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Data fitting with a set of two concentric spheres

Helmuth Späth∗

Abstract. We consider fitting data points in space by a set of
two concentric spheres. This problem ought to occur within computa-
tional metrology. A heuristic algorithm is developed and its efficiency is
demonstrated by some numerical example.
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1. Statement of the problem

One standard problem in computational metrology [1, Problem C6] is to find for
measured points in space two concentric spheres of minimum difference in radii that
contain all the points between them. But assuming all points to have errors it ought
to be more adequate to determine two spheres such that a suitable sum of squared
errors attains a minimum where simultaneously each point has to be associated
with one of the spheres.

A set of two concentric spheres is given by one common center (a, b, c) and two
radii r and R with R > r > 0. Some parametric representation for the smaller
sphere is given by

x(u, v) = a + r cos u sin v ,

y(u, v) = b + r sin u sin v , (1)
z(u, v) = c + r cos v, 0 ≤ u < 2π, 0 < v ≤ π

and the larger one is obtained when replacing r by R.

2. Smallest distance of some given point to some sphere

To find the minimal squared distance p2
j = p2

j(u, v) of some given point (xj , yj , zj),
j = 1, . . . , m, onto the smaller sphere requires to minimize

p2
j(u, v) = (a + r cos u sin v − xj)2 + (b + r sin u sin v − yj)2

+(c + r cos v − zj)2 (2)
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with respect to u and v. The corresponding function q2
j = q2

j (u, v) for the larger
sphere is received by replacing r by R in (2). The necessary conditions for a mini-
mum of (2) (and similarly for q2

j ) are

1
2r

∂p2
j

∂u
= sin v(cos u(yj − b) − sin u(xj − a)) = 0 , (3)

1
2r

∂p2
j

∂v
= cos v(cos u(xj − a) + sin u(yj − b)) − sin v(zj − c) = 0 . (4)

For (3) it results either

sin v = 0 (implying v = π and p2
j constant) (5)

or
tg u =

yj − b

xj − a
. (6)

From (4) it results

tg v =
cos u(xj − a) + sin u(yj − b)

zj − c
. (7)

Both expressions (6) and (7) have two solutions

u = atan
(yj − b)
(xj − a)

and u := u + π , (8)

v = atan
(

cos u(xj − a) + sin u(yj − b)
zj − c

)
and v := v + π, (9)

stemming from the fact that e.g.

tg u =
sin u

cos u
=

sin(u + π)
cos(u + π)

=
− sin u

− cos u
,

i.e. we have to choose the right signs of sin u and cos u to get the absolute minimum.
As expressions (6) and (7) do not depend on r, they are the same for q2

j .
The decision process is as follows [2]. For j = 1, . . . , m

(i) Use (6) to determine u.

(ii) Calculate suj = sin u, cuj = cos u.

(iii) If (yj − b) < 0, set suj = −suj.

(iv) If (xj − a) < 0, set cuj = −cuj.

(v) Use (7) to determine v.
(10)(vi) Calculate svj = sin v, cvj = cos v.

(vii) If (cuj(xj − a) + suj(yj − b)) < 0, set svj = −svj.

(viii) If (zj − c) < 0, set cvj = −cvj.

(ix) Store the resulting right values into arrays, i.e. set su(j) = suj, cu(j) = cuj,
sv(j) = svj, cv(j) = cvj, and use these values corresponding to the absolute
minima of p2

j and q2
j , respectively, when evaluating these expressions.
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3. The objective function

In order to set up a reasonable least squares principle we try to find two subsets V
and W of {1, . . . , m} with V ∩W = ∅, V ∪W = {1, . . . , m}, |V | ≤ 4, |W | ≤ 4 such
that the sum of squared minimal distances

S(V, W, a, b, c, r, R) =
∑
j∈V

min
u,v

p2
j(u, v) +

∑
j∈W

min
u,v

q2
j (v, v) (11)

is minimized. Here V is the set of given points associated with the smaller sphere
and W is that one for the larger sphere. Thus we have a mixed combinatorial (V, W )
and continuous (a, b, c, r, R) minimization problem without an analytic solution.

4. Some heuristic algorithm

We propose the following iterative method where (beginning with suitable starting
values for a, b, c, r, R) alternatively (V, W ) and (a, b, c, r, R) are improved such that
S is descending. This will not guarantee convergence to some local or even to a
global minimum. But numerical experience shows that the method will normally
work in the desired sense, i.e. will find a global minimum.

Step 1 [One special way of estimating starting values].
Set t = 0 (iteration counter) and S(0) = ∞. For an initial center
(a(0), b(0), c(0)) we propose the means of all given points, i.e.

a(0) = x =
1
m

m∑
j=1

xj , b(0) = y =
1
m

m∑
j=1

yj , c(0) = z =
1
m

m∑
j=1

zj . (12)

Then we calculate

h2 = min
j

(
(xj − a(0))2 + (yj − b(0))2 + (zj − c(0))2

)
,

(13)
H2 = max

j

(
(xj − a(0))2 + (yj − b(0))2 + (zj − c(0))2

)
,

i.e. the minimal and the maximal squared distance of all the given points (j =
1, . . . , m) to the defined starting center. If we now take r(0) = h and R(0) = H as
estimates, then all given points would lie between the inner and the outer sphere.
To avoid this (because not all points with errors are estimated to be such) we reduce
R(0) and increase r(0) by setting

R(0) = f ∗ H, r(0) =
1
f
∗ h with f < 1 (14)

and additionally f such that R(0) > r(0).
Step 2 [Determination of V (t) and W (t)].

Set V (t) = W (t) = ∅. For j = 1, . . . , m we use su(j), cu(j), sv(j), cv(j) from
(10) depending on (a(t), b(t), c(t)) to calculate p2

j and q2
j via (2). If p2

j < q2
j , then

j is adjoined to V (t) otherwise to W (t). Also |V | = |V (t)|, |W | = |W (t)|, and
S(t) = S(V (t), W (t), a(t), b(t), c(t), r(t), R(t)) are calculated.
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Step 3 [Updating of a, b, c, r, R].
For fixed V = V (t) and W = W (t) and corresponding values for su(j), cu(j), sv(j),
cv(j), j = 1, . . . , m from Step 2 we will minimize

S(V, W, a, b, c, r, R) =
∑
j∈V

min p2
j +

∑
j∈W

min q2
j (15)

w.r.t. a, b, c, r, R. The necessary conditions accordingly are

∂S

∂a
=

∂S

∂b
=

∂S

∂c
=

∂S

∂r
=

∂S

∂R
= 0

and result in the following linear systems of five equations and five unknowns a, b, c, r, R:


m 0 0 F (V ) F (W )

0 m 0 G(V ) G(W )

0 0 m H(V ) H(W )

F (V ) G(V ) H(V ) |V | 0

F (W ) G(W ) H(W ) 0 |W |







a

b

c

r

R




=




mx

my

mz

E(V )

E(W )




, (16)

where

F (V ) =
∑
j∈V

cu(j) sv(j) ,

G(V ) =
∑
j∈V

su(j) sv(j) ,

(17)
H(V ) =

∑
j∈V

cv(j) ,

E(V ) =
∑
j∈V

xj cu(j) sv(j) + yj su(j) sv(j) + zj cv(j) .

The coefficient matrix in (16) is symmetric. If it is nonsingular (empirically true)
there will be a unique solution of (16) and we can proceed.

Step 4. We set t := t + 1, a(t) = a, b(t) = b, c(t) = c, r(t) = r, R(t) = R and
go back to Step 2 if there was some descent for S or if t is below some given upper
bound. Otherwise stop.

5. Some numerical example

To get test data we started with (a, b, c) = (1, 2, 3), r = 4, R = 5. Then we
generated 8 points

xj = a + r cos u sin v

yj = b + r sin u sin v (j = 1, . . . , 8)
zj = c + r cos v
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where for each j a new pair of pseudo random numbers (u, v) with u equally distrib-
uted in [0, 2π) and v equally distributed in (0, π] was used. The resulting data points
were disturbed by rounding them to the next integers. Similarly for j = 9, . . . , 16
the same procedure was done with R instead of r. Putting together these data
points we got

x 1 -1 0 -1 2 2 4 5 1 -1 0 -1 3 2 5 6
y 2 1 3 4 2 3 1 1 2 1 3 5 2 3 1 1
z -1 0 -1 6 -1 -1 6 4 -2 -1 -2 7 -2 -2 6 5

Thus it can be expected that V = {1, . . . , 8} and W = {9, . . . , 16} should result
and also (a, b, c) near (1, 2, 3) and (r, R) near (4, 5). We used for the factor f in
Step 1 four values f = .7, .8, .9, 1. As the results were identical and also the course of
the iterations was very similar, we will give details only for f = .8. To characterize
V and W we introduce an integer vector p with p(j) = 1 if j ∈ V and p(j) = 2 if
j ∈ W (j = 1, . . . , m = 16).

t p

0–30 1 1 1 2 1 1 2 2 1 1 1 2 1 1 2 2
31–32 1 1 1 2 1 1 2 1 1 1 1 2 1 1 2 2
33 1 1 1 1 1 1 2 1 1 1 1 2 2 1 2 2
34 1 1 1 1 1 1 2 1 1 1 2 2 2 1 2 2

35–138 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

Table 1.

t s a b c r R

0 6.5376 1.6875 2.1875 1.3125 2.9263 5.5125
33 3.46524 1.4118 2.1721 2.3017 4.0188 5.2403
34 2.53933 1.4017 2.7472 2.5183 4.1544 5.1793
35 1.56106 1.4035 2.7647 2.6623 4.1878 5.0905
50 .18400 1.4569 2.7644 3.0095 4.1580 5.1365
75 .18354 1.4498 2.7474 3.0113 4.1562 5.1360

100 .18347 1.4470 2.7404 3.0120 4.1555 5.1358
138 .18345 1.4456 2.7369 3.0124 4.1551 5.1357

Table 2.

Table 1 shows the change of the vector p during the iterations. Thus we started
with V = {1, 2, 3, 5, 6, 9, 10, 11, 13, 14} and W = {4, 7, 8, 12, 15, 16} and ended up
(as expected) with V = {1, . . . , 8} and W = {9, . . . , 16}. Table 2 shows for t = 0
the initial values after Step 1 and the slow changes after t = 50. Other examples
showed a similar behaviour. Sometimes the initial V and W were so good that
those sets did not change through the iterations on (a, b, c, r, R).
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