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Unique representation d = 4k(k2 − 1) in
D(4)-quadruples {k − 2, k + 2, 4k, d}

Yasutsugu Fujita∗

Abstract. Let k ≥ 3 be an integer. We show that if d is a positive
integer such that the product of any two distinct elements of the set
{k−2, k+2, 4k, d} increased by 4 is a square, then d must be 4k(k2−1).
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1. Introduction

Let n be a nonzero integer. A set of m positive integers {a1, . . . , am} is called
a D(n)-m-tuple if aiaj + n is a square for all i and j with 1 ≤ i < j ≤ m.
Diophantus found a D(256)-quadruple {1, 33, 68, 105}, and Fermat found a D(1)-
quadruple {1, 3, 8, 120} (cf. [5]).

In 1969, Baker and Davenport ([2]) showed that if the set {1, 3, 8, d} is a D(1)-
quadruple, then d = 120. This result has been generalized in three directions: first,
Dujella ([7]) showed that if {k− 1, k+1, 4k, d} is a D(1)-quadruple with an integer
k ≥ 2, then d = 4k(4k2 − 1); secondly, Dujella and Pethő ([10]) showed that if
{1, 3, c, d} is a D(1)-quadruple with 3 < c < d, then d = 7c+4+4

√
(c+ 1)(3c+ 1);

and thirdly, Dujella ([8]) showed that if {F2k, F2k+2, F2k+4, d} is a D(1)-quadruple
(where Fν is the ν-th Fibonacci number), then d = 4F2k+1F2k+2F2k+3. These
results lead us to the following.

Conjecture 1 [[1]]. If {a, b, c, d} is a D(1)-quadruple with a < b < c < d, then
d = a + b + c + 2abc + 2rst, where r, s, t are positive integers given by ab + 1 =
r2, ac+ 1 = s2, bc+ 1 = t2.

Note that this conjecture immediately implies that there does not exist a D(1)-
quintuple, which is a longstanding conjecture. It has been known that there does
not exist a D(1)-sextuple and that there exist only finitely many D(1)-quintuples
([9]).

As for D(4)-quadruples, Mohanty and Ramasamy ([13]) showed that the D(4)-
quadruple {1, 5, 12, 96} cannot be extended to a D(4)-quintuple, and Kedlaya ([12])
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showed that if {1, 5, 12, d} is a D(4)-quadruple, then d = 96. This result also has
been generalized by Dujella and Ramasamy ([11]) as follows: if {F2k, 5F2k, 4F2k+2, d}
is a D(4)-quadruple, then d = 4L2kF4k+2, where Lν is the ν-th Lucas number.

In this paper, we ameliorate the result of Kedlaya in another direction.
Theorem 1. Let k ≥ 3 be an integer. If {k−2, k+2, 4k, d} is a D(4)-quadruple,

then d must be 4k(k2 − 1).
It is easy to check that {k − 2, k + 2, 4k, 4k(k2 − 1)} is a D(4)-quadruple for

k ≥ 3 (cf. [6, Section 4]). We will prove this theorem on similar lines to Theorem 1
in [7].

These results lead us to the following.
Conjecture 2 [[11]]. If {a, b, c, d} is a D(4)-quadruple with a < b < c < d,

then d = a + b + c + (abc + rst)/2, where r, s, t are positive integers given by
ab+ 4 = r2, ac+ 4 = s2, bc+ 4 = t2.

Note that this immediately implies that there does not exist a D(4)-quintuple.
It has been known that there does not exist a D(4)-8-tuple and that there exist
only finitely many D(4)-7-tuples ([11]).

In case k = 3, Theorem 1 is valid because of the result of Kedlaya; in case k is
even, say k = 2k′, Theorem 1 follows from the result on the D(1)-triple {k′−1, k′+
1, 4k′} ([7]). Hence, it suffices to show Theorem 1 on the assumption that k ≥ 5 is
an odd integer.

2. Fundamental solutions of simultaneous Diophantine equa-
tions

In this section we translate the assumption of Theorem 1 into simultaneous Dio-
phantine equations and determine their fundamental solutions.

Suppose that {k− 2, k+2, 4k, d} is a D(4)-quadruple. Then there exist integers
x, y, z such that

(k − 2)d+ 4 = x2, (k + 2)d+ 4 = y2, 4kd+ 4 = 4z2.

Eliminating d, we obtain simultaneous Diophantine equations:

(k − 2)y2 − (k + 2)x2 = −16, (1)
(k − 2)z2 − kx2 = −3k − 2, (2)
(k + 2)z2 − ky2 = −3k + 2. (3)

We describe the solutions of equations (1) and (2).
Lemma 1 [(cf. [11, Lemma 2])]. Let {a, b} be a D(4)-pair with 0 < a < b

and let r be a positive integer such that ab+ 4 = r2. There exist a positive integer
i0 and integers y(i)

0 , x(i)
0 , i = 1, . . . , i0, with the following properties:

(i) (y(i)
0 , x

(i)
0 ) is a solution of

ay2 − bx2 = 4(a− b). (4)
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(ii) y
(i)
0 and x

(i)
0 satisfy the following inequalities

1 ≤ x
(i)
0 ≤

√
a(b− a)
r − 2

, |y(i)
0 | ≤

√
(r − 2)(b− a)

a
.

(iii) If (y, x) is a positive solution of (4), then there exist i ∈ {1, . . . , i0} and an
integer m ≥ 0 such that

y
√
a+ x

√
b = (y(i)

0

√
a+ x

(i)
0

√
b)

(
r +

√
ab

2

)m

.

Proof. Although [11, Lemma 2] is concerned with a D(4)-triple {a, b, c} and
the attached equations

az2 − cx2 = 4(a− c), (5)
bz2 − cy2 = 4(b− c), (6)

one can show the statements for the equations (5) and (6) independently (see the
proof of [11, Lemma 2]). Thus, Lemma 1 follows. ✷

Lemma 2. Let k ≥ 5 be an odd integer.

(i) If (y, x) is a positive solution of (1), then there exists an integer m ≥ 0 such
that

y
√
k − 2 + x

√
k + 2 = 2(

√
k − 2 +

√
k + 2)

(
k +

√
k2 − 4
2

)m

. (7)

(ii) If (z, x) is a positive solution of (2), then there exist an integer n ≥ 0 and a
solution (z0, x0) of (2) with

1 ≤ x0 < k − 2 (8)

such that

z
√
k − 2 + x

√
k = (z0

√
k − 2 + x0

√
k)
(
k − 1 +

√
k(k − 2)

)n

. (9)

Proof. (i) Let (y, x) be a positive solution of (1). Then, replacing a, b, r in
Lemma 1 by k − 2, k + 2, k, respectively, we see that there exist an integer m ≥ 0
and a solution (y1, x1) of (1) with

1 ≤ x1 ≤
√

(k − 2)(k + 2− (k − 2))
k − 2

= 2 (10)

such that

y
√
k − 2 + x

√
k + 2 = (y1

√
k − 2 + x1

√
k + 2)

(
k +

√
k2 − 4
2

)m

.
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If x1 = 1, then

y1 = ±
√
k − 14
k − 2

,

which cannot be an integer for odd k. Hence we have x1 = 2 and y1 = ±2. However
y > 0 and

(−2√k − 2 + 2
√
k + 2)

(
k +

√
k2 − 4
2

)
= 2

√
k − 2 + 2

√
k + 2;

hence we have y1 = 2. Therefore we obtain (7).
(ii) Let (z, x) be a positive solution of (2). Then, replacing a, b, r, y in Lemma 1

by k− 2, 4k, 2(k− 1), 2z, respectively, we see that there exist an integer n ≥ 0 and
a solution (z0, x0) of (2) with

1 ≤ x0 ≤
√

(k − 2)(4k − (k − 2))
2(k − 1)− 2

=

√
3k + 2

2
< k − 2

such that (9) holds (the last inequality holds because of k ≥ 5). This completes the
proof of Lemma 2. ✷

If we express a positive solution (y, x) of (1) as y = v′m, x = vm with an integer
m in (7), then v′m and vm satisfy the following relation

v′m+1

√
k − 2 + vm+1

√
k + 2 = (v′m

√
k − 2 + vm

√
k + 2) · k +

√
k2 − 4
2

,

that is,

v′m+1 =
1
2
(kv′m + (k + 2)vm),

vm+1 =
1
2
(kvm + (k − 2)v′m),

which, together with (7), implies

v0 = 2, v1 = 2(k − 1), vm+2 = kvm+1 − vm. (11)

Similarly, if we express a positive solution (z, x) of (2) as z = w′
n, x = wn with an

integer n in (9), then w′
n and wn satisfy the following relation

w′
n+1

√
k − 2 + wn+1

√
k = (w′

n

√
k − 2 + wn

√
k)(k − 1 +

√
k(k − 2)),

that is,

w′
n+1 = (k − 1)w′

n + kwn,

wn+1 = (k − 1)wn + kw′
n,

which, together with (9), implies

w0 = x0, w1 = (k − 1)x0 + (k − 2)z0, wn+2 = 2(k − 1)wn+1 − wn. (12)
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By induction we see from (11) that vm ≡ 2 (mod (k − 2)) for all m ≥ 0 and from
(12) that wn ≡ x0 (mod (k − 2)) for all n ≥ 0. Hence if vm = wn, then we have
x0 ≡ 2 (mod (k− 2)). It follows from (8) that x0 = 2, and that z0 = ±1. Hence by
(12) we have

w0 = 2, w1 = 2(k − 1)± (k − 2), wn+2 = 2(k − 1)wn+1 − wn. (13)

If we define w−n = 2(k − 1)w−n+1 −w−n+2 for n ≥ 1 recursively, we may rephrase
(13) in terms of the two-sided sequence {wn} (n ∈ Z) as

w0 = 2, w1 = 3k − 4, wn+2 = 2(k − 1)wn+1 − wn. (14)

To sum up, we obtain the following.
Lemma 3. Let k ≥ 5 be an odd integer. Let (x, y, z) be a positive solution

of the simultaneous Diophantine equations (1) and (2). Then, there exist integers
m ≥ 0 and n such that x = vm = wn, where the sequence {vm} is given by (11) and
the two-sided sequence {wn} is given by (14).

3. A lower bound for log z

In this section, we give a lower bound for log z in terms of k.
Lemma 4. Let k ≥ 5 be an integer. If vm = wn, then we have

n ≡ 0 or − 2 (mod 2k).

Proof. We see from (11) and (14) that

(vm mod (2k − 2))m≥0 = (2, 0,−2,−2, 0, 2, 2, 0, . . .),
(wn mod (2k − 2))n≥0 = (2,−k,−2, k, 2,−k, . . . ),
(wn mod (2k − 2))n≤0 = (2, k,−2,−k, 2, k, . . . ).

Note that by the recursive formula (11) the values vm mod (2k − 2) and vm+1

mod (2k − 2) determine the value vm+2 mod (2k − 2), whence the sequence (vm

mod (2k − 2))m≥0 is periodic with period 6, and similarly that the sequences (wn

mod (2k− 2))n≥0 and (wn mod (2k − 2))n≤0 are periodic with period 4. Hence, if
vm = wn, then we may write n = 2l for some integer l. We then have

(vm mod 2k(k − 2))m≥0 = (2, 2k − 2, 2k − 2, 2, 2, 2k− 2, . . . ),
(w2l mod 2k(k − 2))l≥0 = (2,−2k + 6,−4k + 10,−6k+ 14, . . . ),
(w2l mod 2k(k − 2))l≤0 = (2, 2k − 2, 4k − 6, 6k − 10, . . . ).

We can prove by induction that for all integers l,

w2l ≡ −2lk + 2(2l+ 1) (mod 2k(k − 2)).

Hence we have

−2lk + 2(2l+ 1) ≡ 2 or 2k − 2 (mod 2k(k − 2)).
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If −2lk+2(2l+1) ≡ 2 (mod 2k(k−2)), then we have 2l(k−2) ≡ 0 (mod 2k(k−2)),
that is, n = 2l ≡ 0 (mod 2k). If −2lk + 2(2l + 1) ≡ 2k − 2 (mod 2k(k − 2)), then
we have 2(l + 1)(k − 2) ≡ 0 (mod 2k(k − 2)), that is, n = 2l ≡ −2 (mod 2k). This
completes the proof of Lemma 4. ✷

Lemma 5. Let k ≥ 5 be an integer. Let (x, y, z) be a positive solution of the
simultaneous Diophantine equations (1) and (2) with z �∈ {1, 2k2 − 1}. Then we
have

log z > 2(k − 1) log(2k − 3).

Proof. Note that if z = 1 (resp. 2k2 − 1), then d = 0 (resp. 4k(k2 − 1)). By
(9) and (14), we may write z = |sn| for some integer n, where

s0 = 1, s1 = 3k − 1, sn+2 = 2(k − 1)sn+1 − sn,

that is,

sn =
2
√
k +

√
k − 2

2
√
k − 2

(k − 1 +
√
k(k − 2))n − 2

√
k −√

k − 2
2
√
k − 2

(k − 1−
√
k(k − 2))n.

If n ≥ 0, then by k ≥ 5 we have

sn >

(
1 +

1
2

)
(k − 1 +

√
k(k − 2))n − (k − 1−

√
k(k − 2))n

> (k − 1 +
√
k(k − 2))n > (2k − 3)n;

and if n < 0, then we have

|sn| >
(
1
2
+

2
3k − 2

)
(k − 1 +

√
k(k − 2))−n − 2(k − 1−

√
k(k − 2))−n

>
1
2
(k − 1 +

√
k(k − 2))−n >

1
2
(2k − 3)−n.

Hence, if n ≥ 0, then Lemma 4 and z �= 1 = s0 imply that

z = sn > (2k − 3)2k−2;

if n < 0, then Lemma 4 and z �= 2k2 − 1 = |s−2| imply that

z = |sn| > 1
2
(2k − 3)2k > (2k − 3)2k−2.

In any case, we obtain

log z > 2(k − 1) log(2k − 3).

✷
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4. Application of a theorem of Rickert

In this section, we show that Theorem 1 holds for odd k ≥ 63, combining the results
in Section 3. with a slight modification of a theorem of Rickert (or of Bennett).

Theorem 2 [ (cf. [4, Theorem 3.2], [14, Theorem] or [15, Theorem])].
Let N ≥ 63 be an integer. Then the numbers

θ1 :=

√
N − 2
N

and θ2 :=

√
N + 2
N

satisfy

max
{∣∣∣∣θ1 − p1

q

∣∣∣∣ ,
∣∣∣∣θ2 − p2

q

∣∣∣∣
}
> (22.6N)−1q−1−λ

for all integers p1, p2, q with q > 0, where

λ :=
log(11.2N)
log(0.197N2)

< 1.

Proof. Note that the assumption N ≥ 63 implies λ < 1. All we have to do is
find those real numbers satisfying the assumption in the following lemma.

Lemma 6 [ (cf. [4, Lemma 3.1], [14, Lemma 2.1])]. Let θ1, . . . , θm be
arbitrary real numbers and θ0 = 1. Assume that there exist positive real numbers
l, p, L, P and positive integers D, f with f dividing D and with L > D, having the
following property. For each positive integer κ, we can find rational numbers pijκ

(0 ≤ i, j ≤ m) with a nonzero determinant such that f−1Dκpijκ (0 ≤ i, j ≤ m) are
integers and

|pijκ| ≤ pP κ (0 ≤ i, j ≤ m),
∣∣∣∣

m∑
j=0

pijκθj

∣∣∣∣ ≤ lL−κ (0 ≤ i ≤ m).

Then

max
{∣∣∣∣θ1 − p1

q

∣∣∣∣ , . . . ,
∣∣∣∣θm − pm

q

∣∣∣∣
}
> cq−1−λ

holds for all integers p1, . . . , pm, q with q > 0, where

λ =
log(DP )
log(L/D)

and c−1 = 2mf−1pDP
(
max{1, 2f−1l})λ .

Here, we used “κ” instead of “k” which is used in [4] and [14]. Note that l, p, L,
P , pijk in [4, Lemma 3.1] denote f−1l, f−1p, L/D, DP , f−1Dκpijκ in the lemma
above, respectively. In our situation, we takem = 2 and θ1, θ2 as in Theorem 2. The
only difference from Theorem 3.2 in [4] is that we may take f = 2 and D = 32N ,
whereas in [4] f = 1 and D = 64N are taken (note that Ck in [4] denotes f−1Dκ

in our notation). The validity of this substitution follows from the fact that∏
0≤i<j≤2

(ai − aj) = 16
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is even, where a0 = −2, a1 = 0, a2 = 2. Indeed, let pij(x) be those polynomials
appearing in [14, Lemma 3.3], which have rational coefficients of degree at most κ
([14, (3.7)]). Following [14], we take pijκ = pij(1/N) for varying values of κ. Then
we see from the expression (3.7) in [14] of pij(1/N) that

2lNκpij(1/N) ∈ Z

for some integer l; we may take l = 5κ− 1 by a consideration similar to the proof
of Lemma 4.3 in [14]. Hence we obtain

2−1(25N)κpij(1/N) ∈ Z.

Thus, by exactly the same arguments as the ones following Lemma 3.1 in [4]
(with a0 = −2, a1 = 0, a2 = 2), the numbers

p =
(
1 +

1
N − 2

)1/2

, P =
1
3
+

1
N
, l =

27
64

(
1− 2

N

)−1

, L =
27
4

(
1− 2

N

)2

N3

and f = 2, D = 32N, pijκ = pij(1/N) satisfy the assumption in Lemma 6. Since
N ≥ 63, we have

DP < 11.2N, 2pDP < 22.6,
L

D
> 0.197N2.

Therefore, Theorem 2 immediately follows from Lemma 6. ✷

Lemma 7. Let N = k ≥ 63 be an integer and let θ1, θ2 be as in Theorem 2.
Then all positive solutions (x, y, z) of the simultaneous Diophantine equations (2)
and (3) satisfy

max
{∣∣∣θ1 − x

z

∣∣∣ , ∣∣∣θ2 − y

z

∣∣∣} < 1.55z−2.

Proof. We have∣∣∣∣∣
√
k − 2
k

− x

z

∣∣∣∣∣ =
∣∣∣∣k − 2

k
− x2

z2

∣∣∣∣
∣∣∣∣∣
√
k − 2
k

+
x

z

∣∣∣∣∣
−1

<
1
kz2

| − 3k − 2|
(
2

√
1− 2

k

)−1

< 1.55z−2

and ∣∣∣∣∣
√
k + 2
k

− y

z

∣∣∣∣∣ < 1
kz2

| − 3k + 2|
(
2

√
1 +

2
k

)−1

< 1.5z−2.

✷

Proposition 1. Let k ≥ 63 be an odd integer. If {k − 2, k + 2, 4k, d} is a
D(4)-quadruple, then we have d = 4k(k2 − 1).

Proof. Suppose that d �= 4k(k2 − 1). Since this implies z �= 2k2 − 1, we may
apply Lemma 5. Theorem 2 (with N = k) and Lemma 7 (with p1 = x, p2 = y, q =
z) together imply that

(22.6k)−1z−1−λ < 1.55z−2.
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Since λ < 1, we have z1−λ < 35.03k and

log z <
log(35.1k)
1− λ

. (15)

Since
1

1− λ
<

log(0.197k2)
log(0.0175k)

<
2 log(0.444k)
log(0.0175k)

,

we see from Lemma 5 and (15) that

k − 1 <
log(0.444k) log(35.1k)
log(2k − 3) log(0.0175k)

=: f(k).

It is easy to see from

2k − 3 < 35.1k and 0.0175k < 0.444k

that f(k) is decreasing. Since f(63) < 55, we must have k < 63, which is a
contradiction. Therefore we obtain d = 4k(k2 − 1). ✷

5. Completion of the proof of Theorem 1

In this section, we complete the proof of Theorem 1 using the reduction method
of Dujella and Pethő (based on that of Baker and Davenport). On account of
Proposition 1, it suffices to show Theorem 1 for odd integers k with 5 ≤ k ≤ 61.
Throughout this section, let k be such an integer and assume that {k−2, k+2, 4k, d}
is a D(4)-quadruple with d �= 4k(k2 − 1), which implies that vm = wn for some
integers m ≥ 1 and n �∈ {0,−2}.

Lemma 8. Let k ≥ 5 be an integer. If vm = wn for some nonzero integers m
and n, then we have

0 < Λ := m logα1 − |n| logα2 + logα3 < 0.8α−2m
1 , (16)

where

α1 :=
k +

√
k2 − 4
2

, α2 := k − 1 +
√
k(k − 2), α3 :=

2(
√
k − 2 +

√
k + 2)

√
k

(±√
k − 2 + 2

√
k)
√
k + 2

.

Proof. We know by (11) and (14) that

vm =
1√
k + 2

{
(
√
k − 2 +

√
k + 2)

(
k +

√
k2 − 4
2

)m

−(√k − 2−√
k + 2)

(
k −√

k2 − 4
2

)m}

and

wn =
1

2
√
k

{
(±√

k − 2 + 2
√
k)(k − 1 +

√
k(k − 2))n

−(±√
k − 2− 2

√
k)(k − 1−

√
k(k − 2))n

}
,
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where the plus (resp. minus) sign corresponds to the case n > 0 (resp. n < 0).
Putting

P :=
√
k − 2 +

√
k + 2√

k + 2

(
k +

√
k2 − 4
2

)m

, Q :=
√
k − 2 + 2

√
k

2
√
k

(k−1±
√
k(k − 2))n,

we see from vm = wn that

P +
4

k + 2
P−1 = Q+

3k + 2
4k

Q−1. (17)

Since 4/(k + 2) < 1, P > 1, Q > 1 and

P −Q =
3k + 2
4k

Q−1 − 4
k + 2

P−1

>
4

k + 2
(Q−1 − P−1) =

4
k + 2

(P −Q)P−1Q−1,

we have P > Q. The assumption m ≥ 1 implies that

P ≥
√
k − 2 +

√
k + 2√

k + 2
· k +

√
k2 − 4
2

>
2
√
k − 2(k − 1)√

k + 2
> k,

and the relation (17) implies that

Q > P − 3k + 2
4k

Q−1 > P − 3k + 2
4k

.

Hence by k ≥ 5 we have

P −Q =
3k + 2
4k

Q−1 − 4
k + 2

P−1

<
3k + 2
4k

(
1− 3k + 2

4k
P−1

)−1

P−1 − 4
k + 2

P−1

<

(
3k + 2
4k

(
1− 3k + 2

4k2

)−1

− 4
k + 2

)
P−1

<
3k3 − (8k2 − 16k − 8)
4k3 + (5k2 − 8k − 4)

P−1 <
3
4
P−1.

It follows from
0 <

P −Q

P
<

3
4
P−2 <

3
4
k−2 < 0.03

that

0 < log
P

Q
= − log

(
1− P −Q

P

)

<
3
4
P−2 +

(
3
4
P−2

)2

<
3
4
P−2

(
1 +

3
4
k−2

)
< 0.8P−2.
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Since

P−2 <

(
k +

√
k2 − 4
2

)−2m

,

we obtain (16). ✷

The first inequality of (16) immediately implies that

m ≥ |n|. (18)

Indeed, if m ≤ |n| − 1, then we would have

Λ ≤ |n| log
(
k +

√
k2 − 4
2

· 1
k − 1 +

√
k(k − 2)

)

+ log

(
2(
√
k − 2 +

√
k + 2)

√
k

(±√
k − 2 + 2

√
k)
√
k + 2

· 2
k +

√
k2 − 4

)

< log

(
1

k − 1 +
√
k(k − 2)

· 2
√
k(k − 2) + 2

√
k(k + 2)√

k(k + 2)

)

< log
2
√
k(k + 2) + 2

√
k(k − 2)

k(k − 1) + k
√
k(k − 2)

< 0,

which is a contradiction.
In order to bound m above, we need the following theorem due to Baker and

Wüstholz.
Theorem 3 [[3, Theorem]]. For a linear form Λ �= 0 in logarithms of l

algebraic numbers α1, . . . , αl with rational integer coefficients β1, . . . , βl, we have

log |Λ| ≥ −18(l+ 1)! ll+1(32d)l+2h′(α1) · · ·h′(αl) log(2ld) log β,

where β := max{|β1|, . . . , |βl|}, d := [Q(α1, . . . , αl) : Q] and

h′(α) :=
1
d
max{h(α), | logα|, 1}

with the standard logarithmic Weil height h(α) of α.
Let α′

3 be the “conjugate” of α3:

α′
3 :=

2(
√
k − 2 +

√
k + 2)

√
k

(∓√
k − 2 + 2

√
k)
√
k + 2

.

Applying Theorem 3 with l = 3, d = 4, β = m and

h′(α1) =
1
2
logα1,

h′(α2) =
1
2
logα2,

h′(α3) ≤ 1
4
{
log
(
(3k + 2)2(k + 2)2

)
+ log(α3α

′
3)
}

<
1
4
log(16k2(3k + 2)(k + 2)) <

1
4
log(77k4),
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we have

logΛ > −18 · 4! · 34(32 · 4)5 · 1
2
logα1 · 12 logα2 · 14 log(77k

4) · log 24 · logm.

Since α2 < 2k − 1, we see from (16) that

m

logm
< 1.2 · 1014 log(2k − 1) log(77k4).

It follows from k ≤ 61 that
m < 5 · 1017.

The following is based on the Baker-Davenport lemma ([2, Lemma]).
Lemma 9 [[10, Lemma 5 a)]]. Let M be a positive integer. Let p/q be

the convergent of the continued fraction expansion of κ such that q > 6M . Put
ε := ||µq|| −M ||κq||, where || · || denotes the distance from the nearest integer. If
ε > 0, then the inequality

0 < mκ− n+ µ < AB−m

has no solution in the range

log(Aq/ε)
logB

≤ m < M.

Now dividing (16) by logα2 leads us to the inequality

0 < mκ− |n|+ µ < AB−m, (19)

where
κ :=

logα1

logα2
, µ :=

logα3

logα2
, A :=

0.8
logα2

, B := α2
1.

We apply Lemma 9 to the inequality (19) with M = 5 · 1017. Note that (18),
n �∈ {0,−2} and Lemma 4 together imply that if k ≥ 7 (resp. k = 5), then

m ≥ |n| ≥ 2k − 2 ≥ 12 (resp. m ≥ 8).

We have to examine 29 · 2 = 58 cases (the doubling comes from the signs “±” in
α3), of which the second convergent of κ with q > 6M is needed only in two cases.
Thus, in case k ≥ 7, we obtain m < 12, which is a contradiction; in case k = 5,
we obtain m < 14, in which case the second step of reduction with M = 13 gives
m < 4, which is a contradiction. This completes the proof of Theorem 1.
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