Unique representation $d=4 k\left(k^{2}-1\right)$ in $D(4)$-quadruples $\{k-2, k+2,4 k, d\}$

Yasutsugu Fujita*

Abstract

Let $k \geq 3$ be an integer. We show that if d is a positive integer such that the product of any two distinct elements of the set $\{k-2, k+2,4 k, d\}$ increased by 4 is a square, then d must be $4 k\left(k^{2}-1\right)$.

Key words: Diphantine tuples, simultaneous Diophantine equations
AMS subject classifications: Primary 11D09; Secondary 11J68, 11J86

Received May 22, 2006 Accepted June 20, 2006

1. Introduction

Let n be a nonzero integer. A set of m positive integers $\left\{a_{1}, \ldots, a_{m}\right\}$ is called a $D(n)$-m-tuple if $a_{i} a_{j}+n$ is a square for all i and j with $1 \leq i<j \leq m$. Diophantus found a $D(256)$-quadruple $\{1,33,68,105\}$, and Fermat found a $D(1)$ quadruple $\{1,3,8,120\}$ (cf. [5]).

In 1969, Baker and Davenport ([2]) showed that if the set $\{1,3,8, d\}$ is a $D(1)$ quadruple, then $d=120$. This result has been generalized in three directions: first, Dujella ([7]) showed that if $\{k-1, k+1,4 k, d\}$ is a $D(1)$-quadruple with an integer $k \geq 2$, then $d=4 k\left(4 k^{2}-1\right)$; secondly, Dujella and Pethő ([10]) showed that if $\{1,3, c, d\}$ is a $D(1)$-quadruple with $3<c<d$, then $d=7 c+4+4 \sqrt{(c+1)(3 c+1)}$; and thirdly, Dujella ([8]) showed that if $\left\{F_{2 k}, F_{2 k+2}, F_{2 k+4}, d\right\}$ is a $D(1)$-quadruple (where F_{ν} is the ν-th Fibonacci number), then $d=4 F_{2 k+1} F_{2 k+2} F_{2 k+3}$. These results lead us to the following.

Conjecture 1 [[1]]. If $\{a, b, c, d\}$ is a $D(1)$-quadruple with $a<b<c<d$, then $d=a+b+c+2 a b c+2 r s t$, where r, s, t are positive integers given by $a b+1=$ $r^{2}, a c+1=s^{2}, b c+1=t^{2}$.

Note that this conjecture immediately implies that there does not exist a $D(1)$ quintuple, which is a longstanding conjecture. It has been known that there does not exist a $D(1)$-sextuple and that there exist only finitely many $D(1)$-quintuples ([9]).

As for $D(4)$-quadruples, Mohanty and Ramasamy ([13]) showed that the $D(4)$ quadruple $\{1,5,12,96\}$ cannot be extended to a $D(4)$-quintuple, and Kedlaya ([12])

[^0]showed that if $\{1,5,12, d\}$ is a $D(4)$-quadruple, then $d=96$. This result also has been generalized by Dujella and Ramasamy ([11]) as follows: if $\left\{F_{2 k}, 5 F_{2 k}, 4 F_{2 k+2}, d\right\}$ is a $D(4)$-quadruple, then $d=4 L_{2 k} F_{4 k+2}$, where L_{ν} is the ν-th Lucas number.

In this paper, we ameliorate the result of Kedlaya in another direction.
Theorem 1. Let $k \geq 3$ be an integer. If $\{k-2, k+2,4 k, d\}$ is a $D(4)$-quadruple, then d must be $4 k\left(k^{2}-1\right)$.

It is easy to check that $\left\{k-2, k+2,4 k, 4 k\left(k^{2}-1\right)\right\}$ is a $D(4)$-quadruple for $k \geq 3$ (cf. [6, Section 4]). We will prove this theorem on similar lines to Theorem 1 in [7].

These results lead us to the following.
Conjecture 2 [[11]]. If $\{a, b, c, d\}$ is a $D(4)$-quadruple with $a<b<c<d$, then $d=a+b+c+(a b c+r s t) / 2$, where r, s, t are positive integers given by $a b+4=r^{2}, a c+4=s^{2}, b c+4=t^{2}$.

Note that this immediately implies that there does not exist a $D(4)$-quintuple. It has been known that there does not exist a $D(4)-8$-tuple and that there exist only finitely many $D(4)-7$-tuples ([11]).

In case $k=3$, Theorem 1 is valid because of the result of Kedlaya; in case k is even, say $k=2 k^{\prime}$, Theorem 1 follows from the result on the $D(1)$-triple $\left\{k^{\prime}-1, k^{\prime}+\right.$ $\left.1,4 k^{\prime}\right\}([7])$. Hence, it suffices to show Theorem 1 on the assumption that $k \geq 5$ is an odd integer.

2. Fundamental solutions of simultaneous Diophantine equations

In this section we translate the assumption of Theorem 1 into simultaneous Diophantine equations and determine their fundamental solutions.

Suppose that $\{k-2, k+2,4 k, d\}$ is a $D(4)$-quadruple. Then there exist integers x, y, z such that

$$
(k-2) d+4=x^{2},(k+2) d+4=y^{2}, 4 k d+4=4 z^{2}
$$

Eliminating d, we obtain simultaneous Diophantine equations:

$$
\begin{align*}
(k-2) y^{2}-(k+2) x^{2} & =-16 \tag{1}\\
(k-2) z^{2}-k x^{2} & =-3 k-2 \tag{2}\\
(k+2) z^{2}-k y^{2} & =-3 k+2 \tag{3}
\end{align*}
$$

We describe the solutions of equations (1) and (2).
Lemma 1 [(cf. [11, Lemma 2])]. Let $\{a, b\}$ be a $D(4)$-pair with $0<a<b$ and let r be a positive integer such that $a b+4=r^{2}$. There exist a positive integer i_{0} and integers $y_{0}^{(i)}, x_{0}^{(i)}, i=1, \ldots, i_{0}$, with the following properties:
(i) $\left(y_{0}^{(i)}, x_{0}^{(i)}\right)$ is a solution of

$$
\begin{equation*}
a y^{2}-b x^{2}=4(a-b) \tag{4}
\end{equation*}
$$

(ii) $y_{0}^{(i)}$ and $x_{0}^{(i)}$ satisfy the following inequalities

$$
1 \leq x_{0}^{(i)} \leq \sqrt{\frac{a(b-a)}{r-2}}, \quad\left|y_{0}^{(i)}\right| \leq \sqrt{\frac{(r-2)(b-a)}{a}} .
$$

(iii) If (y, x) is a positive solution of (4), then there exist $i \in\left\{1, \ldots, i_{0}\right\}$ and an integer $m \geq 0$ such that

$$
y \sqrt{a}+x \sqrt{b}=\left(y_{0}^{(i)} \sqrt{a}+x_{0}^{(i)} \sqrt{b}\right)\left(\frac{r+\sqrt{a b}}{2}\right)^{m}
$$

Proof. Although [11, Lemma 2] is concerned with a $D(4)$-triple $\{a, b, c\}$ and the attached equations

$$
\begin{align*}
a z^{2}-c x^{2} & =4(a-c) \tag{5}\\
b z^{2}-c y^{2} & =4(b-c) \tag{6}
\end{align*}
$$

one can show the statements for the equations (5) and (6) independently (see the proof of [11, Lemma 2]). Thus, Lemma 1 follows.

Lemma 2. Let $k \geq 5$ be an odd integer.
(i) If (y, x) is a positive solution of (1), then there exists an integer $m \geq 0$ such that

$$
\begin{equation*}
y \sqrt{k-2}+x \sqrt{k+2}=2(\sqrt{k-2}+\sqrt{k+2})\left(\frac{k+\sqrt{k^{2}-4}}{2}\right)^{m} \tag{7}
\end{equation*}
$$

(ii) If (z, x) is a positive solution of (2), then there exist an integer $n \geq 0$ and a solution $\left(z_{0}, x_{0}\right)$ of (2) with

$$
\begin{equation*}
1 \leq x_{0}<k-2 \tag{8}
\end{equation*}
$$

such that

$$
\begin{equation*}
z \sqrt{k-2}+x \sqrt{k}=\left(z_{0} \sqrt{k-2}+x_{0} \sqrt{k}\right)(k-1+\sqrt{k(k-2)})^{n} . \tag{9}
\end{equation*}
$$

Proof. (i) Let (y, x) be a positive solution of (1). Then, replacing a, b, r in Lemma 1 by $k-2, k+2, k$, respectively, we see that there exist an integer $m \geq 0$ and a solution $\left(y_{1}, x_{1}\right)$ of (1) with

$$
\begin{equation*}
1 \leq x_{1} \leq \sqrt{\frac{(k-2)(k+2-(k-2))}{k-2}}=2 \tag{10}
\end{equation*}
$$

such that

$$
y \sqrt{k-2}+x \sqrt{k+2}=\left(y_{1} \sqrt{k-2}+x_{1} \sqrt{k+2}\right)\left(\frac{k+\sqrt{k^{2}-4}}{2}\right)^{m} .
$$

If $x_{1}=1$, then

$$
y_{1}= \pm \sqrt{\frac{k-14}{k-2}}
$$

which cannot be an integer for odd k. Hence we have $x_{1}=2$ and $y_{1}= \pm 2$. However $y>0$ and

$$
(-2 \sqrt{k-2}+2 \sqrt{k+2})\left(\frac{k+\sqrt{k^{2}-4}}{2}\right)=2 \sqrt{k-2}+2 \sqrt{k+2}
$$

hence we have $y_{1}=2$. Therefore we obtain (7).
(ii) Let (z, x) be a positive solution of (2). Then, replacing a, b, r, y in Lemma 1 by $k-2,4 k, 2(k-1), 2 z$, respectively, we see that there exist an integer $n \geq 0$ and a solution $\left(z_{0}, x_{0}\right)$ of (2) with

$$
1 \leq x_{0} \leq \sqrt{\frac{(k-2)(4 k-(k-2))}{2(k-1)-2}}=\sqrt{\frac{3 k+2}{2}}<k-2
$$

such that (9) holds (the last inequality holds because of $k \geq 5$). This completes the proof of Lemma 2.

If we express a positive solution (y, x) of (1) as $y=v_{m}^{\prime}, x=v_{m}$ with an integer m in (7), then v_{m}^{\prime} and v_{m} satisfy the following relation

$$
v_{m+1}^{\prime} \sqrt{k-2}+v_{m+1} \sqrt{k+2}=\left(v_{m}^{\prime} \sqrt{k-2}+v_{m} \sqrt{k+2}\right) \cdot \frac{k+\sqrt{k^{2}-4}}{2}
$$

that is,

$$
\begin{aligned}
& v_{m+1}^{\prime}=\frac{1}{2}\left(k v_{m}^{\prime}+(k+2) v_{m}\right), \\
& v_{m+1}=\frac{1}{2}\left(k v_{m}+(k-2) v_{m}^{\prime}\right),
\end{aligned}
$$

which, together with (7), implies

$$
\begin{equation*}
v_{0}=2, v_{1}=2(k-1), v_{m+2}=k v_{m+1}-v_{m} \tag{11}
\end{equation*}
$$

Similarly, if we express a positive solution (z, x) of (2) as $z=w_{n}^{\prime}, x=w_{n}$ with an integer n in (9), then w_{n}^{\prime} and w_{n} satisfy the following relation

$$
w_{n+1}^{\prime} \sqrt{k-2}+w_{n+1} \sqrt{k}=\left(w_{n}^{\prime} \sqrt{k-2}+w_{n} \sqrt{k}\right)(k-1+\sqrt{k(k-2)})
$$

that is,

$$
\begin{aligned}
& w_{n+1}^{\prime}=(k-1) w_{n}^{\prime}+k w_{n}, \\
& w_{n+1}=(k-1) w_{n}+k w_{n}^{\prime},
\end{aligned}
$$

which, together with (9), implies

$$
\begin{equation*}
w_{0}=x_{0}, w_{1}=(k-1) x_{0}+(k-2) z_{0}, w_{n+2}=2(k-1) w_{n+1}-w_{n} \tag{12}
\end{equation*}
$$

$$
D(4) \text {-QUADRUPLES }\{k-2, k+2,4 k, d\}
$$

By induction we see from (11) that $v_{m} \equiv 2(\bmod (k-2))$ for all $m \geq 0$ and from (12) that $w_{n} \equiv x_{0}(\bmod (k-2))$ for all $n \geq 0$. Hence if $v_{m}=w_{n}$, then we have $x_{0} \equiv 2(\bmod (k-2))$. It follows from (8) that $x_{0}=2$, and that $z_{0}= \pm 1$. Hence by (12) we have

$$
\begin{equation*}
w_{0}=2, w_{1}=2(k-1) \pm(k-2), w_{n+2}=2(k-1) w_{n+1}-w_{n} . \tag{13}
\end{equation*}
$$

If we define $w_{-n}=2(k-1) w_{-n+1}-w_{-n+2}$ for $n \geq 1$ recursively, we may rephrase (13) in terms of the two-sided sequence $\left\{w_{n}\right\}(n \in \mathbf{Z})$ as

$$
\begin{equation*}
w_{0}=2, w_{1}=3 k-4, w_{n+2}=2(k-1) w_{n+1}-w_{n} \tag{14}
\end{equation*}
$$

To sum up, we obtain the following.
Lemma 3. Let $k \geq 5$ be an odd integer. Let (x, y, z) be a positive solution of the simultaneous Diophantine equations (1) and (2). Then, there exist integers $m \geq 0$ and n such that $x=v_{m}=w_{n}$, where the sequence $\left\{v_{m}\right\}$ is given by (11) and the two-sided sequence $\left\{w_{n}\right\}$ is given by (14).

3. A lower bound for $\log z$

In this section, we give a lower bound for $\log z$ in terms of k.
Lemma 4. Let $k \geq 5$ be an integer. If $v_{m}=w_{n}$, then we have

$$
n \equiv 0 \quad \text { or }-2 \quad(\bmod 2 k) .
$$

Proof. We see from (11) and (14) that

$$
\begin{aligned}
\left(v_{m} \bmod (2 k-2)\right)_{m \geq 0} & =(2,0,-2,-2,0,2,2,0, \ldots), \\
\left(w_{n} \bmod (2 k-2)\right)_{n \geq 0} & =(2,-k,-2, k, 2,-k, \ldots), \\
\left(w_{n} \bmod (2 k-2)\right)_{n \leq 0} & =(2, k,-2,-k, 2, k, \ldots) .
\end{aligned}
$$

Note that by the recursive formula (11) the values $v_{m} \bmod (2 k-2)$ and v_{m+1} $\bmod (2 k-2)$ determine the value $v_{m+2} \bmod (2 k-2)$, whence the sequence $\left(v_{m}\right.$ $\bmod (2 k-2))_{m \geq 0}$ is periodic with period 6 , and similarly that the sequences $\left(w_{n}\right.$ $\bmod (2 k-2))_{n \geq 0}$ and $\left(w_{n} \bmod (2 k-2)\right)_{n \leq 0}$ are periodic with period 4. Hence, if $v_{m}=w_{n}$, then we may write $n=2 l$ for some integer l. We then have

$$
\begin{aligned}
\left(v_{m} \bmod 2 k(k-2)\right)_{m \geq 0} & =(2,2 k-2,2 k-2,2,2,2 k-2, \ldots) \\
\left(w_{2 l} \bmod 2 k(k-2)\right)_{l \geq 0} & =(2,-2 k+6,-4 k+10,-6 k+14, \ldots), \\
\left(w_{2 l} \bmod 2 k(k-2)\right)_{l \leq 0} & =(2,2 k-2,4 k-6,6 k-10, \ldots)
\end{aligned}
$$

We can prove by induction that for all integers l,

$$
w_{2 l} \equiv-2 l k+2(2 l+1) \quad(\bmod 2 k(k-2)) .
$$

Hence we have

$$
-2 l k+2(2 l+1) \equiv 2 \text { or } 2 k-2(\bmod 2 k(k-2))
$$

If $-2 l k+2(2 l+1) \equiv 2(\bmod 2 k(k-2))$, then we have $2 l(k-2) \equiv 0(\bmod 2 k(k-2))$, that is, $n=2 l \equiv 0(\bmod 2 k)$. If $-2 l k+2(2 l+1) \equiv 2 k-2(\bmod 2 k(k-2))$, then we have $2(l+1)(k-2) \equiv 0(\bmod 2 k(k-2))$, that is, $n=2 l \equiv-2(\bmod 2 k)$. This completes the proof of Lemma 4.

Lemma 5. Let $k \geq 5$ be an integer. Let (x, y, z) be a positive solution of the simultaneous Diophantine equations (1) and (2) with $z \notin\left\{1,2 k^{2}-1\right\}$. Then we have

$$
\log z>2(k-1) \log (2 k-3)
$$

Proof. Note that if $z=1$ (resp. $2 k^{2}-1$), then $d=0$ (resp. $4 k\left(k^{2}-1\right)$). By (9) and (14), we may write $z=\left|s_{n}\right|$ for some integer n, where

$$
s_{0}=1, s_{1}=3 k-1, s_{n+2}=2(k-1) s_{n+1}-s_{n}
$$

that is,

$$
s_{n}=\frac{2 \sqrt{k}+\sqrt{k-2}}{2 \sqrt{k-2}}(k-1+\sqrt{k(k-2)})^{n}-\frac{2 \sqrt{k}-\sqrt{k-2}}{2 \sqrt{k-2}}(k-1-\sqrt{k(k-2)})^{n} .
$$

If $n \geq 0$, then by $k \geq 5$ we have

$$
\begin{aligned}
s_{n} & >\left(1+\frac{1}{2}\right)(k-1+\sqrt{k(k-2)})^{n}-(k-1-\sqrt{k(k-2)})^{n} \\
& >(k-1+\sqrt{k(k-2)})^{n}>(2 k-3)^{n}
\end{aligned}
$$

and if $n<0$, then we have

$$
\begin{aligned}
\left|s_{n}\right| & >\left(\frac{1}{2}+\frac{2}{3 k-2}\right)(k-1+\sqrt{k(k-2)})^{-n}-2(k-1-\sqrt{k(k-2)})^{-n} \\
& >\frac{1}{2}(k-1+\sqrt{k(k-2)})^{-n}>\frac{1}{2}(2 k-3)^{-n}
\end{aligned}
$$

Hence, if $n \geq 0$, then Lemma 4 and $z \neq 1=s_{0}$ imply that

$$
z=s_{n}>(2 k-3)^{2 k-2} ;
$$

if $n<0$, then Lemma 4 and $z \neq 2 k^{2}-1=\left|s_{-2}\right|$ imply that

$$
z=\left|s_{n}\right|>\frac{1}{2}(2 k-3)^{2 k}>(2 k-3)^{2 k-2} .
$$

In any case, we obtain

$$
\log z>2(k-1) \log (2 k-3)
$$

4. Application of a theorem of Rickert

In this section, we show that Theorem 1 holds for odd $k \geq 63$, combining the results in Section 3. with a slight modification of a theorem of Rickert (or of Bennett).

Theorem 2 [(cf. [4, Theorem 3.2], [14, Theorem] or [15, Theorem])]. Let $N \geq 63$ be an integer. Then the numbers

$$
\theta_{1}:=\sqrt{\frac{N-2}{N}} \text { and } \theta_{2}:=\sqrt{\frac{N+2}{N}}
$$

satisfy

$$
\max \left\{\left|\theta_{1}-\frac{p_{1}}{q}\right|,\left|\theta_{2}-\frac{p_{2}}{q}\right|\right\}>(22.6 N)^{-1} q^{-1-\lambda}
$$

for all integers p_{1}, p_{2}, q with $q>0$, where

$$
\lambda:=\frac{\log (11.2 N)}{\log \left(0.197 N^{2}\right)}<1 .
$$

Proof. Note that the assumption $N \geq 63$ implies $\lambda<1$. All we have to do is find those real numbers satisfying the assumption in the following lemma.

Lemma 6 [(cf. [4, Lemma 3.1], [14, Lemma 2.1])]. Let $\theta_{1}, \ldots, \theta_{m}$ be arbitrary real numbers and $\theta_{0}=1$. Assume that there exist positive real numbers l, p, L, P and positive integers D, f with f dividing D and with $L>D$, having the following property. For each positive integer κ, we can find rational numbers $p_{i j \kappa}$ $(0 \leq i, j \leq m)$ with a nonzero determinant such that $f^{-1} D^{\kappa} p_{i j \kappa}(0 \leq i, j \leq m)$ are integers and

$$
\left|p_{i j \kappa}\right| \leq p P^{\kappa} \quad(0 \leq i, j \leq m), \quad\left|\sum_{j=0}^{m} p_{i j \kappa} \theta_{j}\right| \leq l L^{-\kappa}(0 \leq i \leq m) .
$$

Then

$$
\max \left\{\left|\theta_{1}-\frac{p_{1}}{q}\right|, \ldots,\left|\theta_{m}-\frac{p_{m}}{q}\right|\right\}>c q^{-1-\lambda}
$$

holds for all integers p_{1}, \ldots, p_{m}, q with $q>0$, where

$$
\lambda=\frac{\log (D P)}{\log (L / D)} \quad \text { and } \quad c^{-1}=2 m f^{-1} p D P\left(\max \left\{1,2 f^{-1} l\right\}\right)^{\lambda} .
$$

Here, we used " κ " instead of " k " which is used in [4] and [14]. Note that l, p, L, $P, p_{i j k}$ in [4, Lemma 3.1] denote $f^{-1} l, f^{-1} p, L / D, D P, f^{-1} D^{\kappa} p_{i j \kappa}$ in the lemma above, respectively. In our situation, we take $m=2$ and θ_{1}, θ_{2} as in Theorem 2. The only difference from Theorem 3.2 in [4] is that we may take $f=2$ and $D=32 N$, whereas in [4] $f=1$ and $D=64 N$ are taken (note that C_{k} in [4] denotes $f^{-1} D^{\kappa}$ in our notation). The validity of this substitution follows from the fact that

$$
\prod_{0 \leq i<j \leq 2}\left(a_{i}-a_{j}\right)=16
$$

is even, where $a_{0}=-2, a_{1}=0, a_{2}=2$. Indeed, let $p_{i j}(x)$ be those polynomials appearing in [14, Lemma 3.3], which have rational coefficients of degree at most κ ([14, (3.7)]). Following [14], we take $p_{i j \kappa}=p_{i j}(1 / N)$ for varying values of κ. Then we see from the expression (3.7) in [14] of $p_{i j}(1 / N)$ that

$$
2^{l} N^{\kappa} p_{i j}(1 / N) \in \mathbf{Z}
$$

for some integer l; we may take $l=5 \kappa-1$ by a consideration similar to the proof of Lemma 4.3 in [14]. Hence we obtain

$$
2^{-1}\left(2^{5} N\right)^{\kappa} p_{i j}(1 / N) \in \mathbf{Z}
$$

Thus, by exactly the same arguments as the ones following Lemma 3.1 in [4] (with $a_{0}=-2, a_{1}=0, a_{2}=2$), the numbers
$p=\left(1+\frac{1}{N-2}\right)^{1 / 2}, P=\frac{1}{3}+\frac{1}{N}, \quad l=\frac{27}{64}\left(1-\frac{2}{N}\right)^{-1}, L=\frac{27}{4}\left(1-\frac{2}{N}\right)^{2} N^{3}$ and $f=2, D=32 N, p_{i j \kappa}=p_{i j}(1 / N)$ satisfy the assumption in Lemma 6. Since $N \geq 63$, we have

$$
D P<11.2 N, 2 p D P<22.6, \frac{L}{D}>0.197 N^{2}
$$

Therefore, Theorem 2 immediately follows from Lemma 6 .
Lemma 7. Let $N=k \geq 63$ be an integer and let θ_{1}, θ_{2} be as in Theorem 2. Then all positive solutions (x, y, z) of the simultaneous Diophantine equations (2) and (3) satisfy

$$
\max \left\{\left|\theta_{1}-\frac{x}{z}\right|,\left|\theta_{2}-\frac{y}{z}\right|\right\}<1.55 z^{-2}
$$

Proof. We have

$$
\begin{aligned}
\left|\sqrt{\frac{k-2}{k}}-\frac{x}{z}\right| & =\left|\frac{k-2}{k}-\frac{x^{2}}{z^{2}}\right|\left|\sqrt{\frac{k-2}{k}}+\frac{x}{z}\right|^{-1} \\
& <\frac{1}{k z^{2}}|-3 k-2|\left(2 \sqrt{1-\frac{2}{k}}\right)^{-1}<1.55 z^{-2}
\end{aligned}
$$

and

$$
\left|\sqrt{\frac{k+2}{k}}-\frac{y}{z}\right|<\frac{1}{k z^{2}}|-3 k+2|\left(2 \sqrt{1+\frac{2}{k}}\right)^{-1}<1.5 z^{-2}
$$

Proposition 1. Let $k \geq 63$ be an odd integer. If $\{k-2, k+2,4 k, d\}$ is a $D(4)$-quadruple, then we have $d=4 k\left(k^{2}-1\right)$.

Proof. Suppose that $d \neq 4 k\left(k^{2}-1\right)$. Since this implies $z \neq 2 k^{2}-1$, we may apply Lemma 5. Theorem 2 (with $N=k$) and Lemma 7 (with $p_{1}=x, p_{2}=y, q=$ $z)$ together imply that

$$
(22.6 k)^{-1} z^{-1-\lambda}<1.55 z^{-2}
$$

Since $\lambda<1$, we have $z^{1-\lambda}<35.03 k$ and

$$
\begin{equation*}
\log z<\frac{\log (35.1 k)}{1-\lambda} \tag{15}
\end{equation*}
$$

Since

$$
\frac{1}{1-\lambda}<\frac{\log \left(0.197 k^{2}\right)}{\log (0.0175 k)}<\frac{2 \log (0.444 k)}{\log (0.0175 k)}
$$

we see from Lemma 5 and (15) that

$$
k-1<\frac{\log (0.444 k) \log (35.1 k)}{\log (2 k-3) \log (0.0175 k)}=: f(k)
$$

It is easy to see from

$$
2 k-3<35.1 k \text { and } 0.0175 k<0.444 k
$$

that $f(k)$ is decreasing. Since $f(63)<55$, we must have $k<63$, which is a contradiction. Therefore we obtain $d=4 k\left(k^{2}-1\right)$.

5. Completion of the proof of Theorem 1

In this section, we complete the proof of Theorem 1 using the reduction method of Dujella and Pethő (based on that of Baker and Davenport). On account of Proposition 1, it suffices to show Theorem 1 for odd integers k with $5 \leq k \leq 61$. Throughout this section, let k be such an integer and assume that $\{k-2, k+2,4 k, d\}$ is a $D(4)$-quadruple with $d \neq 4 k\left(k^{2}-1\right)$, which implies that $v_{m}=w_{n}$ for some integers $m \geq 1$ and $n \notin\{0,-2\}$.

Lemma 8. Let $k \geq 5$ be an integer. If $v_{m}=w_{n}$ for some nonzero integers m and n, then we have

$$
\begin{equation*}
0<\Lambda:=m \log \alpha_{1}-|n| \log \alpha_{2}+\log \alpha_{3}<0.8 \alpha_{1}^{-2 m} \tag{16}
\end{equation*}
$$

where

$$
\alpha_{1}:=\frac{k+\sqrt{k^{2}-4}}{2}, \alpha_{2}:=k-1+\sqrt{k(k-2)}, \alpha_{3}:=\frac{2(\sqrt{k-2}+\sqrt{k+2}) \sqrt{k}}{(\pm \sqrt{k-2}+2 \sqrt{k}) \sqrt{k+2}} .
$$

Proof. We know by (11) and (14) that

$$
\begin{aligned}
v_{m}= & \frac{1}{\sqrt{k+2}}\left\{(\sqrt{k-2}+\sqrt{k+2})\left(\frac{k+\sqrt{k^{2}-4}}{2}\right)^{m}\right. \\
& \left.-(\sqrt{k-2}-\sqrt{k+2})\left(\frac{k-\sqrt{k^{2}-4}}{2}\right)^{m}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
w_{n}= & \frac{1}{2 \sqrt{k}}\left\{(\pm \sqrt{k-2}+2 \sqrt{k})(k-1+\sqrt{k(k-2)})^{n}\right. \\
& \left.-(\pm \sqrt{k-2}-2 \sqrt{k})(k-1-\sqrt{k(k-2)})^{n}\right\},
\end{aligned}
$$

where the plus (resp. minus) sign corresponds to the case $n>0$ (resp. $n<0$). Putting
$P:=\frac{\sqrt{k-2}+\sqrt{k+2}}{\sqrt{k+2}}\left(\frac{k+\sqrt{k^{2}-4}}{2}\right)^{m}, Q:=\frac{\sqrt{k-2}+2 \sqrt{k}}{2 \sqrt{k}}(k-1 \pm \sqrt{k(k-2)})^{n}$,
we see from $v_{m}=w_{n}$ that

$$
\begin{equation*}
P+\frac{4}{k+2} P^{-1}=Q+\frac{3 k+2}{4 k} Q^{-1} . \tag{17}
\end{equation*}
$$

Since $4 /(k+2)<1, P>1, Q>1$ and

$$
\begin{aligned}
P-Q & =\frac{3 k+2}{4 k} Q^{-1}-\frac{4}{k+2} P^{-1} \\
& >\frac{4}{k+2}\left(Q^{-1}-P^{-1}\right)=\frac{4}{k+2}(P-Q) P^{-1} Q^{-1},
\end{aligned}
$$

we have $P>Q$. The assumption $m \geq 1$ implies that

$$
P \geq \frac{\sqrt{k-2}+\sqrt{k+2}}{\sqrt{k+2}} \cdot \frac{k+\sqrt{k^{2}-4}}{2}>\frac{2 \sqrt{k-2}(k-1)}{\sqrt{k+2}}>k
$$

and the relation (17) implies that

$$
Q>P-\frac{3 k+2}{4 k} Q^{-1}>P-\frac{3 k+2}{4 k} .
$$

Hence by $k \geq 5$ we have

$$
\begin{aligned}
P-Q & =\frac{3 k+2}{4 k} Q^{-1}-\frac{4}{k+2} P^{-1} \\
& <\frac{3 k+2}{4 k}\left(1-\frac{3 k+2}{4 k} P^{-1}\right)^{-1} P^{-1}-\frac{4}{k+2} P^{-1} \\
& <\left(\frac{3 k+2}{4 k}\left(1-\frac{3 k+2}{4 k^{2}}\right)^{-1}-\frac{4}{k+2}\right) P^{-1} \\
& <\frac{3 k^{3}-\left(8 k^{2}-16 k-8\right)}{4 k^{3}+\left(5 k^{2}-8 k-4\right)} P^{-1}<\frac{3}{4} P^{-1} .
\end{aligned}
$$

It follows from

$$
0<\frac{P-Q}{P}<\frac{3}{4} P^{-2}<\frac{3}{4} k^{-2}<0.03
$$

that

$$
\begin{aligned}
0<\log \frac{P}{Q} & =-\log \left(1-\frac{P-Q}{P}\right) \\
& <\frac{3}{4} P^{-2}+\left(\frac{3}{4} P^{-2}\right)^{2} \\
& <\frac{3}{4} P^{-2}\left(1+\frac{3}{4} k^{-2}\right)<0.8 P^{-2}
\end{aligned}
$$

Since

$$
P^{-2}<\left(\frac{k+\sqrt{k^{2}-4}}{2}\right)^{-2 m}
$$

we obtain (16).
The first inequality of (16) immediately implies that

$$
\begin{equation*}
m \geq|n| \tag{18}
\end{equation*}
$$

Indeed, if $m \leq|n|-1$, then we would have

$$
\begin{aligned}
\Lambda \leq & |n| \log \left(\frac{k+\sqrt{k^{2}-4}}{2} \cdot \frac{1}{k-1+\sqrt{k(k-2)}}\right) \\
& +\log \left(\frac{2(\sqrt{k-2}+\sqrt{k+2}) \sqrt{k}}{(\pm \sqrt{k-2}+2 \sqrt{k}) \sqrt{k+2}} \cdot \frac{2}{k+\sqrt{k^{2}-4}}\right) \\
< & \log \left(\frac{1}{k-1+\sqrt{k(k-2)}} \cdot \frac{2 \sqrt{k(k-2)}+2 \sqrt{k(k+2)}}{\sqrt{k(k+2)}}\right) \\
< & \log \frac{2 \sqrt{k(k+2)}+2 \sqrt{k(k-2)}}{k(k-1)+k \sqrt{k(k-2)}}<0
\end{aligned}
$$

which is a contradiction.
In order to bound m above, we need the following theorem due to Baker and Wüstholz.

Theorem 3 [[3, Theorem]]. For a linear form $\Lambda \neq 0$ in logarithms of l algebraic numbers $\alpha_{1}, \ldots, \alpha_{l}$ with rational integer coefficients $\beta_{1}, \ldots, \beta_{l}$, we have

$$
\log |\Lambda| \geq-18(l+1)!l^{l+1}(32 d)^{l+2} h^{\prime}\left(\alpha_{1}\right) \cdots h^{\prime}\left(\alpha_{l}\right) \log (2 l d) \log \beta
$$

where $\beta:=\max \left\{\left|\beta_{1}\right|, \ldots,\left|\beta_{l}\right|\right\}, d:=\left[\mathbf{Q}\left(\alpha_{1}, \ldots, \alpha_{l}\right): \mathbf{Q}\right]$ and

$$
h^{\prime}(\alpha):=\frac{1}{d} \max \{h(\alpha),|\log \alpha|, 1\}
$$

with the standard logarithmic Weil height $h(\alpha)$ of α.
Let α_{3}^{\prime} be the "conjugate" of α_{3} :

$$
\alpha_{3}^{\prime}:=\frac{2(\sqrt{k-2}+\sqrt{k+2}) \sqrt{k}}{(\mp \sqrt{k-2}+2 \sqrt{k}) \sqrt{k+2}} .
$$

Applying Theorem 3 with $l=3, d=4, \beta=m$ and

$$
\begin{aligned}
h^{\prime}\left(\alpha_{1}\right) & =\frac{1}{2} \log \alpha_{1} \\
h^{\prime}\left(\alpha_{2}\right) & =\frac{1}{2} \log \alpha_{2} \\
h^{\prime}\left(\alpha_{3}\right) & \leq \frac{1}{4}\left\{\log \left((3 k+2)^{2}(k+2)^{2}\right)+\log \left(\alpha_{3} \alpha_{3}^{\prime}\right)\right\} \\
& <\frac{1}{4} \log \left(16 k^{2}(3 k+2)(k+2)\right)<\frac{1}{4} \log \left(77 k^{4}\right)
\end{aligned}
$$

we have

$$
\log \Lambda>-18 \cdot 4!\cdot 3^{4}(32 \cdot 4)^{5} \cdot \frac{1}{2} \log \alpha_{1} \cdot \frac{1}{2} \log \alpha_{2} \cdot \frac{1}{4} \log \left(77 k^{4}\right) \cdot \log 24 \cdot \log m
$$

Since $\alpha_{2}<2 k-1$, we see from (16) that

$$
\frac{m}{\log m}<1.2 \cdot 10^{14} \log (2 k-1) \log \left(77 k^{4}\right)
$$

It follows from $k \leq 61$ that

$$
m<5 \cdot 10^{17}
$$

The following is based on the Baker-Davenport lemma ([2, Lemma]).
Lemma 9 [[10, Lemma $\mathbf{5} \mathbf{a})]]$. Let M be a positive integer. Let p / q be the convergent of the continued fraction expansion of κ such that $q>6 M$. Put $\epsilon:=\|\mu q\|-M\|\kappa q\|$, where $\|\cdot\|$ denotes the distance from the nearest integer. If $\epsilon>0$, then the inequality

$$
0<m \kappa-n+\mu<A B^{-m}
$$

has no solution in the range

$$
\frac{\log (A q / \epsilon)}{\log B} \leq m<M
$$

Now dividing (16) by $\log \alpha_{2}$ leads us to the inequality

$$
\begin{equation*}
0<m \kappa-|n|+\mu<A B^{-m} \tag{19}
\end{equation*}
$$

where

$$
\kappa:=\frac{\log \alpha_{1}}{\log \alpha_{2}}, \quad \mu:=\frac{\log \alpha_{3}}{\log \alpha_{2}}, \quad A:=\frac{0.8}{\log \alpha_{2}}, \quad B:=\alpha_{1}^{2} .
$$

We apply Lemma 9 to the inequality (19) with $M=5 \cdot 10^{17}$. Note that (18), $n \notin\{0,-2\}$ and Lemma 4 together imply that if $k \geq 7$ (resp. $k=5$), then

$$
m \geq|n| \geq 2 k-2 \geq 12 \text { (resp. } m \geq 8 \text {) }
$$

We have to examine $29 \cdot 2=58$ cases (the doubling comes from the signs " \pm " in α_{3}), of which the second convergent of κ with $q>6 M$ is needed only in two cases. Thus, in case $k \geq 7$, we obtain $m<12$, which is a contradiction; in case $k=5$, we obtain $m<14$, in which case the second step of reduction with $M=13$ gives $m<4$, which is a contradiction. This completes the proof of Theorem 1.

Acknowledgment We would like to thank the referee for valuable remarks.

References

[1] J. Arkin, V.E. Hoggatt, E. G. Strauss, On Euler's solution of a problem of Diophantus, Fibonacci Quart. 17(1979), 333-339.

$$
D(4) \text {-QUADRUPLES }\{k-2, k+2,4 k, d\}
$$

[2] A. Baker, H. Davenport, The equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2}$, Quart. J. Math. Oxford Ser. 20(1969), 129-137.
[3] A. Baker, G. WÜstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442(1993), 19-62.
[4] M. A. Bennett, On the number of solutions of simultaneous Pell equations, J. Reine Angew. Math. 498(1998), 173-199.
[5] L. E. Dickson, History of the Theory of Numbers, Vol. 2, Chelsea, New York, 1966.
[6] A. Dujella, Generalization of a problem of Diophantus, Acta Arith. 65(1993), 15-27.
[7] A. Dujella, The problem of the extension of a parametric family of Diophantine triples, Publ. Math. Debrecen 51(1997), 311-322.
[8] A. Dujella, A proof of the Hoggatt-Bergum conjecture, Proc. Amer. Math. Soc. 127(1999), 1999-2005.
[9] A. Dujella, There are only finitely many Diophantine quintuples, J. Reine Angew. Math. 566(2004), 183-214.
[10] A. Dujella, A. Pethő, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. 49(1998), 291-306.
[11] A. Dujella, A. M. S. Ramasamy, Fibonacci numbers and sets with the property $D(4)$, Bull. Belg. Math. Soc. Simon Stevin 12(2005), 401-412.
[12] K. S. Kedlaya, Solving constrained Pell equations, Math. Comp. 67(1998), 833-842.
[13] S. P. Mohanty, A. M. S. Ramasamy, The characteristic number of two simultaneous Pell's equations and its application, Simon Stevin 59(1985), 203214.
[14] J. H. Rickert, Simultaneous rational approximation and related Diophantine equations, Math, Proc. Cambridge Philos. Soc. 11(1993), 461-472.
[15] M. Sudo, Rickert's methods on simultaneous Pell equations, Reprinted from Technical Reports of Seikei Univ. 38(2001), 41-50 (in Japanese).

[^0]: *Mathematical Institute, Tohoku University, Sendai 980-8578, Japan, e-mail: fyasut@yahoo.co.jp

