Semi-aposyndetic continuum X is metrizable if and only if it admits a Whitney map for C(X)

IVAN LONČAR*

Abstract. The main purpose of this paper is to prove the metrizability of semi-aposyndetic continuum X which admits a Whitney map for C(X).

Key words: *metrizability, Whitney map*

AMS subject classifications: 54F15, 54C30

Received February 1, 2005 Accepted April 19, 2006

1. Introduction

All spaces in this paper are compact Hausdorff and all mappings are continuous. The weight of a space X is denoted by w(X).

A generalized arc is a Hausdorff continuum with exactly two non-separating points (end points) x, y. Each separable arc is homeomorphic to the closed interval I = [0, 1].

We say that a space X is *arcwise connected* if for every pair x, y of points of X there exists a generalized arc L with end points x, y.

Let X be a space. We define its hyperspaces as the following sets:

$$2^{X} = \{F \subseteq X : F \text{ is closed and nonempty}\},\$$

$$C(X) = \{F \in 2^{X} : F \text{ is connected}\},\$$

$$C^{2}(X) = C(C(X)),\$$

$$X(n) = \{F \in 2^{X} : F \text{ has at most } n \text{ points}\},\ n \in \mathbb{N}.$$

$$(1)$$

For any finitely many subsets $S_1, ..., S_n$, let

$$\langle S_1, ..., S_n \rangle = \left\{ F \in 2^X : F \subset \bigcup_{i=1}^n S_i, \text{ and } F \cap S_i \neq \emptyset, \text{ for each } i \right\}.$$
(2)

The topology on 2^X is the Vietoris topology, i.e., the topology with a base

 $\{\langle U_1, ..., U_n \rangle : U_i \text{ is an open subset of } X \text{ for each } i \text{ and each } n < \infty \},\$

^{*}Faculty of Organization and Informatics Varaždin, University of Zagreb, Pavlinska 2, HR-42000 Varaždin, e-mail: ivan.loncar1@vz.htnet.hr

and C(X), X(n) are subspaces of 2^X . Moreover, X(1) is homeomorphic to X.

Let X and Y be the spaces and let $f : X \to Y$ be a mapping. Define $2^f : 2^X \to 2^Y$ by $2^f(F) = f(F)$ for $F \in 2^X$. By [9, p. 170, Theorem 5.10] 2^f is continuous and $2^f(C(X)) \subset C(Y), 2^f(X(n)) \subset Y(n)$). The restriction $2^f|C(X)$ is denoted by C(f).

Let Λ be a subspace of 2^X . By a Whitney map for Λ [10, p. 24, (0.50)] we will mean any mapping $g : \Lambda \to [0, +\infty)$ satisfying

a) if $A, B \in \Lambda$ such that $A \subset B$ and $A \neq B$, then g(A) < g(B) and

b) $g({x}) = 0$ for each $x \in X$ such that ${x} \in \Lambda$.

If X is a metric continuum, then there exists a Whitney map for 2^X and C(X) ([10, pp. 24-26], [3, p. 106]). On the other hand, if X is non-metrizable, then it admits no Whitney map for 2^X [1]. It is known that there exist non-metrizable continua which admit and ones which do not admit a Whitney map for C(X) [1].

The notion of an irreducible mapping was introduced by Whyburn [12, p. 162]. If X is a continuum, a surjection $f: X \to Y$ is *irreducible* provided no proper subcontinuum of X maps onto all of Y under f. Some theorems for the case when X is semi-locally-connected are given in [12, p. 163].

A mapping $f: X \to Y$ is said to be *hereditarily irreducible* [10, p. 204, (1.212.3)] provided that for any given subcontinuum Z of X, no proper subcontinuum of Z maps onto f(Z).

A mapping $f : X \to Y$ is light (zero-dimensional) if all fibers $f^{-1}(y)$ are hereditarily disconnected (zero-dimensional or empty) [2, p. 450], i.e., if $f^{-1}(y)$ does not contain any connected subsets of cardinality larger that one (dim $f^{-1}(y) \leq$ 0). Every zero-dimensional mapping is light, and in the realm of mappings with compact fibers the two classes of mappings coincide. Every hereditarily irreducible mapping is light. If $f : X \to Y$ is monotone and hereditarily irreducible, then f is one-to-one.

We shall use the notion of inverse system as in [2, pp. 135-142]. An inverse system is denoted by $\mathbf{X} = \{X_a, p_{ab}, A\}$.

An element $\{x_a\}$ of the Cartesian product $\prod\{X_a : a \in A\}$ is called a *thread* of **X** if $p_{ab}(x_b) = x_a$ for any $a, b \in A$ satisfying $a \leq b$. The subspace of $\prod\{X_a : a \in A\}$ consisting of all threads of **X** is called the limit of the inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ and is denoted by $\lim \mathbf{X}$ or by $\lim\{X_a, p_{ab}, A\}$ [2, p. 135].

We say that an inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ is σ -directed if for each sequence $a_1, a_2, ..., a_k, ...$ of the members of A there is an $a \in A$ such that $a \ge a_k$ for each $k \in \mathbb{N}$.

Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of compact spaces with the natural projections $p_a : \lim \mathbf{X} \to X_a$, for $a \in A$. Then $2^{\mathbf{X}} = \{2^{X_a}, 2^{p_{ab}}, A\}$, $C(\mathbf{X}) = \{C(X_a), C(p_{ab}), A\}$ and $\mathbf{X}(n) = \{X_a(n), 2^{p_{ab}} | X_b(n), A\}$ form inverse systems.

Lemma 1. [5, Lemma 2]. Let $X = \lim \mathbf{X}$. Then $2^X = \lim 2^{\mathbf{X}}$, $C(X) = \lim C(\mathbf{X})$ and $X(n) = \lim \mathbf{X}(n)$.

The following theorem is an external characterization of non-metric continua which admit a Whitney map for C(X) [7, p. 398, Theorem 2.3].

Theorem 1. Let X be a non-metric continuum. Then X admits a Whitney map for C(X) if and only if for each σ -directed inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ of continua which admit Whitney maps for $C(X_a)$ and $X = \lim \mathbf{X}$ there exists a cofinal subset $B \subset A$ such that for every $b \in B$ the projection $p_b : \lim \mathbf{X} \to X_b$ is hereditarily irreducible.

In the sequel we shall use the following result [11, p. 226, Exercise 11.52].

Lemma 2. If X is a continuum and if A and B are mutually disjoint subcontinua of X, then there is a component K of $X \setminus (A \cup B)$ such that $ClK \cap A \neq \emptyset$ and $ClK \cap B \neq \emptyset$.

2. Preliminary results and definitions

The theorems stated in this section will be used in proving the main theorems in the section below.

We shall use the notion of a network of a topological space.

A family $\mathcal{N} = \{M_s : s \in S\}$ of subsets of a topological space X is a *network* for X if for every point $x \in X$ and any neighbourhood U of x there exists an $s \in S$ such that $x \in M_s \subset U$ [2, p. 170]. The *network weight* of a space X is defined as the smallest cardinal number of the form card(\mathcal{N}), where \mathcal{N} is a network for X; this cardinal number is denoted by nw(X).

Theorem 2. [2, p. 171, Theorem 3.1.19]. For every compact space X we have nw(X) = w(X).

The following theorem is the main theorem of this section.

Theorem 3. Let X be a continuum. Then $w(C(X) \setminus X(1)) = \aleph_0$ if and only if $w(X) = \aleph_0$.

Proof. If $w(X) = \aleph_0$, then $w(C(X)) = \aleph_0$. Hence, $w(C(X) \setminus X(1)) = \aleph_0$. Conversely, if $w(C(X) \setminus X(1)) = \aleph_0$, then there exists a countable base $\mathcal{B} = \{B_i : i \in \mathbb{N}\}$ of $C(X) \setminus X(1)$. For each B_i let $C_i = \bigcup \{x \in X : x \in B, B \in B_i\}$, i.e. the union of all continua B contained in B_i .

Claim 1. The family $\{C_i : i \in N\}$ is a network of X. Let X be a point of X and let U be an open subsets of X such that $x \in U$. There exists an open set V such that $x \in V \subset \operatorname{ClV} \subset U$. Let K be a component of ClV containing x. By Boundary Bumping Theorem [11, p. 73, Theorem 5.4] K is non-degenerate and, consequently, $K \in C(X) \setminus X(1)$. Now, $\langle U \rangle \cap (C(X) \setminus X(1))$ is a neighbourhood of K in $C(X) \setminus X(1)$. It follows that there exists a $B_i \in \mathcal{B}$ such that $K \in B_i \subset \langle U \rangle \cap (C(X) \setminus X(1))$. It is clear that $C_i \subset U$ and $x \in C_i$ since $x \in K \subset U$. Hence, the family $\{C_i : i \in N\}$ is a network of X.

Claim 2. $nw(X) = \aleph_0$. Apply Claim 1 and the fact that \mathcal{B} is countable.

Claim 3. $w(X) = \aleph_0$. By Claim 1 we have $nw(X) = \aleph_0$. Moreover, by *Theorem 2* $w(X) = \aleph_0$.

Corollary 1. If X is a continuum, then $w(C^2(X) \setminus C(X)(1)) = \aleph_0$ if and only if $w(X) = \aleph_0$.

Proof. By Theorem 3 $w(C(X)) = \aleph_0$. This means that $w(X) = \aleph_0$ since X is homeomorphic to $X(1) \subset C(X)$.

3. Main theorem

The concept of aposyndesis was introduced by Jones in [4].

A continuum is said to be *semi-aposyndetic* [3, p. 238, Definition 29.1], if for every $p \neq q$ in X, there exists a subcontinuum M of X such that $Int_X(M)$ contains one of the points p, q and $X \setminus M$ contains the other one. Each locally connected continuum is semi-aposyndetic.

Now we shall prove the main theorem of this paper.

Theorem 4. Semi-aposyndetic continuum X is metrizable if and only if it admits a Whitney map for C(X).

Proof. If X is metrizable, then it admits a Whitney map for C(X) ([10, pp. 24-26], [3, p. 106]). Conversely, let X admit a Whitney map $\mu : C(X) \to [0, +\infty)$. Suppose that X is non-metrizable. The remaining part of the proof is broken into several steps.

Step 1. There exists a σ -directed directed inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ of metric compact spaces X_a such that X is homeomorphic to $\lim \mathbf{X}$ [7, p. 397, Theorem 1.8].

Step 2. There exists a cofinal subset $B \subset A$ such that for every $b \in B$ the projection $p_b : \lim \mathbf{X} \to X_b$ is hereditarily irreducible. This follows from Theorem 1.

Step 3. If $\lim \mathbf{X}$ is semi-aposyndetic, then for every pair C, D of disjoint non-degenerate subcontinua of $\lim X$ there exists a non-degenerate subcontinuum $E \subset \lim X$ such that $C \cap E \neq \emptyset \neq D \cap E$ and $(C \cup D) \setminus E \neq \emptyset$. We shall consider two cases.

a) If either $\operatorname{Int}_X(C) \neq \emptyset$ or $\operatorname{Int}_X(D) \neq \emptyset$, then it suffices to apply Lemma 2 to the union $C \cup D$ and obtain a component K of $X \setminus (C \cup D)$ such that $\operatorname{Cl} K \cap C \neq \emptyset$ and $\operatorname{Cl} K \cap D \neq \emptyset$. Then $E = \operatorname{Cl} K$ is a continuum with properties $C \cap E \neq \emptyset \neq D \cap E$ and $(C \cup D) \setminus E \neq \emptyset$ since $\operatorname{Int}_X(C) \cap E = \emptyset$ or $\operatorname{Int}_X(D) \cap E = \emptyset$.

b) Assume that $\operatorname{Int}_X(C) = \emptyset$ and $\operatorname{Int}_X(D) = \emptyset$. There exist $x, y \in C$ such that $x \neq y$. Moreover, there exists a subcontinuum M of $\lim \mathbf{X}$ such that $\operatorname{Int}_{\lim \mathbf{X}}(M)$ contains one of the points x, y and $X \setminus M$ contains the other one since X is semiaposyndetic. Suppose that $x \in \operatorname{Int}_X(M)$ and $y \in X \setminus M$. If $M \cap D \neq \emptyset$, then we set E = M and we have the continuum E such that $C \cap E \neq \emptyset \neq D \cap E$ and $(C \cup D) \setminus E \neq \emptyset$ since $y \in X \setminus M$. Suppose that $M \cap D = \emptyset$. Applying Lemma 2 to the union $C \cup D \cup M$ we obtain a component K of $X \setminus (C \cup D \cup M)$ such that $\operatorname{Cl} K \cap (C \cup M) \neq \emptyset$ and $\operatorname{Cl} K \cap D \neq \emptyset$. It is clear that $x \notin \operatorname{Cl} K$. If $\operatorname{Cl} K \cap C \neq \emptyset$, then we set $E = \operatorname{Cl} K$ and obtain a continuum E such that $C \cap E \neq \emptyset \neq D \cap E$ and $(C \cup D) \setminus E \neq \emptyset$ since $x \notin \operatorname{Cl} K$. If $\operatorname{Cl} K \cap C = \emptyset$, then $\operatorname{Cl} K \cap M \neq \emptyset$ and we set $E = \operatorname{Cl} K \cup M$. Now $y \notin E$, $C \cap E \neq \emptyset \neq D \cap E$ and $(C \cup D) \setminus E \neq \emptyset$.

Step 4. Every $C(p_b) : C(\lim \mathbf{X}) \to C(p_b)(C(\lim \mathbf{X})) \subset C(X_a)$ is one-to-one. Consider the inverse system $C(\mathbf{X}) = \{C(X_a), C(p_{ab}), A\}$ whose limit is $C(\lim X)$ (Lemma 1). From Theorem 1 it follows that there exists a subset B cofinal in A such that the projections p_b are hereditarily irreducible and $C(p_b)$ are light for every $b \in B$, see [10, p. 204, (1.212.3)]. Since $\lim \mathbf{X}$ is homeomorphic to $\lim \{X_b, p_{bc}, B\}$, we may assume that B = A. Let $Y_a = C(p_a)(C(X))$. Furthermore, $C(p_a)^{-1}(X_a(1)) = X(1)$ since from the hereditary irreducibility of p_a it follows that no non-degenerate subcontinuum of X maps under p_a onto a point. We infer that $C(p_a)^{-1}[Y_a \setminus X_a(1)] = C(X) \setminus X(1)$. Let us prove that the restriction $C(p_a)|[C(X) \setminus X(1)]$ is one-to-one. Suppose that $C(p_a)|[C(X) \setminus X(1)]$ is not oneto-one. Then there exist a continuum C_a in X_a and two continua C, D in X such that $p_a(C) = p_a(D) = C_a$. It is impossible that $C \subset D$ or $D \subset C$ since p_a is hereditarily irreducible. Otherwise, if $C \cap D \neq \emptyset$, then for the continuum $Y = C \cup D$ we have that C and D are subcontinua of Y and $p_a(Y) = p_a(C) = p_a(D) = C_a$ which is impossible since p_a is hereditarily irreducible. We infer that $C \cap D = \emptyset$. There exists a non-degenerate subcontinuum $E \subset \lim \mathbf{X}$ such that $C \cap E \neq \emptyset \neq D \cap E$ and $(C \cup D) \setminus E \neq \emptyset$ since $\lim X$ is semi-aposyndetic (Step 3). Moreover, we may assume that $E \cap C \neq C$ and $E \cap D \neq D$. Now $p_a(E \cup D) = p_a(E)$ which is impossible since p_a is hereditarily irreducible. It follows that the restriction $P_a = C(p_a)|(C(X) \setminus X(1))$ is one-to-one and closed [2, p. 95, Proposition 2.1.4].

Step 5. $C(X) \setminus X(1)$ is metrizable and $w(C(X) \setminus X(1)) \leq \aleph_0$. From Step 4 it follows that P_a is a homeomorphism and $C(X) \setminus X(1)$ is metrizable. Moreover, $w(C(X) \setminus X(1)) \leq \aleph_0$ since Y_a as a compact metrizable space is separable and, consequently, second-countable [2, p. 320].

Step 6. X is metrizable. Apply Theorem 3.

Step 6 contradicts the assumption that X is non-metrizable. The proof is completed. $\hfill \Box$

Let us observe that in the proof of *Theorem 4* the semi-aposyndesis is used only in Step 3 to ensure, for every pair C, D of disjoint non-degenerate subcontinua of $\lim \mathbf{X}$, the existence of a non-degenerate subcontinuum $E \subset \lim X$ such that $C \cap E \neq \emptyset \neq D \cap E$ and $(C \cup D) \setminus E \neq \emptyset$. The existence of such continuum can be ensured in other classes of continua.

An easy proof of the following lemma is left to the reader.

Lemma 3. If X is an arcwise connected continuum, then for every pair C, D of disjoint non-degenerate subcontinua of X there exists a non-degenerate subcontinuum $E \subset X$ such that $C \cap E \neq \emptyset \neq D \cap E$ and $(C \cup D) \setminus E \neq \emptyset$.

Theorem 5. An arcwise connected continuum X is metrizable if and only if it admits a Whitney map for C(X).

Proof. Repeat the proof of *Theorem* 4 replacing b) in Step 3 by *Lemma 3.* \Box

An *arboroid* is a hereditarily unicoherent arcwise connected continuum. A metrizable arboroid is a *dendroid*.

Corollary 2. Let X be an arboroid. Then X is metrizable if and only if it admits a Whitney map for C(X).

Proof. Apply *Theorem 5.*

We say that a continuum X admits a Whitney map for $C^2(X)$ if C(X) admits a Whitney map for C(C(X)). It is known that if X is a continuum, then C(X) is arcwise connected [8, p. 1209, Theorem]. Hence, using *Theorem 5*, we obtain the following corollary.

Corollary 3. A continuum X is metrizable if and only if it admits a Whitney map for $C^2(X)$.

Proof. If X admits a Whitney map for $C^2(X) = C(C(X))$, then C(X) admits a Whitney map for $C(C(X) = C^2(X))$. From *Theorem 5* it follows that C(X) is metrizable. \Box

It is known [2, p. 171, Corollary 3.1.20] that if a compact space X is the countable union of its subspaces $X_n, n \in \mathbb{N}$, such that $w(X_n) \leq \aleph_0$, then $w(X) \leq \aleph_0$. Using this fact and theorems proved in the previous section we obtain the following theorems.

Theorem 6. Let a continuum X be the countable union of its semi-aposyndetic subcontinua. Then X is metrizable if and only if it admits a Whitney map for C(X).

Theorem 7. If a continuum X is the countable union of its arcwise connected subcontinua, then X is metrizable if and only if it admits a Whitney map for C(X).

A continuum X is said to be σ -rim-semi-aposyndetic provided for each $x \in X$ and for each open set U containing x there exists an open set V such that $x \in V \subset U$ and the boundary Bd(V) is the countable union of its semi-aposyndetic subcontinua.

Theorem 8. If a continuum X is σ -rim-semi-aposyndetic, then it is metrizable if and only if it admits a Whitney map for C(X).

Proof. It is known that if X is metrizable, then it admits a Whitney map for C(X) [10, pp. 24-26], [3, p. 106]. Conversely, let X be a σ -rim-semi-aposyndetic continuum which admits a Whitney map for C(X). We shall prove that X is rimmetrizable. Let $x \in X$ be a point of X and let U be an open set which contains x. There exists an open set V such that $x \in V \subset U$ and the boundary $Bd(V) = \bigcup \{C_i : i \in \mathbb{N}\}$ of semi-aposyndetic continua C_i . If $\mu : C(X) \to [0, \infty)$ is a Whitney map, then the restriction $\mu | C(C_i)$ is a Whitney map. From Theorem 4 it follows that every C_i is metrizable since every C_i is a semi-aposyndetic continuum. Using [2, p. 171, Corollary 3.1.20] we conclude that Bd(V) is metrizable. Finally, from [6, p. 5, Theorem 11] it follows that X is metrizable.

References

- J. J. CHARATONIK, W. J. CHARATONIK, Whitney maps—a non-metric case, Colloq. Math. 83(2000), 305-307.
- [2] R. ENGELKING, General Topology, PWN, Warszawa, 1977.
- [3] A. ILLANES, S. B. NADLER, JR., Hyperspaces: Fundamentals and Recent advances, Marcel Dekker, New York-Basel, 1999.
- [4] F. B. JONES, Aposyndetic continua and certain boundary problems, Amer. J. Math. 63(1941), 545-553.
- [5] Y. KODAMA, S. SPIEŻ, T. WATANABE, On shape of hyperspaces, Fund. Math. 100(1979), 59-67.
- [6] I. LONČAR, A note on a Whitney map for continua, Math. Commun. 6(2001), 1-9.
- [7] I. LONČAR, A fan X admits a Whitney map for C(X) iff it is metrizable, Glas. Mat. Ser. III 38 (58) (2003), 395-411.
- [8] M. M. MCWATERS, Arcs, semigroups and hyperspaces, Canad. J. Math. 20 (1968), 1207-1210.
- [9] E. MICHAEL, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71(1951), 152-182.
- [10] S. B. NADLER, Hyperspaces of Sets, Marcel Dekker, Inc., New York, 1978.

- [11] S. B. NADLER, Continuum Theory, Marcel Dekker, Inc., New York, 1992.
- [12] G. T. WHYBURN, Analytic Topology, Vol. 28, Amer. Math. Soc., Providence, R.I., 1963.