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Partitions of sets and the Riemann integral

Šime Ungar∗

Abstract. We will discuss the definition of the Riemann integral
using general partitions and give an elementary explication, without re-
sorting to nets, generalized sequences and such, of what is meant by
saying that “the Riemann integral is the limit of Darboux sums when
the mesh of the partition approaches zero”.
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1. Introduction

To define the Riemann integral one traditionally starts with a bounded real-valued
function f : I → R, where I ∈ R

n is an n-dimensional parallelepiped, and using the
Darboux sums corresponding to partitions of I, one defines Riemann integrability
and the Riemann integral for such a function (e.g. [Spivak]). Next, one defines the
Jordan measurable subsets of R

n as those bounded sets S for which the character-
istic function is Riemann integrable on some parallelepiped I containing S. Now
one defines the Riemann integral for a bounded real-valued function defined on a
Jordan measurable subsets S ⊆ R

n, by extending the given function f over some
parallelepiped I containing S by setting it equal to zero outside S, and taking its
integral over I to be the integral of f over S. Without using any measure theory,
one can define what is meant by a set of (Lebesgue’s) measure zero, and prove the
Lebesgue’s criterion for Riemann integrability, acquiring a powerful tool for proving
basic properties of the Riemann integral as well as for recognizing Jordan measur-
able sets and Riemann integrable functions defined on such sets. In this way one
obtains a sound theory of the Riemann integral.

One thing that can make one unhappy with this definition is the fact that for
the integral over a parallelepiped one uses partitions, whereas for the integral over
more general sets the definition is not so natural.

Another thing that one would like, even in the case of the Riemann integral over a
rectangle, is to make precise— in an elementary way, without using e.g. generalized
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sequences over partially ordered sets— the meaning of the phrase saying that the
Riemann integral is the limit of Darboux (or integral) sums when the mesh of the
partition tends to zero.

2. Preliminaries

In order to fix the notations, recall the definition of the Riemann integral. For
simplicity of both notation and terminology we are going to consider the case n = 2.
It will be clear that all our arguments are valid in the general case as well.

By a partition of the rectangle I = [a, b] × [c, d] ⊆ R
2 we mean a pair ρ =

(ρx, ρy) of partitions, i.e. finite ordered subsets containing the end-points, ρx :=
{a = x0 < x1 < · · · < xk = b} and ρy := {c = y0 < y1 < · · · < y� = d} of
the segments [a, b] and [c, d], respectively. Sometimes, to avoid confusion, we will
call such a partition rectangular. Given a bounded function f : I → R, denote
mij := inf f(Iij) and Mij := sup f(Iij), where Iij = [xi−1, xi] × [yj−1, yj] are the
rectangles defined by the partition ρ. Denoting by π(Iij) the area of the rectangle
Iij , one defines the lower and the upper Darboux sums as s(f, ρ) :=

∑
i,j mij π(Iij)

and S(f, ρ) :=
∑

i,j Mij π(Iij) respectively. Function f is said to be Riemann
integrable if supρ∈ρ(I) s(f, ρ) = infρ∈ρ(I) S(f, ρ), where ρ(I) denotes the set of all
partitions of the rectangle I, and this common value is called the Riemann integral
of f , denoted by

∫
I
f . Obviously, f is Riemann integrable if and only if for every

ε > 0 there exists a partition ρ such that S(f, ρ)− s(f, ρ) < ε.
A bounded set S ⊆ R

2 is said to be Jordan measurable if its characteristic
function χS is Riemann integrable over some, and hence over every rectangle I
containing S. The integral

∫
I
χS , denoted by π(S), is called the content or the

Jordan measure of the set S. The content of a rectangle is just its area. Jordan
measurable sets having content equal to zero will be called content-zero sets. They
are characterized by the property that for every positive ε they can be covered
by finitely many rectangles of their total area smaller than ε. For compact sets,
being a content-zero set is the same as having the Lebesgue’s measure equal to
zero. Therefore a bounded set is Jordan measurable if and only if its boundary is a
content-zero set.

A bounded real-valued function f defined on a Jordan measurable set S is Rie-
mann integrable if its zero-extension f̃ : I → R defined by f̃(x) := f(x) for x ∈ S
and f̃(x) := 0 for x ∈ I \ S, is Riemann integrable for some, and hence for every
rectangle I containing S, and the integral of f is defined as

∫
S
f :=

∫
I
f̃ .

3. Jordan partitions of sets and the Riemann integral

Let S ⊆ R
2 be a Jordan measurable set. A partition σ of the set S is a family

σ = {Sα}k
α=1 of Jordan measurable subsets Sα ⊆ S such that S =

⋃k
α=1 Sα and

for α 
= β the intersections Sα ∩ Sβ are content-zero sets. The set of all partitions
of the set S will be denoted by σ(S). The partition σ′ = {S′

β}β is said to refine
the partition σ = {Sα}α, denoted σ′ ≥ σ, if for each β there exists an α such that
S′

β ⊆ Sα.
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Let f : S → R be a bounded function and let σ = {Sα}α be a partition of
the Jordan measurable set S. Denote mα := inf f(Sα) and Mα := sup f(Sα),
and in analogy with the Darboux sums, define s(f, σ, S) :=

∑k
α=1mα π(Sα) and

S(f, σ, S) :=
∑k

α=1Mα π(Sα). If the partition σ′ refines σ then

s(f, σ, S) ≤ s(f, σ′, S) ≤ S(f, σ′, S) ≤ S(f, σ, S) .

The following proposition proves our first objective— that the Riemann integral
over a Jordan measurable set can be defined using partitions in the same spirit as
in the case of a rectangle.

Proposition 1. Let f : S → R be a Riemann integrable function on the Jordan
measurable set S ⊆ R

2. Then
∫

S

f = sup
σ∈σ(S)

s(f, σ, S) = inf
σ∈σ(S)

S(f, σ, S) . (1)

Moreover, if π(S) 
= 0, the above supremum and infimum can be taken over only
those partitions for which π(Sα) > 0 for all α.

Therefore for every ε > 0 there exists a partition σ of the set S such that
S(f, σ, S)− s(f, σ, S) < ε.

Proof. For every partition σ = {Sα}α of S the function f is Riemann integrable
over every Sα, and

∫
S

f =
∑

α

∫
Sα

f ≥
∑

α

∫
Sα

mα =
∑
α

mα π(Sα) .

In order to prove the first equality in (1) it suffices to show that for every ε > 0
there exists a partition σ of the set S such that

∫
S

f −
∑

α

mα π(Sα) < ε . (2)

Let I ⊇ S be a rectangle containing S and let f̃ : I → R be the zero-extension
of f . Since f̃ is Riemann integrable over I, for the given ε > 0 there exists a
rectangular subdivision ρ of I such that

∫
I

f̃ −
∑
i,j

mij(f̃)π(Iij) <
ε

2
, (3)

where mij(f̃) := inf f̃(Iij). Since the set S is Jordan measurable, its boundary ∂S
is a content-zero set, hence we can choose a partition ρ such that, in addition to (3),
it also satisfies ∑

Iij∩∂S �=∅
π(Iij) <

ε

4M
, (4)

whereM := supx∈S |f(x)| = supx∈I |f̃(x)|. (If f(x) = 0 for all x everything is zero,
so there is nothing to prove.)
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Let σ be the partition of the set S consisting of all intersections Sij := S ∩ Iij ,
which are easily shown to be Jordan measurable sets. Let us split the lower Darboux
sum as follows:

∑
i,j

mij(f̃)π(Iij) =
∑

Iij⊆Int S

mij(f̃)π(Iij) +
∑

Iij∩∂S �=0

mij(f̃)π(Iij)

+
∑

Iij⊆I\S

mij(f̃)π(Iij) . (5)

The first sum on the right-hand side equals
∑

Iij⊆Int S

mij π(Sij), since for Iij ⊆

IntS we have Sij = Iij and mij := inf f(Sij) = inf f(Iij) = inf f̃(Iij). The third
sum equals zero because f̃(x) = 0 for all x ∈ I \ S ⊆ I \ S.

Since mij(f̃) ≤M for all i, j, (4) implies that the second sum on the right-hand
side in (5) is smaller than ε/4, and therefore (3) implies

∫
I

f̃ <
∑

Iij⊆Int S

mij π(Sij) +
3
4
ε . (6)

Furthermore, since mij ≤M and π(Sij) ≤ π(Iij) for all i, j, we have

∑
Iij∩∂S �=∅

mij π(Sij) ≤
∑

Iij∩∂S �=∅
M π(Iij)

(4)
<
ε

4
. (7)

Since
∫

I
f̃ =

∫
S
f , and Sij = ∅ for Iij ⊆ S, from (6) we obtain

∫
S

f <
∑
i,j

mij π(Sij) + ε ,

which shows (2), and proves the first equality in (1).
The second equality is proved similarly. ✷

Given a partition σ = {Sα}α of the set S, define its mesh to be the number
µ(σ) := maxα diamSα.

Proposition 2. Let f : I := [a, b]× [c, d] → R be a Riemann integrable function.
Then for every ε > 0 there exists a δ > 0 such that for every partition σ = {Sα}α

of the set I with mesh µ(σ) < δ we have

S(f, σ, I)− s(f, σ, I) < ε ,

i.e. ∑
α

(Mα −mα)π(Sα) < ε .

Proof. Let us first prove the special case when the function f is continuous. By
uniform continuity, given ε > 0 let δ > 0 be such that

for all x,x′ ∈ I, ‖x− x′‖ < δ implies |f(x)− f(x′)| < ε

π(I)
. (8)
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Let σ = {Sα}α be a partition of the set I such that µ(σ) < δ. The sets Sα as well
as their closures Sα = Sα ∪ ∂Sα are Jordan measurable, and π(Sα) = π(Sα). By
compactness, mα := inf f(Sα) = min f(Sα) and Mα := sup f(Sα) = max f(Sα), so
by uniform continuity (8), Mα −mα <

ε
π(I)

. Therefore

∑
α

(Mα −mα)π(Sα) ≤
∑
α

(Mα −mα)π(Sα) < ε .

In the general case, the set D(f), the set of points where f is not continuous, is
a set of (Lebesgue) measure zero. Denote M := supx∈I |f(x)|. Given ε > 0 choose
some rectangles Ij , j ∈ N, such that

D(f) ⊆
⋃
j∈N

I̊j and
∞∑

j=1

π(Ij) <
ε

8M
. (9)

Let I ′j , j ∈ N, be rectangles concentric with Ij and of twice their area, and let
U :=

⋃
j∈N

I̊j and V :=
⋃

j∈N
I̊ ′j . Note that the restriction map f |I\U : I \ U →

[−M,M ] is continuous. Since the set I \U is closed in I, by the Tietze’s extension
theorem (e.g. [Munkres]), there exists a continuous function g : I → [−M,M ] ex-
tending f |I\U . By the special case, there exists a δ > 0 such that for every partition
σ of the set I for which µ(σ) < δ, we have

S(g, σ, I)− s(g, σ, I) <
ε

2
. (10)

Let δ′ < δ be a Lebesgue’s number for the open cover {B(x, δ
2 ) ∩ (I \ U) : x ∈

I \ V } ∪ {V } of the rectangle I. Then for every partition σ of the set I for which
µ(σ) < δ′, we have

∑
α

S(f, σ, I)− s(f, σ, I) =
∑
α

(
Mα(f)−mα(f)

)
π(Sα)

≤
∑

Sα⊆I\U

(
Mα(f)−mα(f)

)
π(Sα)

+
∑

Sα⊆V

(
Mα(f)−mα(f)

)
π(Sα) < ε .

Indeed, outside of the set U , f equals g, hence for Sα ⊆ I \ U we have Mα(f) =
Mα(g) and mα(f) = mα(g). Therefore, by (10), the first sum in the second line is
smaller then ε/2. The second sum is smaller than ε/2 because Mα(f) −mα(f) ≤
2M , and for α 
= β the sets Sα∩Sβ are content-zero sets, and therefore

∑
Sα⊆V

π(Sα) ≤
∞∑

j=1

π(I ′j) <
ε

4M
. (The inequality between the first and the second line comes from

the fact that some sets Sα may lie in both I \ U and V .) ✷

Corollary 1. Let S ⊆ R
2 be a Jordan measurable set and let f : S → R a

Riemann integrable function. Then for every ε > 0 there exists a δ > 0 such that for
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every partition σ = {Sα}α of the set S for which µ(σ) < δ, S(f, σ, S)−s(f, σ, S) < ε.
In particular,

∫
S
f − s(fσ, S) < ε.

Proof. Let I ⊇ S be a rectangle containing S and let f̃ : I → R be the zero-
extension of f . Riemann integrability of f on S means Riemann integrability of f̃
on I. By the previous proposition, given ε > 0 there exists a δ > 0 such that for
every partition σ̃ of the set I for which µ(σ̃) < δ we have S(f̃ , σ̃, I)− s(f̃ , σ̃, I) < ε.
Let σ = {Sα}α be a partition of the set S such that µ(σ) < δ, and let ρ = {Iij}i,j

be a rectangular partition of the rectangle I such that µ(ρ) < δ. Denote by σ̃ the
partition of the set I consisting of all sets Sα belonging to partition σ together with
all intersections Iij ∩ (I \ S) = Iij \ S. Then µ(σ̃) < δ, and since f̃ equals zero on
Iij \ S, we have

S(f, σ, S)− s(f, σ, S) =
∑

α

(
Mα(f)−mα(f)

)
π(Sα)

+
∑

Iij\S �=∅

(
sup f̃(Iij \ S)− inf f̃(Iij \ S)

)
π(Iij \ S)

= S(f̃ , σ̃, I)− s(f̃ , σ̃, I) < ε .

✷

The following Corollary gives an elementary explication, without resorting to
nets, generalized sequences and such, of what is meant by saying that the Riemann
integral is the limit of Darboux (or similarly integral) sums when the mesh of the
partition approaches zero.

Corollary 2. Let S ⊆ R
2 be a Jordan measurable set and let f : S → R be a

Riemann integrable function. Suppose for every δ > 0 we are given a partition σδ

of the set S with mesh µ(σδ) < δ. Then

∫
S

f = lim
δ→0

S(f, σδ, S) = lim
δ→0

s(f, σδ, S) .

Proof. By the previous Corollary, for every ε > 0 there exists a δ′ > 0 such that
for every partition σ of the set S for which µ(σ) < δ′, we have

∫
S
f − s(f, σ, S) < ε.

Therefore, for every δ < δ′ we have

0 ≤
∫

S

f − s(f, σδ, S) < ε

i.e. ∫
S

f ≥ s(f, σδ, S) >
∫

S

f − ε

and therefore ∫
S

f = sup
δ
s(f, σδ, S) = lim

δ→0
s(f, σδ, S) .

The other equality is proved similarly. ✷
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