤ d(xn, x

′
n+1)

d(xn, x
′
n+1) ≤ δ(Fxn−1, Fxn).

(15)

Now following arguments similar to those in Case 1, we obtain

d(xn, x
′
n+1) ≤

a+ b

1− b
d(xn−1, xn). (16)

From (15) and (16) it follows that

d(xn, xn+1) ≤
a+ b

1− b
d(xn−1, xn). (17)

Case 3: Suppose that xn ∈ Q and xn+1 ∈ P. Note that then xn−1 ∈ P and
there is a point x′n ∈ Fxn−1 such that

d(xn−1, xn) + d(xn, x
′
n) = d(xn−1, x

′
n). (18)

Now,

d(xn, xn+1) ≤ d(xn, x
′
n) + d(x′n, xn+1)

≤ d(xn−1, x
′
n) + δ(Fxn−1, Fxn). (19)

On the other hand, since xn−1, xn ∈ K, we can use inequality (5), then we have

T (δ(Fxn−1, Fxn), d(xn−1, xn), D(xn−1, Fxn−1), D(xn, Fxn),
D(xn−1, Fxn) +D(xn, Fxn−1)) ≤ 0.

(20)
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Thus we have
T (d(x′n, xn+1), d(xn−1, xn), d(xn−1, x

′
n), d(xn, xn+1),

d(xn−1, xn+1) + d(xn, x
′
n)) ≤ 0.

(21)

Using (18) we have

T (d(x′n, xn+1), d(xn−1, x
′
n), d(xn−1, x

′
n), d(xn, xn+1),

d(xn−1, xn) + d(xn, xn+1) + d(xn, x
′
n)) ≤ 0

(22)

and so
T (d(x′n, xn+1), d(xn−1, x

′
n), d(xn−1, x

′
n), d(xn, xn+1),

d(xn−1, x
′
n) + d(xn, xn+1)) ≤ 0.

(23)

From T2 there exist two constants a, b ≥ 0 , 2a+ 3b < 1 such that

d(x′n, xn+1) ≤ max
{
(a+ b)d(xn−1, x

′
n) + bd(xn, xn+1),

(a+ b)d(xn, xn+1) + bd(xn−1, x
′
n)

}
. (24)

Therefore using (19) we have

d(xn, xn+1) ≤ d(xn−1, x
′
n) + max

{
(a+ b)d(xn−1, x

′
n) + bd(xn, xn+1),

(a+ b)d(xn, xn+1) + bd(xn−1, x
′
n)

}
(25)

Now from (16) in Case 2 applied to n− 1, we have

d(xn−1, x
′
n) ≤

a+ b

1− b
d(xn−2, xn−1) (26)

and hence from (25)

d(xn, xn+1) ≤
a+ b

1 − b
d(xn−2, xn−1)

+max




(a+ b)2

1− b
d(xn−2, xn−1) + bd(xn, xn+1),

(a+ b)d(xn, xn+1) +
b(a+ b)
1− b

d(xn−2, xn−1)




= max



(a+ b)(1 + a+ b)

1− b
d(xn−2, xn−1) + bd(xn, xn+1),

(a+ b)d(xn, xn+1) +
(1 + b)(a+ b)

1− b
d(xn−2, xn−1)


 .

This implies

d(xn, xn+1) ≤ max{
(a+ b)(1 + a+ b)

(1− b)2
,
(1 + b)(a+ b)
(1− b)(1− a− b)

}d(xn−2, xn−1). (27)

Note that q = max{ (a+ b)(1 + a+ b)
(1 − b)2

,
(1 + b)(a+ b)
(1− b)(1− a− b)

} < 1. To see this,

2a+ 3b < 1 yields

a+ b < 1− 2b− a
⇒ a+ b+ ab+ b2 < 1− 2b− a+ ab+ b2

⇒ (a+ b+ ab+ b2)
1− 2b− a+ ab+ b2

< 1

⇒ (a+ b)(1 + b)
(1 − b)(1− a− b)

< 1.

(28)
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Similarly, again from 2a+ 3b < 1 we have

1 > 3b

⇒ 3
2
>

1
1− b

⇒ 1 >
1

2(1− b)
+
1
4

⇒ 1 > (
1
1 − b

+
1
2
)
1
2

⇒ 1 > (
1
1 − b

+
a+ b

1− b
)
a+ b

1− b

⇒ 1 >
(1 + a+ b)(a+ b)

(1− b)2
.

(29)

Now for any n ∈ N, we have

d(x2n, x2n+1) ≤ qd(x2n−2, x2n) ≤ qnd(x0, x1). (30)

Since n is arbitrary, one has

d(xn, xn+1) ≤ qnd(x0, x1). (31)

Then from Cases 1-3, it easily follows that {xn} is a Cauchy sequence in K. As K
is closed, it is complete and hence limn xn = p exists. We show that p is a fixed
point of F . Without loss of generality, we may assume that xn+1 ∈ Fxn for some
n ∈ N. Then using (5) we have

T (δ(Fxn, Fp), d(xn, p), D(xn, Fxn), D(p, Fp), D(xn, Fp) +D(p, Fxn)) ≤ 0, (32)

and letting n → ∞ we have

T (D(p, Fp), 0, 0, D(p, Fp), D(p, Fp)) ≤ 0. (33)

From T3 we have D(p, Fp) = 0 and so p ∈ Fp.
Further, we have

T (δ(Fp, Fp), d(p, p), D(p, Fp), D(p, Fp), D(p, Fp) +D(p, Fp)) ≤ 0, (34)

and so
T (δ(Fp, Fp), 0, 0, 0, 0) ≤ 0. (35)

Again from T1 and T3 we have δ(Fp, Fp) = 0 and so Fp = {p}.
To show the uniqueness of p, let q(�= p) be another fixed point of F. Then

T (δ(Fp, Fq), d(p, q), D(p, Fp), D(q, Fq), D(p, Fq) +D(q, Fp)) ≤ 0, (36)

and so
T (d(p, q), d(p, q), 0, 0, 2d(p, q)) ≤ 0. (37)

Again from T3 we have p = q.
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Finally, we prove the continuity of F at p. Let {zn} ⊂ X be any sequence such
that zn → p as n → ∞. Now

T (δ(Fzn, Fp), d(zn, p), D(zn, F zn), D(p, Fp), D(zn, Fp) +D(p, Fzn)) ≤ 0 (38)

and letting n → ∞ we have

T (lim
n
H(Fzn, Fp), 0, lim

n
H(Fp, Fzn), 0, lim

n
H(Fp, Fzn)) ≤ 0. (39)

From T3 we have limn H(Fzn, Fp) = 0, showing that F is continuous at p. This
completes the proof. ✷

Remark 2. Theorem 1 of [2] follows from Example 1 and Theorem 1.
Remark 3. We can have some new results from other examples and Theo-

rem 1.
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