Common fixed point theorems of different compatible type mappings using Ciric's contraction type condition

G. V. R. BABU* AND K. N. V. V. VARA PRASAD[†]

Abstract. The purpose of this paper is to establish necessary and sufficient conditions for the existence of common fixed points for a compatible pair of selfmaps under Ciric's contraction type condition. These theorems improve and generalize the results of Mukherjee and Verma [11] and Jungck [9] to a pair of selfmaps. Also established the existence of common fixed points for a pair of compatible mappings of type (B), and obtain a result on the existence of common fixed points for a pair of compatible mappings of type (A) as corollary. Greguš fixed point theorem follows as a special case to our results.

Key words: compatible mappings, compatible mappings of type (A), compatible mappings of type (B), common fixed point, linear map, affine map, Banach space, Ciric's contraction type condition, reciprocal continuity

AMS subject classifications: 47H10, 54H25

Received June 12, 2006 Acce

Accepted June 22, 2006

1. Introduction

Finding necessary and sufficient conditions for the existence of fixed points is an interesting aspect. In 1986, Fisher and Sessa [6], established common fixed points for a pair of selfmaps in which one map is linear and nonexpansive. It was improved to affine maps by Mukherjee and Verma [11]. Further it is improved by Jungck [9] to continuous maps for a compatible pair of selfmaps. The aim of this paper is to find necessary and sufficient conditions for the existence of common fixed points for a pair of selfmaps under weak commutativity hypotheses using Ciric's contraction type condition, which improve and generalize the results of Fisher and Sessa [6], Mukherjee and Verma [11], and Jungck [9].

^{*}Department of Mathematics, Andhra University,
Visakhapatnam 530 003, Andhra Pradesh, India, e-mail:
 $\tt gvr_babu@hotmail.com$

 $^{^\}dagger Department of Mathematics, Dr. L. Bullayya College, Visakhapatnam 530 013, Andhra Pradesh, India, e-mail: knvp71@yahoo.co.in$

Throughout this paper, X denotes a Banach space with norm $\|\cdot\|$; T and I are selfmaps of X; N is the set of all natural numbers.

Definition 1.1(Sessa [11]). Two selfmaps T and I of X are said to be weakly commuting if $||TIx - ITx|| \le ||Tx - Ix||$ for all $x \in X$.

In 1986, Jungck [8] introduced the concept of compatible mappings as a generalization of weakly commuting maps.

Definition 1.2(Jungck [5]). Two selfmaps T and I of X are said to be compatible *if*

$$\lim_{n \to \infty} \|ITx_n - TIx_n\| = 0$$

whenever $\{x_n\}$ is a sequence in X such that

$$\lim_{n \to \infty} T x_n = \lim_{n \to \infty} I x_n = t$$

for some $t \in X$.

Clearly, every weakly commuting pair of maps is compatible, but its converse is not true [8].

Definition 1.3. Let C be a convex subset of X. A mapping $I : C \to C$ is called affine if $I(\alpha x + \beta y) = \alpha Ix + \beta Iy$ for all $x, y \in C$ and $\alpha, \beta \ge 0$ with $\alpha + \beta = 1$.

Pant [12] introduced the concept of reciprocal continuity for a pair of selfmaps. Definition 1.4(Pant [12]). Two selfmaps T and I of X are said to be reciprocal continuous if

$$\lim_{n \to \infty} TIx_n = Tt \quad and \quad \lim_{n \to \infty} ITx_n = It$$

whenever $\{x_n\}$ is a sequence in X such that

 $\lim_{n \to \infty} Tx_n = \lim_{n \to \infty} Ix_n = t \quad for \ some \ t \in X.$

Clearly, every continuous pair of selfmaps is reciprocal continuous, but its converse need not be true [12].

In 1986, Fisher and Sessa [6] obtained the following common fixed point theorem of Greguš type.

Theorem 1.5(Fisher and Sessa [6]). Let T and I be weakly commuting selfmaps of a closed convex subset C of X with $T(C) \subseteq I(C)$ and satisfying the inequality

$$||Tx - Ty|| \le a ||Ix - Iy|| + (1 - a) \max\{||Ix - Tx||, ||Iy - Ty||\}$$
(1)

for all $x, y \in C$, where 0 < a < 1. If I is linear, nonexpansive in C, then T and I have a unique common fixed point in C.

In 1988, Mukherjee and Verma [11] improved *Theorem 1.5* by using affine map in place of linear map I.

Theorem 1.6 (Mukherjee and Verma [8]). Let T and I be weakly commuting selfmaps of a closed convex subset C of X satisfying the inequality (1) with $T(C) \subseteq I(C)$. If I is affine, nonexpansive in C, then T and I have a unique common fixed point in C.

In 1990, Jungck [9] improved and generalized *Theorem 1.5*, by replacing the nonexpansive property of I by continuity and weak commutativity by compatibility in the following way.

Theorem 1.7(Jungck [9]). Let T and I be compatible selfmaps of a closed convex subset C of X. Assume that $T(C) \subseteq I(C)$ and satisfying the inequality (1). If I is continuous and linear in C, then T and I have a unique common fixed point in C.

Ciric's contraction type condition: there exist real numbers a, b, c with $0 < a < 1, b \ge 0, a + b = 1, 0 \le c < \eta$ such that

$$||Tx - Ty|| \le a \max\{||Ix - Iy||, c[||Ix - Ty|| + ||Iy - Tx||]\} + b \max\{||Ix - Tx||, ||Iy - Ty||\}$$
(2)

for all $x, y \in X$, where $\eta = \min\{\frac{2+a}{5+a}, \frac{2-a}{4}, \frac{4}{9+a}\}.$

Here we observe that $\eta < \frac{1}{2}$.

By choosing I as the identity map, we obtain Ciric's contraction condition for a single selfmap T which is introduced by Ciric[2].

In Section 2, we prove a common fixed point theorem (*Theorem 2.2*) for a compatible pair of selfmaps, in which one map is affine and continuous satisfying the Ciric's contraction type condition (2). Also we improve *Theorem 2.2* for a pair of reciprocal continuous maps. Our theorems generalize the results of Mukherjee and Verma [11] and Jungck [9]. In Section 3, we prove the existence of common fixed points for a pair of compatible mappings of type (B), and obtain a result on the existence of common fixed point for a pair of compatible mappings of type (A) as corollary. Also, Greguš fixed point theorem follows as a special case to our results.

2. Main results

Proposition 2.1. Let T and I be selfmaps of X which are compatible and satisfy the Ciric's contraction type condition (2). If I is continuous then Tw = Iw for some $w \in X$ if and only if $A = \cap \{\overline{TK_n} : n \in N\} \neq \phi$, where $K_n = \{x \in X :$ $\|Ix - Tx\| \leq \frac{1}{n}\}.$

Proof. Suppose that Tw = Iw for some $w \in X$. Then $w \in K_n$ for all n and thus $Tw \in TK_n \subseteq \overline{TK_n}$ for all n. Hence $Tw \in A$ so that A is nonempty.

Conversely, assume that $A \neq \phi$. If $w \in A$ then for each n, there exists $y_n \in TK_n$ such that $||w - y_n|| < \frac{1}{n}$. Consequently, for each n, there exists $x_n \in K_n$ such that $y_n = Tx_n$ and $||w - Tx_n|| < \frac{1}{n}$ for all n. On taking limits as $n \to \infty$, we get $Tx_n \to w$ as $n \to \infty$. Since $x_n \in K_n$, we have $||Ix_n - Tx_n|| \le \frac{1}{n}$. Thus

$$\lim_{n \to \infty} Ix_n = \lim_{n \to \infty} Tx_n = w.$$
(3)

Since T and I are compatible mappings, we have

$$\|ITx_n - TIx_n\| \to 0 \quad as \quad n \to \infty.$$
⁽⁴⁾

Since I is continuous, from (4) if follows that

$$IIx_n, TIx_n, ITx_n \to Iw \quad as \quad n \to \infty.$$
 (5)

On taking x = w and $y = Ix_n$ in (2), we get

$$||Tw - TIx_n|| \le a \max\{||Iw - IIx_n||, c[||Iw - TIx_n|| + ||IIx_n - Tw||]\} + b \max\{||Iw - Tw||, ||IIx_n - TIx_n||\}.$$

On taking limits as $n \to \infty$ and using (4) and (5), we have

$$||Tw - Iw|| \le a \max\{||Iw - Iw||, c[||Iw - Iw|| + ||Iw - Tw||]\} + b \max\{||Iw - Tw||, 0\} = (ac + b)||Iw - Tw|| = [1 - a(1 - c)] ||Iw - Tw||, (since [1 - a(1 - c)] < 1)$$

a contradiction. Thus Iw = Tw.

Theorem 2.2. Let T and I be compatible selfmaps of X and satisfying the condition (2). If I is continuous and affine on X and $T(X) \subseteq I(X)$, then T and I have a unique common fixed point in X.

Proof. Let x_0 in X be arbitrary. Since $T(X) \subseteq I(X)$, let x_1 , x_2 and x_3 be points in X such that $Ix_1 = Tx_0$, $Ix_2 = Tx_1$ and $Ix_3 = Tx_2$ so that

$$Ix_r = Tx_{r-1}$$
 for $r = 1, 2, 3.$ (6)

On using the inequality (2), we have

$$\|Tx_{r} - Ix_{r}\| = \|Tx_{r} - Tx_{r-1}\|$$

$$\leq a \max\{\|Ix_{r} - Ix_{r-1}\|, c[\|Ix_{r} - Tx_{r-1}\| + \|Ix_{r-1} - Tx_{r}\|]\}$$

$$+ b \max\{\|Ix_{r} - Tx_{r}\|, \|Ix_{r-1} - Tx_{r-1}\|\}$$

$$\leq a \max\{\|Tx_{r-1} - Ix_{r-1}\|, c[\|Ix_{r} - Ix_{r}\| + \|Ix_{r-1} - Tx_{r-1}\|]$$

$$+ \|Tx_{r-1} - Tx_{r}\|]\}$$

$$+ b \max\{\|Ix_{r} - Tx_{r}\|, \|Ix_{r-1} - Tx_{r-1}\|\}.$$
(7)

If $||Tx_{r-1} - Ix_{r-1}|| < ||Tx_r - Ix_r||$, then from (7), we have $||Tx_r - Ix_r|| < a \max\{||Tx_r - Ix_r||, 2c ||Tx_r - Ix_r||\} + b ||Tx_r - Ix_r||$ $= (a+b)||Tx_r - Ix_r||,$

a contradiction. Thus from (7), we have

$$||Tx_r - Ix_r|| \le ||Tx_{r-1} - Ix_{r-1}||$$
 for $r = 1, 2, 3$.

Therefore

$$||Tx_r - Ix_r|| \le ||Tx_0 - Ix_0||$$
 for $r = 1, 2, 3$.

On using (2) and (8), we have

$$\begin{aligned} \|Tx_2 - Ix_1\| &= \|Tx_2 - Tx_0\| \\ &\leq a \max\{\|Ix_2 - Ix_0\|, \ c[\|Ix_2 - Tx_0\| + \|Ix_0 - Tx_2\|]\} \\ &+ b \max\{\|Ix_2 - Tx_2\|, \|Ix_0 - Tx_0\|\} \end{aligned}$$

$$\leq a \max\{\|Ix_{2} - Ix_{1}\| + \|Ix_{1} - Ix_{0}\|, \\c[\|Ix_{2} - Tx_{0}\| + \|Ix_{0} - Ix_{1}\| \\+ \|Ix_{1} - Tx_{1}\| + \|Tx_{1} - Tx_{2}\|]\} \\+ b \max\{\|Ix_{2} - Tx_{2}\|, \|Ix_{0} - Tx_{0}\|\} \\= a \max\{\|Tx_{1} - Ix_{1}\| + \|Tx_{0} - Ix_{0}\|, \\c[\|Tx_{1} - Ix_{1}\| + \|Tx_{1} - Ix_{1}\| \\+ \|Ix_{1} - Tx_{1}\| + \|Ix_{2} - Tx_{2}\|]\} \\+ b \max\{\|Ix_{2} - Tx_{2}\|, \|Ix_{0} - Tx_{0}\|\} \\\leq a \max\{\|Ix_{0} - Tx_{0}\| + \|Ix_{0} - Tx_{0}\|, \\c[\|Ix_{0} - Tx_{0}\| + \|Ix_{0} - Tx_{0}\| \\+ \|Ix_{0} - Tx_{0}\| + \|Ix_{0} - Tx_{0}\|\} \\+ b \max\{\|Ix_{0} - Tx_{0}\|, \|Ix_{0} - Tx_{0}\|\} \\$$

$$= a \max\{2 \|Ix_0 - Tx_0\|, 4c \|Ix_0 - Tx_0\|\} + b \|Ix_0 - Tx_0\|$$

= $(2a + b) \|Tx_0 - Ix_0\|$
= $(1 + a) \|Tx_0 - Ix_0\|.$

Hence

$$||Tx_2 - Ix_1|| = ||Tx_2 - Tx_0|| \le (1+a)||Tx_0 - Ix_0||.$$
(9)

Write $z = \frac{1}{2}x_2 + \frac{1}{2}x_3$.

Since I is affine and using (6), we have

$$Iz = \frac{1}{2} Ix_2 + \frac{1}{2} Ix_3 = \frac{1}{2} Tx_1 + \frac{1}{2} Tx_2.$$
(10)

Hence

$$||Tz - Iz|| \le \frac{1}{2} ||Tz - Tx_1|| + \frac{1}{2} ||Tz - Tx_2||.$$

Write $M(x, y) = \max\{||Iz - Tz||, ||Tx_0 - Ix_0||\}$, and we denote it simply by M. On using the inequality (2), we have

$$||Tz - Tx_1|| \le a \max\{||Iz - Ix_1||, c[||Iz - Tx_1|| + ||Ix_1 - Tz||]\} + b \max\{||Iz - Tz||, ||Ix_1 - Tx_1||\}.$$
(11)

Thus from (8), we have

$$||Tz - Tx_1|| \le a \max\{||Iz - Ix_1||, c[||Iz - Tx_1|| + ||Ix_1 - Iz|| + ||Iz - Tz||]\} + bM.$$
(12)

Now, from (8), (9) and (10), we get

$$\|Iz - Ix_1\| \leq \frac{1}{2} \|Ix_2 - Ix_1\| + \frac{1}{2} \|Ix_3 - Ix_1\| = \frac{1}{2} \|Tx_1 - Ix_1\| + \frac{1}{2} \|Tx_2 - Ix_1\| \leq \frac{1}{2} \|Tx_0 - Ix_0\| + \frac{1}{2} (1+a) \|Tx_0 - Ix_0\| = (1 + \frac{a}{2}) \|Tx_0 - Ix_0\|.$$
(13)

Now on using (6), (8) and (10), we have

$$\|Iz - Tx_1\| = \frac{1}{2}\|Tx_2 - Tx_1\| = \frac{1}{2}\|Tx_2 - Ix_2\| \le \frac{1}{2}\|Tx_0 - Ix_0\|.$$
 (14)

On substituting (13) and (14) in (12), we have

$$\|Tz - Tx_1\| \le a \max \{(1 + \frac{a}{2}) \|Tx_0 - Ix_0\|, \\ c[\frac{1}{2} \|Tx_0 - Ix_0\| + (1 + \frac{a}{2}) \|Tx_0 - Ix_0\| + \|Iz - Tz\|] \} + bM \\ = a \max\{(1 + \frac{a}{2}) \|Tx_0 - Ix_0\|, \\ c[(\frac{3+a}{2}) \|Tx_0 - Ix_0\| + \|Iz - Tz\|] \} + bM \\ \le a \max\{(1 + \frac{a}{2})M, c(\frac{5+a}{2})M\} + bM.$$
(15)

Again, on using the inequality (2), we have

$$||Tz - Tx_2|| \le a \max\{||Iz - Ix_2||, c[||Iz - Tx_2|| + ||Ix_2 - Tz||]\} + b \max\{||Iz - Tz||, ||Ix_2 - Tx_2||\}.$$

On using (8), we have

$$||Tz - Tx_2|| \le a \max\{||Iz - Ix_2||, c[||Iz - Tx_2|| + ||Ix_2 - Iz|| + ||Iz - Tz||]\} + bM.$$
(16)

From (6), (8) and (10), we get the following:

$$||Iz - Ix_2|| = \frac{1}{2} ||Ix_2 - Ix_3|| = \frac{1}{2} ||Ix_2 - Tx_2|| \le \frac{1}{2} ||Tx_2 - Ix_0||,$$
(17)

 $\quad \text{and} \quad$

$$||Iz - Tx_2|| = \frac{1}{2}||Tx_1 - Tx_2|| = \frac{1}{2}||Ix_2 - Tx_2|| \le \frac{1}{2}||Tx_0 - Ix_0||.$$
(18)

On substituting (17) and (18) in (16), we get

$$||Tz - Ix_2|| \le a \max\{\frac{1}{2}||Tx_0 - Ix_0||, c[\frac{1}{2}||Tx_0 - Ix_0|| + \frac{1}{2}||Tx_0 - Ix_0|| + ||Iz - Tz||]\} + bM$$

$$\le a \max\{\frac{1}{2}M, 2cM\} + bM.$$
(19)

On substituting (15) and (19) in (11), we have

$$||Tz - Iz|| \leq \frac{1}{2} [a \max\{ (1 + \frac{a}{2})M, (\frac{5+a}{2})cM \} + bM] + \frac{1}{2} [a \max\{ \frac{1}{2}M, 2cM \} + bM] = \frac{a}{2} [\max\{ (1 + \frac{a}{2})M, (\frac{5+a}{2})cM \}] + \frac{a}{2} [\max\{ \frac{1}{2}M, 2cM \}] + bM.$$
(20)

Now the following *four* possible cases may arise in (20).

Case 1. max{ $(1 + \frac{a}{2})M$, $(\frac{5+a}{2})cM$ } = $(1 + \frac{a}{2})M$ and max{ $\frac{1}{2}M$, 2cM } = $\frac{1}{2}M$. Now from (20), we have

$$||Tz - Iz|| \le \left[\frac{a}{2}(1 + \frac{a}{2}) + \frac{a}{2} \cdot \frac{1}{2} + b\right]M = \left[\frac{a(2+a)}{4} + \frac{a}{4} + (1-a)\right]M$$
$$= \lambda_1 \cdot M,$$
(21)

where $\lambda_1 = \frac{a^2 - a + 4}{4}$ (< 1).

Case 2. max{ $(1 + \frac{a}{2})M$, $(\frac{5+a}{2})cM$ } = $(1 + \frac{a}{2})M$ and max{ $\frac{1}{2}M$, 2cM } = 2cM. Thus from(20), we have

$$\|Tz - Iz\| \le \left[\frac{a}{2}(1 + \frac{a}{2}) + \frac{a}{2}2c + b\right]M = \left[\frac{a(2+a)}{4} + ac + (1-a)\right]M$$
$$= \lambda_2 \cdot M,$$
(22)

where $\lambda_2 = \frac{a^2 - 2a + 4 + 4ac}{4}$ (< 1).

Case 3. max{ $(1+\frac{a}{2})M$, $(\frac{5+a}{2})cM$ } = $(\frac{5+a}{2})cM$ and max{ $\frac{1}{2}M$, 2cM } = 2cM. In this case, again from (20), then we have

$$||Tz - Iz|| \le \left[\frac{a}{2}(\frac{5+a}{2})c + \frac{a}{2}2c + b\right]M = \left[\frac{ac(5+a)}{4} + ac + 1 - a\right]M$$

= $\lambda_3 \cdot M$, (23)

where $\lambda_3 = \frac{a^2c + 9ac + 4 - 4a}{4}$ (< 1).

Case 4. $\max\{(1+\frac{a}{2})M, (\frac{5+a}{2})cM\} = (\frac{5+a}{2})cM$ and $\max\{\frac{1}{2}M, 2cM\} = \frac{1}{2}M$. It follows that 2+a < 1

$$\frac{2+a}{5+a} \le c \le \frac{1}{4},$$

and since

$$c \le \eta \le \frac{2+a}{5+a},$$

this case doesn't arise.

Now, from (21), (22) and (23), we have

$$||Tz - Iz|| \le \lambda \cdot M, \text{ where } \lambda = \max\{\lambda_1, \lambda_2, \lambda_3\}.$$
(24)

Thus it follows that

$$||Tz - Iz|| \le \lambda \max\{ ||Iz - Tz||, |Tx_0 - Ix_0|| \}.$$

Therefore

$$||Tz - Iz|| \le \lambda \cdot ||Tx_0 - Ix_0||.$$

This implies

inf
$$\{ \|Tz - Iz\| : z = \frac{1}{2}x_2 + \frac{1}{2}x_3 \} \le \lambda \|Tx_0 - Ix_0\|.$$

Since $x_0 \in X$ is arbitrary, we have

inf
$$\{ ||Tz - Iz|| : z = \frac{1}{2}x_2 + \frac{1}{2}x_3 \} \le \lambda$$
 inf $\{ ||Tx - Ix|| : x \in X \}.$

On the other hand

$$\inf\{ \|Tx - Ix\| : x \in X \} \le \inf\{ \|Tz - Iz\| : z = \frac{1}{2}x_2 + \frac{1}{2}x_3 \}.$$

It follows that

$$\inf\{ \|Tx - Ix\| : x \in X \} = 0.$$
(25)

Define $K_n = \{x \in X : ||Tx - Ix|| \le \frac{1}{n}\}$ and

$$H_n = \{x \in X : ||Tx - Ix|| \le \frac{a+1}{(1-a)n}\}$$
 for $n = 1, 2, 3, \dots$.

Then $K_n \neq \phi$ and also that

 $K_1 \supseteq K_2 \supseteq K_3 \supseteq \ldots \supseteq K_n \supseteq \ldots$

Consequently, TK_n is nonempty for $n = 1, 2, 3, \dots$, and

$$\overline{TK_1} \supseteq \overline{TK_2} \supseteq \overline{TK_3} \supseteq \dots \supseteq \overline{TK_n} \supseteq \dots .$$

For any $x, y \in K_n$, by (2), we have

$$\|Tx - Ty\| \le a \max\{\|Ix - Iy\|, c[\|Ix - Ty\| + \|Iy - Tx\|]\} + b \max\{\|Ix - Tx\|, \|Iy - Ty\|\} \le a \max\{\|Ix - Tx\| + \|Tx - Ty\| + \|Ty - Iy\|, c[\|Ix - Tx\| + \|Tx - Ty\| + \|Iy - Ty\|] + \|Ty - Tx\|]\} + b \max\{\|Ix - Tx\|, \|Iy - Ty\|\} \le a \max\{\frac{1}{n} + \|Tx - Ty\| + \frac{1}{n}\}, c[\frac{1}{n} + \|Tx - Ty\| + \frac{1}{n} + \|Tx - Ty\|]\} + b \max\{\frac{1}{n}, \frac{1}{n}\} \le a \max\{\frac{2}{n} + \|Tx - Ty\|, c[\frac{2}{n} + 2\|Tx - Ty\|]\} + \frac{b}{n}.$$
 (26)

Here we consider the following two possible cases of (26).

Case I. $\max\{\frac{2}{n} + \|Tx - Ty\|, c[\frac{2}{n} + 2\|Tx - Ty\|]\} = \frac{2}{n} + \|Tx - Ty\|$. Now from in (26), we have

$$||Tx - Ty|| \le \frac{2a}{n} + a||Tx - Ty|| + \frac{b}{n} = \frac{2a + b}{n} + a||Tx - Ty||.$$

Therefore

$$(1-a)||Tx - Ty|| \le \frac{a+1}{n} ||Tx - Ty|| \le \frac{a+1}{(1-a)n}.$$
(27)

Case II. $\max\{\frac{2}{n} + \|Tx - Ty\|, c[\frac{2}{n} + 2\|Tx - Ty\|]\} = c[\frac{2}{n} + 2\|Tx - Ty\|]$. From (26), we have

$$\|Tx - Ty\| \le a c \frac{2}{n} + 2ac\|Tx - Ty\| + \frac{b}{n}$$

= $2ac[\frac{1}{n} + \|Tx - Ty\|] + \frac{b}{n}$
< $a[\frac{1}{n} + \|Tx - Ty\|] + \frac{b}{n}$
= $\frac{1}{n} + a \|Tx - Ty\|.$
Thus

$$||Tx - Ty|| < \frac{1}{(1-a)n} \le \frac{a+1}{(1-a)n}.$$
(28)

Thus in both cases we get

$$||Tx - Ty|| \le \frac{a+1}{(1-a)n}$$
, so that $x, y \in H_n$.

Hence

$$\lim_{n \to \infty} \operatorname{diam} \left(TK_n \right) = \lim_{n \to \infty} \operatorname{diam} \left(\overline{TK_n} \right) = 0.$$

On using Cantor's intersection theorem, $A = \bigcap \{\overline{TK_n} : n \in N\}$ contains exactly one point w (say).

Thus from *Proposition 2.1*, we have

$$Tw = Iw. (29)$$

We now show that w is a common fixed point of T and I. On taking x = w and $y = x_n$ in (2), we have

$$||Tw - Tx_n|| \le a \max\{||Iw - Ix_n||, c[||Iw - Tx_n|| + ||Ix_n - Tw||]\} + b \max\{||Iw - Tw||, ||Ix_n - Tx_n||\}.$$

On taking limits as $n \to \infty$ and using (4) and (29), we get

$$\begin{aligned} \|Tw - w\| &\leq a \max\{\|Tw - w\|, \ c[\ \|Tw - w\| + \|w - Tw\|]\} \\ &+ b \max\{\|Tw - Tw\|, \ \|w - w\|\} \\ &= a \max\{\|Tw - w\|, \ 2c\|Tw - w\|\} \ (\text{since } c < \frac{1}{2}) \\ &\leq a \ \|Tw - w\| < \|Tw - w\|, \end{aligned}$$

a contradiction. Thus Tw = w, so that

$$Tw = Iw = w.$$

Thus w is a common fixed point of T and I. Uniqueness of the common fixed point follows from the Ciric's contraction type condition.

An alternate proof: The proof is similar up to the identity (25). Here we show that

$$\max\{\|Tx - Ty\|, \|Ix - Iy\|\} \le \frac{3-a}{1-a} \max\{\|Ix - Tx\|, \|Iy - Ty\|\}.$$
(30)

Write $R = R(x, y) = \max\{\|Ix - Tx\|, \|Iy - Ty\|\}$. From the inequality (2), we have

$$\begin{split} \|Tx - Ty\| &\leq a \ \max\{\|Ix - Iy\|, \ c[\ \|Ix - Ty\| + \|Iy - Tx\|]\} \\ &+ b \ \max\{\|Ix - Tx\|, \ \|Iy - Ty\|\} \\ &\leq a \ \max\{\|Ix - Tx\| + \|Tx - Ty\| + \|Ty - Iy\|, \\ & c[\ \|Ix - Tx\| + \|Tx - Ty\| + \|Iy - Ty\| + \|Ty - Tx\| \]\} \\ &+ b \ \max\{\|Ix - Tx\|, \ \|Iy - Ty\|\} \\ &\leq a \ \max\{R + \|Tx - Ty\| + R\}, \ c[2R + 2\|Tx - Ty\| \]\} + bR \\ &\leq a \ \max\{2R + \|Tx - Ty\|, \ 2c[\ R + \|Tx - Ty\| \]\} + bR \\ &= (2a + b)R + a\|Tx - Ty\| \\ &= (1 + a)R + a\|Tx - Ty\|. \end{split}$$

Hence

$$||Tx - Ty|| \le \frac{1+a}{1-a} R.$$
 (31)

Now

$$||Ix - Iy|| \le ||Ix - Ty|| + ||Tx - Ty|| + ||Ty - Iy||$$

$$\le R + \frac{1+a}{1-a} R + R$$

$$= \frac{3-a}{1-a} R.$$
 (32)

From (31) and (32), the inequality (30) follows.

Now, by (25), we can choose a sequence $\{x_n\} \in X$ such that

$$||Ix_n - Tx_n|| \le \frac{1}{n} \text{ for } n = 1, 2, 3, \dots$$
 (33)

From (30) and (33), we have

$$\max\{\|Ix_n - Tx_m\|, \|Tx_n - Tx_m\| \le \frac{3-a}{1-a} \cdot \frac{1}{n} \text{ for } 1 \le n \le m.$$

Therefore, both $\{Ix_n\}$ and $\{Tx_n\}$ are Cauchy sequence in X and from (33), we have

$$\lim_{n \to \infty} Ix_n = \lim_{n \to \infty} Tx_n = w \text{ (say), } w \in X.$$
(34)

Since T and I are compatible mappings and I is continuous, we have

$$IIx_n, TIx_n. ITx_n \to Iw \text{ as } n \to \infty.$$
 (35)

Now we show that Iw = w. Suppose that $Iw \neq w$. On substituting $x = x_n$ and $y = Ix_n$ in (2), we have

$$||Tx_n - TIx_n|| \le a \max\{||Ix_n - IIx_n||, c[||Ix_n - TIx_n|| + ||IIx_n - Tx_n||]\} + b \max\{||Ix_n - Tx_n||, ||IIx_n - TIx_n||\}.$$

On taking limits as $n \to \infty$ and using (34) and (35), we have

$$||w - Iw|| \le a \max\{||w - Iw||, c[||w - Iw|| + ||Iw - w||]\} + b \max\{||w - w||, ||Iw - Iw||\}$$
$$= a||w - Iw|| < ||w - Iw||,$$

a contradiction. Thus

$$Iw = w. (36)$$

Finally, we show that Tw = w. Suppose that $Tw \neq w$. On taking x = w and $y = x_n$ in (2), we have

$$||Tw - Tx_n|| \le a |max\{||Iw - Ix_n||, c[||Iw - Tx_n|| + ||Ix_n - Tw||]\}|] + b max\{||Iw - Tw||, ||Ix_n - Ix_n||\}.$$

On taking limits as $n \to \infty$ and using (34) and (36), we have

$$||Tw - w|| \le a \max\{||Iw - w||, c[||w - w|| + ||w - Tw||]\} + b \max\{||Tw - Tw||, ||w - w||\} = (ac + b)||w - Tw|| = [1 - a(1 - c)]||w - Tw||,$$

a contradiction. Hence

$$Tw = w. (37)$$

From (36) and (37), we have

$$Tw = Iw = w$$
.

Hence w is a common fixed point of T and I. This completes the proof of *Theorem 2.2.*

The following is an example in support of *Theorem 2.2*.

Example 2.3. Let $X = \mathbb{R}$ with the usual metric. Define selfmaps T, I on X by $Tx = \frac{2+x}{3}$ and $Ix = \frac{3x-1}{2}$, $x \in X$.

Clearly, I is continuous and affine, but I is not nonexpansive and linear. Observe that T and I are compatible mappings of X.

Now, for any $x, y \in X$,

$$||Tx - Ty|| = |\frac{x - y}{3}| = \frac{2}{9}||Ix - Iy||,$$

so that the mappings T and I satisfy the inequality (2) with $a = \frac{2}{9}$, $b = \frac{7}{9}$ and $c \leq \frac{20}{47}$.

On using Proposition 2.1 and Theorem 2.2, we formulate the following theorem.

Theorem 2.4. Let T and I be compatible selfmaps of X and satisfying the condition (2). If I is continuous and affine in X and $T(X) \subseteq I(X)$, then T and I have a unique common fixed point in X if and only if

$$A = \cap \{ \overline{TK_n} : n \in N \} \neq \phi,$$

where $K_n = ||x \in X : ||Ix - Tx|| \le \frac{1}{n}$.

Corollary 2.5. Let T and I be compatible selfmaps of X and satisfying the inequality

$$||Tx - Ty|| \le a ||Ix - Iy|| + b \max\{||Ix - Ix||, ||Iy - Ty||\} + c [||Ix - Ty|| + ||Iy - Tx||]$$
(38)

for all $x, y \in C$, where 0 < a < 1, $b \ge 0$, $c \ge 0$, a + c > 0 and a + b + 4c = 1. If I is continuous and affine on X and $T(X) \subseteq I(X)$, then T and I have a unique common fixed point in X.

Proof. Set $a + 4c = a_1$. Then $a_1 + b = 1$ and we have

$$\begin{aligned} \|Tx - Ty\| &\leq a \ \|Ix - Iy\| + b \ \max\{\|Ix - Tx\|, \ \|Iy - Ty\|\} \\ &+ c \cdot \frac{4}{1} \cdot \frac{1}{4} [\|Ix - Ty\| + \|Iy - Tx\|] \\ &\leq (a + 4c) \max\{\|Ix - Iy\|, \ \frac{1}{4} [\|Ix - Iy\| + \|Iy - Tx\|]\} \\ &+ b \ \max\{\|Ix - Tx\}, \ \|Iy - Ty\|\}. \end{aligned}$$

Since $\frac{1}{4} \leq \min\{\frac{2+a}{5+a}, \frac{2-a}{4}, \frac{4}{9+a}\}$ and $a_1 + b = 1$, where $a_1 = a + 4c$, the conclusion of this corollary follows from *Theorem 2.2*.

On choosing c = 0 in (2), we have the following corollary.

Corollary 2.6. Let T and I be compatible selfmaps of X and satisfying the condition (1). Suppose that I is continuous, affine and $T(X) \subseteq I(X)$. Then T and I have a unique common fixed point in X.

Corollary 2.7(Fisher [5]). Let T be a selfmap of a closed convex subset C of X and satisfying the condition

$$||Tx - Ty|| \le a ||x - y|| + b \max\{||Tx - x||, ||Ty - y||\}$$
(39)

for all $x, y \in C$, where 0 < a < 1 with a + b = 1. Then T has a unique fixed point in C.

Proof. Follows by choosing I as the identity map of C in Corollary 3.3. \Box

In the following, we prove a common fixed point theorem for a compatible pair of selfmaps T and I, which are reciprocal continuous on X.

Theorem 2.8. Let T and I be compatible selfmaps of X, which are reciprocal continuous on X, satisfying the Ciric's contraction type condition (2). If I is affine on X and $T(X) \subseteq I(X)$, then T and I have a unique common fixed point in X if and only if $A = \cap \{\overline{TK_n} : n \in N\} \neq \phi$, where $K_n = ||x \in X : ||Ix - Tx|| \leq \frac{1}{n}\}$.

Proof. If w is a common fixed point of T and I, then $A \neq \phi$ follows trivially by *Proposition 2.1*.

Conversely, assume that $A \neq \phi$. If $w \in A$ then for each n, there exists $y_n \in TK_n$ such that $||w - y_n|| < \frac{1}{n}$. Consequently, for each n, there exists $x_n \in K_n$ such that $y_n = Tx_n$ and $||w - Tx_n|| < \frac{1}{n}$ for all n. On taking limits as $n \to \infty$, we get $Tx_n \to w$ as $n \to \infty$.

Since $x_n \in K_n$, we have $||Ix_n - Tx_n|| \le \frac{1}{n}$. Thus

$$\lim_{n \to \infty} Ix_n = \lim_{n \to \infty} Tx_n = w.$$

$$\tag{40}$$

Since T and I are reciprocally continuous mappings, we have

$$\lim_{n \to \infty} TIx_n = Tw \text{ and } \lim_{n \to \infty} ITx_n = Tw.$$

Now since T and I are compatible mappings

$$Tw = \lim_{n \to \infty} TIx_n = \lim_{n \to \infty} ITx_n = Iw.$$
(41)

Now on substituting x = w and for each n, substituting $y = Ix_n$ in (2) and using (40) and (41), as in the alternate proof of *Theorem 2.2*, it is easy to see that Tw = w. Thus from (41), w is a common fixed point of T and I.

Example 2.9. Let $X = \mathbb{R}$ with the usual metric. Define selfmaps T and I on X by

$$Tx = \begin{cases} \frac{1}{2}, & \text{if } x \le 0 \text{ and } x = \frac{5}{2} \\ \frac{1+x}{2}, & \text{if } x > 0 \text{ and } x \ne \frac{5}{2} \end{cases} \quad and \quad Ix = \frac{3x-1}{2}, \quad x \in X.$$

Clearly, I is affine, but I is not nonexpansive and linear. The mappings T and I are reciprocal continuous and compatible on X.

Observe that the inequality (2) holds with $a = \frac{1}{3}$, $b = \frac{2}{3}$ and for any $c \ge 0$ with $c \le \frac{7}{16}$. Thus, all the hypotheses of Theorem 2.4 is satisfied and has a unique fixed point 1.

Now, for x = 2,

$$||TI(2) - IT(2)|| = \frac{5}{4} \nleq 1 = ||T(2) - I(2)||.$$

Thus T and I are not weakly commuting, so that Theorem 1.6 is not applicable. Since I is not linear, Theorem 1.7 is also not applicable.

Hence, from this example, we conclude that *Theorem 2.4* is a generalization of *Theorem 1.6* and *Theorem 1.7*.

3. Compatible mappings of type (A), compatible mappings of type (B) and common fixed point theorems

Definition 3.1(Lal et al. [10]). Two selfmaps T and I of X are said to be compatible mappings of type (A), if

$$\lim_{n \to \infty} \|TIx_n - IIx_n\| = 0 \text{ and } \lim_{n \to \infty} \|ITx_n - TTx_n\| = 0,$$

whenever $\{x_n\}$ is a sequence in X such that

$$\lim_{n \to \infty} Ix_n = \lim_{n \to \infty} Tx_n = t, \text{ for some } t \in X.$$

Here we note that compatible mappings and compatible mappings of type (A) are independent (Lal et al. [10]).

Pathak et al. [13] introduced the concept of compatible mappings of type (B) as a generalization of compatible mappings of type (A).

Definition 3.2(Pathak et al.[13]). Two selfmaps T and I of X are said to compatible mappings of type (B), if

$$\lim_{n \to \infty} \|ITx_n - TTx_n\| \le \frac{1}{2} \left[\lim_{n \to \infty} \|ITx_n - It\| + \lim_{n \to \infty} \|It - IIx_n\|\right]$$

and

$$\lim_{n \to \infty} \|TIx_n - IIx_n\| \le \frac{1}{2} [\lim_{n \to \infty} \|TIx_n - Tt\| + \lim_{n \to \infty} \|Tt - TTx_n\|],$$

whenever $\{x_n\}$ is a sequence in X such that

 $\lim_{n \to \infty} Ix_n = \lim_{n \to \infty} Tx_n = t, \text{ for some } t \in X.$

Clearly, every compatible mappings of type (A) are compatible mappings of type (B), but its converse need not be true (Pathak et al. [13]).

Proposition 3.3(Pathak et al. [13]). Two selfmaps T and I of X are compatible mappings of type (B). Suppose that $\lim_{n\to\infty} Ix_n = \lim_{n\to\infty} Tx_n = t$, for some $t \in X$. Then $\lim_{n\to\infty} TTx_n = It$, if I is continuous at t.

Proposition 2.1 remains true, if we replace compatible mappings by compatible mappings of type (B).

Proposition 3.4. Let T and I be selfmaps of X which are compatible mappings of type (B) and satisfy the Ciric's contraction type condition (2). If I is continuous then Tw = Iw for some $w \in X$ if and only if $A = \cap\{\overline{TK_n} : n \in N\} \neq \phi$, where $K_n = \{x \in X : ||Ix - Tx|| \leq \frac{1}{n}\}.$

Proof. Follows as on the lines of *Proposition 2.1* and using *Proposition 3.4*. \Box

Theorem 3.5. Let T and I be selfmaps of X, which are compatible mappings of type (B) and satisfying the condition (2). If I is continuous and affine on X and $T(X) \subseteq I(X)$, then T and I have a unique common fixed point in X.

Proof. Follows as on the lines of proof of *Theorem 2.2* and *Proposition 3.4.* \Box

Theorem 3.6. Let T and I be selfmaps of X, which are compatible mappings of type (B) and satisfying the condition (2). If I is continuous and affine in X and $T(X) \subset I(X)$, then T and I have a unique common fixed point in X if and only if $A = \cap \{\overline{TK_n} : n \in N\} \neq \phi$, where $K_n = \{x \in X : ||Ix - Tx|| \leq \frac{1}{n}\}$.

Corollary 3.7. Let T and I be selfmaps of X, which are compatible mappings of type (A) and satisfying the condition (2). If I is continuous and affine in X and $T(X) \subset I(X)$, then T and I have a unique common fixed point in X if and only if $A = \bigcap \{\overline{TK_n} : n \in N\} \neq \phi$, where $K_n = \{x \in X : ||Ix - Tx|| \leq \frac{1}{n}\}$.

Proof. Since compatible mappings of type (A) implies compatible mappings of type (B), proof follows from *Theorem 3.6*. \Box

Corollary 3.8(Greguš [7]). Let T be a selfmap of a closed convex subset C of X and satisfying the inequality

$$||Tx - Ty|| \le p ||x - y|| + q ||Tx - x|| + r ||Ty - y||$$

for all $x, y \in C$, where $0 , <math>q \ge 0$, $r \ge 0$ with p + q + r = 1. Then T has a unique fixed point in C.

Acknowledgements. This work is partially supported by U. G. C. Major Research Project Grant No. F. 8-8/2003 (SR). One of the authors (G. V. R. Babu) thanks the University Grants Commission, India for the financial support.

References

- LJ. B. ĆIRIĆ, J. S. UME, Greguš type common fixed point theorems in metric spaces of hyperbolic type, Publ. Math. Debrecen 65(2003), 49–63.
- [2] LJ. B. CIRIĆ, On a generalization of Greguš fixed point theorem, Czech. Math. J. 50(125)(2000), 449-458.
- [3] LJ. B. ĆIRIĆ, On Diviccaro, Fisher and Sessa open questions, Arch. Math. T. 29(1993), 145–152.
- [4] LJ. B. ĆIRIĆ, On a common fixed-point theorem of a Greguš type, Publ. Inst. Math. 49(1991), 174–178.
- [5] B. FISHER, Common fixed points on Banach space, Chung. Juan. J. XI(1982), 12-15.
- [6] B. FISHER, S. SESSA, On a fixed point theorem of Greguš, Int. J. Math. Math. Sci. 9(1986), 22-28.
- [7] M. GREGUŠ, A fixed point theorem in Banach space, Boll. Un. Mat. Ital. 5(1980)17-A, 193-198.

- [8] G. JUNGCK, Compatible mappings and common fixed points, Int. J. Math. Math. Sci. 9(4)(1986), 771-779.
- [9] G. JUNGCK, On a fixed point theorem of Fisher and Sessa, Int. J. Math. Math. Sci. 13(1990), 497-500.
- [10] S. N. LAL, P. P. MURTHY, Y. J. CHO, An extension of Telci, Tas and Fisher's theorem, J. Korean Math. Soc., 33(1996), 891-908.
- [11] R. N. MUKHERJEE, V. VERMA, A note on a fixed point theorem of Greguš, Math. Japonica. 33(1988)5, 745-749.
- [12] R. P. PANT, Common fixed points of four mappings, Bull. Cal. Math.Soc. 90(1998), 281-289.
- [13] H. K. PATHAK, M. S. KHAN, Compatible mappings of type (B) and common fixed point theorems of Greguš, Czech. Math. J. 45(1995), 685-698.
- [14] S. SESSA, On a weak commutativity condition of mappings in fixed point consideration. Publ. Inst. Math. 32(46)(1982), 149-153.