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Common fixed point theorems of different
compatible type mappings using Ciric’s

contraction type condition

G.V.R.Babu∗ and K.N.V.V.Vara Prasad†

Abstract. The purpose of this paper is to establish necessary
and sufficient conditions for the existence of common fixed points for
a compatible pair of selfmaps under Ciric’s contraction type condition.
These theorems improve and generalize the results of Mukherjee and
Verma [11] and Jungck [9] to a pair of selfmaps. Also established the
existence of common fixed points for a pair of compatible mappings of
type (B), and obtain a result on the existence of common fixed points
for a pair of compatible mappings of type (A) as corollary. Greguš fixed
point theorem follows as a special case to our results.
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1. Introduction

Finding necessary and sufficient conditions for the existence of fixed points is an
interesting aspect. In 1986, Fisher and Sessa [6], established common fixed points
for a pair of selfmaps in which one map is linear and nonexpansive. It was improved
to affine maps by Mukherjee and Verma [11]. Further it is improved by Jungck [9]
to continuous maps for a compatible pair of selfmaps. The aim of this paper is to
find necessary and sufficient conditions for the existence of common fixed points for
a pair of selfmaps under weak commutativity hypotheses using Ciric’s contraction
type condition, which improve and generalize the results of Fisher and Sessa [6],
Mukherjee and Verma [11], and Jungck [9].
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Throughout this paper, X denotes a Banach space with norm ‖ · ‖; T and I are
selfmaps of X ; N is the set of all natural numbers.

Definition 1.1(Sessa [11]). Two selfmaps T and I of X are said to be weakly
commuting if ‖TIx− ITx‖ ≤ ‖Tx− Ix‖ for all x ∈ X .

In 1986, Jungck [8] introduced the concept of compatible mappings as a gener-
alization of weakly commuting maps.

Definition 1.2(Jungck [5]). Two selfmaps T and I of X are said to be compa-
tible if

lim
n→∞ ‖ITxn − TIxn‖ = 0

whenever {xn} is a sequence in X such that

lim
n→∞ Txn = lim

n→∞ Ixn = t

for some t ∈ X.
Clearly, every weakly commuting pair of maps is compatible, but its converse is

not true [8].
Definition 1.3. Let C be a convex subset of X. A mapping I : C → C is called

affine if I(αx+ βy) = αIx + βIy for all x, y ∈ C and α, β ≥ 0 with α+ β = 1.
Pant [12] introduced the concept of reciprocal continuity for a pair of selfmaps.
Definition 1.4(Pant [12]). Two selfmaps T and I of X are said to be reciprocal

continuous if

lim
n→∞ TIxn = T t and lim

n→∞ ITxn = It

whenever {xn} is a sequence in X such that

lim
n→∞ Txn = lim

n→∞ Ixn = t for some t ∈ X.
Clearly, every continuous pair of selfmaps is reciprocal continuous, but its con-

verse need not be true [12].

In 1986, Fisher and Sessa [6] obtained the following common fixed point theorem
of Greguš type.

Theorem 1.5(Fisher and Sessa [6]). Let T and I be weakly commuting selfmaps
of a closed convex subset C of X with T (C) ⊆ I(C) and satisfying the inequality

‖Tx− Ty‖ ≤ a ‖Ix− Iy‖+ (1 − a) max{‖Ix− Tx‖, ‖Iy − Ty‖} (1)

for all x, y ∈ C, where 0 < a < 1. If I is linear, nonexpansive in C, then T and I
have a unique common fixed point in C.

In 1988, Mukherjee and Verma [11] improved Theorem 1.5 by using affine map
in place of linear map I.

Theorem 1.6 (Mukherjee and Verma [8]). Let T and I be weakly commuting
selfmaps of a closed convex subset C of X satisfying the inequality (1) with T (C) ⊆
I(C). If I is affine, nonexpansive in C, then T and I have a unique common fixed
point in C.

In 1990, Jungck [9] improved and generalized Theorem 1.5, by replacing the
nonexpansive property of I by continuity and weak commutativity by compatibility
in the following way.
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Theorem 1.7(Jungck [9]). Let T and I be compatible selfmaps of a closed convex
subset C of X. Assume that T (C) ⊆ I(C) and satisfying the inequality (1). If I is
continuous and linear in C, then T and I have a unique common fixed point in C.

Ciric’s contraction type condition: there exist real numbers a, b, c with
0 < a < 1, b ≥ 0, a+ b = 1, 0 ≤ c < η such that

‖Tx− Ty‖ ≤ a max{‖Ix− Iy‖, c[‖Ix− Ty‖+ ‖Iy − Tx‖]}
+ b max{‖Ix− Tx‖, ‖Iy − Ty‖} (2)

for all x, y ∈ X , where η = min{ 2+a
5+a ,

2−a
4 , 4

9+a}.
Here we observe that η < 1

2 .
By choosing I as the identity map, we obtain Ciric’s contraction condition for

a single selfmap T which is introduced by Ciric[2].
In Section 2, we prove a common fixed point theorem (Theorem 2.2) for a

compatible pair of selfmaps, in which one map is affine and continuous satisfying
the Ciric’s contraction type condition (2). Also we improve Theorem 2.2 for a pair
of reciprocal continuous maps. Our theorems generalize the results of Mukherjee
and Verma [11] and Jungck [9]. In Section 3, we prove the existence of common
fixed points for a pair of compatible mappings of type (B), and obtain a result
on the existence of common fixed point for a pair of compatible mappings of type
(A) as corollary. Also, Greguš fixed point theorem follows as a special case to our
results.

2. Main results

Proposition 2.1. Let T and I be selfmaps of X which are compatible and satisfy
the Ciric’s contraction type condition (2). If I is continuous then Tw = Iw for
some w ∈ X if and only if A = ∩{TKn : n ∈ N} �= φ, where Kn = {x ∈ X :
‖Ix− Tx‖ ≤ 1

n}.
Proof. Suppose that Tw = Iw for some w ∈ X . Then w ∈ Kn for all n and

thus Tw ∈ TKn ⊆ TKn for all n. Hence Tw ∈ A so that A is nonempty.
Conversely, assume that A �= φ. If w ∈ A then for each n, there exists yn ∈ TKn

such that ‖w − yn‖ < 1
n . Consequently, for each n, there exists xn ∈ Kn such

that yn = Txn and ‖w − Txn‖ < 1
n for all n. On taking limits as n → ∞, we get

Txn → w as n→ ∞. Since xn ∈ Kn, we have ‖Ixn − Txn‖ ≤ 1
n . Thus

lim
n→∞ Ixn = lim

n→∞ Txn = w. (3)

Since T and I are compatible mappings, we have

‖ITxn − TIxn‖ → 0 as n→ ∞. (4)

Since I is continuous, from (4) if follows that

IIxn, T Ixn, ITxn → Iw as n→ ∞. (5)
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On taking x = w and y = Ixn in (2), we get

‖Tw− TIxn‖ ≤ a max{‖Iw − IIxn‖, c[‖Iw − TIxn‖+ ‖IIxn − Tw‖]}
+ b max{‖Iw − Tw‖, ‖IIxn − TIxn‖}.

On taking limits as n→ ∞ and using (4) and (5), we have

‖Tw− Iw‖ ≤ a max{‖Iw − Iw‖, c[‖Iw − Iw‖ + ‖Iw − Tw‖]}
+ b max{‖Iw − Tw‖, 0}

= (ac+ b)‖Iw − Tw‖
= [1− a(1− c)] ‖Iw − Tw‖, (since [1− a(1− c)] < 1)

a contradiction. Thus Iw = Tw. ✷

Theorem 2.2. Let T and I be compatible selfmaps of X and satisfying the
condition (2). If I is continuous and affine on X and T (X) ⊆ I(X), then T and I
have a unique common fixed point in X.

Proof. Let x0 in X be arbitrary. Since T (X) ⊆ I(X), let x1, x2 and x3 be
points in X such that Ix1 = Tx0, Ix2 = Tx1 and Ix3 = Tx2 so that

Ixr = Txr−1 for r = 1, 2, 3. (6)

On using the inequality (2), we have

‖Txr − Ixr‖ = ‖Txr − Txr−1‖
≤ a max{‖Ixr − Ixr−1‖, c[ ‖Ixr − Txr−1‖+ ‖Ixr−1 − Txr‖ ]}

+ b max{‖Ixr − Txr‖, ‖Ixr−1 − Txr−1‖}
≤ a max{‖Txr−1 − Ixr−1‖, c[ ‖Ixr − Ixr‖+ ‖Ixr−1 − Txr−1‖

+‖Txr−1 − Txr‖ ]}
+ b max{‖Ixr − Txr‖, ‖Ixr−1 − Txr−1‖}. (7)

If ‖Txr−1 − Ixr−1‖ < ‖Txr − Ixr‖, then from (7), we have

‖Txr − Ixr‖ < a max{‖Txr − Ixr‖, 2c ‖Txr − Ixr‖}+ b ‖Txr − Ixr‖
= (a+ b)‖Txr − Ixr‖,

a contradiction. Thus from (7), we have

‖Txr − Ixr‖ ≤ ‖Txr−1 − Ixr−1‖ for r = 1, 2, 3.

Therefore
‖Txr − Ixr‖ ≤ ‖Tx0 − Ix0‖ for r = 1, 2, 3.

On using (2) and (8), we have

‖Tx2 − Ix1‖ = ‖Tx2 − Tx0‖
≤ a max{‖Ix2 − Ix0‖, c[ ‖Ix2 − Tx0‖+ ‖Ix0 − Tx2‖ ]}

+b max{‖Ix2 − Tx2‖, ‖Ix0 − Tx0‖}
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≤ a max{‖Ix2 − Ix1‖+ ‖Ix1 − Ix0‖,
c[ ‖Ix2 − Tx0‖+ ‖Ix0 − Ix1‖

+‖Ix1 − Tx1‖+ ‖Tx1 − Tx2‖ ]}
+b max{‖Ix2 − Tx2‖, ‖Ix0 − Tx0‖}

= a max{‖Tx1 − Ix1‖+ ‖Tx0 − Ix0‖,
c[ ‖Tx1 − Ix1‖+ ‖Tx1 − Ix1‖

+‖Ix1 − Tx1‖+ ‖Ix2 − Tx2‖ ]}
+b max{‖Ix2 − Tx2‖, ‖Ix0 − Tx0‖}

≤ a max{‖Ix0 − Tx0‖+ ‖Ix0 − Tx0‖,
c[ ‖Ix0 − Tx0‖+ ‖Ix0 − Tx0‖

+‖Ix0 − Tx0‖+ ‖Ix0 − Tx0‖ ]}
+b max{‖Ix0 − Tx0‖, ‖Ix0 − Tx0‖}

= a max{2 ‖Ix0 − Tx0‖, 4c ‖Ix0 − Tx0‖}+ b ‖Ix0 − Tx0‖
= (2a+ b) ‖Tx0 − Ix0‖
= (1 + a) ‖Tx0 − Ix0‖.

Hence

‖Tx2 − Ix1‖ = ‖Tx2 − Tx0‖ ≤ (1 + a)‖Tx0 − Ix0‖. (9)

Write z = 1
2x2 + 1

2x3.

Since I is affine and using (6), we have

Iz = 1
2 Ix2+ 1

2 Ix3 = 1
2 Tx1+ 1

2 Tx2. (10)
Hence

‖Tz − Iz‖ ≤ 1
2‖Tz − Tx1‖+ 1

2‖Tz − Tx2‖.
Write M(x, y) = max{‖Iz − Tz‖, ‖Tx0 − Ix0‖}, and we denote it simply by M.

On using the inequality (2), we have

‖Tz − Tx1‖ ≤ a max{‖Iz − Ix1‖, c[ ‖Iz − Tx1‖+ ‖Ix1 − Tz‖ ]}
+b max{‖Iz − Tz‖, ‖Ix1 − Tx1‖}. (11)

Thus from (8), we have

‖Tz − Tx1‖ ≤ a max{‖Iz − Ix1‖, c[ ‖Iz − Tx1‖+ ‖Ix1 − Iz‖+ ‖Iz − Tz‖ ]}
+bM. (12)

Now, from (8), (9) and (10), we get
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‖Iz − Ix1‖ ≤ 1
2
‖Ix2 − Ix1‖+

1
2
‖Ix3 − Ix1‖

=
1
2
‖Tx1 − Ix1‖+

1
2
‖Tx2 − Ix1‖

≤ 1
2
‖Tx0 − Ix0‖+

1
2
(1 + a)‖Tx0 − Ix0‖

= (1 +
a

2
) ‖Tx0 − Ix0‖. (13)

Now on using (6), (8) and (10), we have

‖Iz − Tx1‖ =
1
2
‖Tx2 − Tx1‖ =

1
2
‖Tx2 − Ix2‖ ≤ 1

2
‖Tx0 − Ix0‖. (14)

On substituting (13) and (14) in (12), we have

‖Tz − Tx1‖ ≤ a max {(1 + a
2 )‖Tx0 − Ix0‖,

c[ 1
2‖Tx0 − Ix0‖+ (1 + a

2 )‖Tx0 − Ix0‖+ ‖Iz − Tz‖ ]}+ bM

= a max{(1 + a
2 )‖Tx0 − Ix0‖,
c[ (3+a

2 )‖Tx0 − Ix0‖+ ‖Iz − Tz‖ ]}+ bM

≤ a max{(1+ a
2 )M, c (5+a

2 )M}+bM. (15)

Again, on using the inequality (2), we have

‖Tz − Tx2‖ ≤ a max{‖Iz − Ix2‖, c[ ‖Iz − Tx2‖+ ‖Ix2 − Tz‖ ]}
+b max{‖Iz − Tz‖, ‖Ix2 − Tx2‖}.

On using (8), we have

‖Tz − Tx2‖ ≤ a max{‖Iz − Ix2‖, c[ ‖Iz − Tx2‖+ ‖Ix2 − Iz‖+ ‖Iz − Tz‖ ]}
+bM. (16)

From (6), (8) and (10), we get the following:

‖Iz − Ix2‖ =
1
2
‖Ix2 − Ix3‖ =

1
2
‖Ix2 − Tx2‖ ≤ 1

2
‖Tx2 − Ix0‖, (17)

and

‖Iz − Tx2‖ =
1
2
‖Tx1 − Tx2‖ =

1
2
‖Ix2 − Tx2‖ ≤ 1

2
‖Tx0 − Ix0‖. (18)

On substituting (17) and (18) in (16), we get

‖Tz − Ix2‖ ≤ a max{1
2
‖Tx0 − Ix0‖, c[ 1

2
‖Tx0 − Ix0‖+

1
2
‖Tx0 − Ix0‖

+‖Iz − Tz‖ ]}+ bM

≤ a max{ 1
2
M, 2cM }+ bM. (19)
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On substituting (15) and (19) in (11), we have

‖Tz − Iz‖ ≤ 1
2
[a max{ (1 +

a

2
)M, (

5 + a
2

)cM }+ bM ]

+
1
2
[a max{ 1

2
M, 2cM }+ bM ]

=
a

2
[ max{ (1 +

a

2
)M, (

5 + a
2

)cM }]

+
a

2
[ max{ 1

2
M, 2cM }] + bM. (20)

Now the following four possible cases may arise in (20).

Case 1. max{ (1 + a
2 )M, (5+a

2 )cM } = (1 + a
2 )M and max{ 1

2M, 2cM } = 1
2M.

Now from (20), we have

‖Tz − Iz‖ ≤ [
a

2
(1 +

a

2
) +

a

2
· 1
2

+ b ]M = [
a(2 + a)

4
+
a

4
+ (1− a) ]M

= λ1 ·M, (21)

where λ1 = a2−a+4
4 (< 1).

Case 2. max{ (1 + a
2 )M, (5+a

2 )cM } = (1 + a
2 )M and max{ 1

2M, 2cM } = 2cM.
Thus from(20), we have

‖Tz − Iz‖ ≤ [
a

2
(1 +

a

2
) +

a

2
2c+ b ]M = [

a(2 + a)
4

+ ac+ (1− a) ]M

= λ2 ·M, (22)

where λ2 = a2−2a+4+4ac
4 (< 1).

Case 3. max{ (1 + a
2 )M, (5+a

2 )cM } = (5+a
2 )cM and max{ 1

2M, 2cM } = 2cM.
In this case, again from (20), then we have

‖Tz − Iz‖ ≤ [
a

2
(
5 + a

2
)c+

a

2
2c+ b ]M = [

ac(5 + a)
4

+ ac+ 1− a ]M

= λ3 ·M, (23)

where λ3 = a2c+9ac+4−4a
4 (< 1).

Case 4. max{ (1 + a
2 )M, (5+a

2 )cM } = (5+a
2 )cM and max{ 1

2M, 2cM } = 1
2M.

It follows that
2 + a
5 + a

≤ c ≤ 1
4
,

and since
c ≤ η ≤ 2 + a

5 + a
,

this case doesn’t arise.
Now, from (21), (22) and (23), we have

‖Tz − Iz‖ ≤ λ ·M, where λ = max{λ1, λ2, λ3}. (24)
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Thus it follows that

‖Tz − Iz‖ ≤ λ max{ ‖Iz − Tz‖, Tx0 − Ix0‖ }.

Therefore
‖Tz − Iz‖ ≤ λ · ‖Tx0 − Ix0‖.

This implies

inf { ‖Tz − Iz‖ : z =
1
2
x2 +

1
2
x3} ≤ λ ‖Tx0 − Ix0‖.

Since x0 ∈ X is arbitrary, we have

inf { ‖Tz − Iz‖ : z =
1
2
x2 +

1
2
x3} ≤ λ inf { ‖Tx− Ix‖ : x ∈ X }.

On the other hand

inf{ ‖Tx− Ix‖ : x ∈ X } ≤ inf{ ‖Tz − Iz‖ : z =
1
2
x2 +

1
2
x3}.

It follows that
inf{ ‖Tx− Ix‖ : x ∈ X } = 0. (25)

Define Kn = {x ∈ X : ‖Tx− Ix‖ ≤ 1
n} and

Hn = {x ∈ X : ‖Tx− Ix‖ ≤ a+1
(1−a)n} for n = 1, 2, 3, ... .

Then Kn �= φ and also that

K1 ⊇ K2 ⊇ K3 ⊇ ... ⊇ Kn ⊇ ... .
Consequently, TKn is nonempty for n = 1, 2, 3, ... , and

TK1 ⊇ TK2 ⊇ TK3 ⊇ ... ⊇ TKn ⊇ ... .
For any x, y ∈ Kn, by (2), we have

‖Tx− Ty‖ ≤ amax{‖Ix− Iy‖, c[ ‖Ix− Ty‖+ ‖Iy − Tx‖]}
+ b max{‖Ix− Tx‖, ‖Iy − Ty‖}

≤ a max{‖Ix− Tx‖+ ‖Tx− Ty‖+ ‖Ty − Iy‖,
c[ ‖Ix− Tx‖+ ‖Tx− Ty‖+ ‖Iy − Ty‖+ ‖Ty − Tx‖ ]}

+b max{‖Ix− Tx‖, ‖Iy − Ty‖}
≤ amax{ 1

n
+ ‖Tx− Ty‖+

1
n
}, c[ 1

n
+ ‖Tx− Ty‖+

1
n

+ ‖Tx− Ty‖ ]}

+b max{ 1
n
,

1
n
}

≤ a max{ 2
n

+ ‖Tx− Ty‖, c[ 2
n

+ 2‖Tx− Ty‖ ]}+
b

n
. (26)

Here we consider the following two possible cases of (26).



Common fixed point theorems 95

Case I. max{ 2
n + ‖Tx− Ty‖, c[ 2

n + 2‖Tx− Ty‖ ]} = 2
n + ‖Tx− Ty‖. Now from

in (26), we have

‖Tx− Ty‖ ≤ 2a
n

+ a‖Tx− Ty‖+
b

n
=

2a+ b
n

+ a‖Tx− Ty‖.

Therefore

(1− a)‖Tx− Ty‖ ≤ a+ 1
n

‖Tx − Ty‖ ≤ a+ 1
(1− a)n. (27)

Case II. max{ 2
n + ‖Tx− Ty‖, c[ 2

n + 2‖Tx− Ty‖ ]} = c[ 2
n + 2‖Tx− Ty‖]. From

(26), we have

‖Tx− Ty‖ ≤ a c 2
n + 2ac‖Tx− Ty‖+ b

n

= 2ac[ 1
n + ‖Tx− Ty‖] + b

n

< a[ 1
n + ‖Tx− Ty‖] + b

n

= 1
n + a ‖Tx− Ty‖.

Thus
‖Tx− Ty‖ < 1

(1 − a)n ≤ a+ 1
(1 − a)n. (28)

Thus in both cases we get

‖Tx− Ty‖ ≤ a+ 1
(1 − a)n, so that x, y ∈ Hn.

Hence
lim

n→∞ diam(TKn) = lim
n→∞ diam(TKn) = 0.

On using Cantor’s intersection theorem, A =
⋂{TKn : n ∈ N} contains exactly

one point w (say).

Thus from Proposition 2.1, we have

Tw = Iw. (29)

We now show that w is a common fixed point of T and I. On taking x = w and
y = xn in (2), we have

‖Tw− Txn‖ ≤ a max{‖Iw − Ixn‖, c[ ‖Iw − Txn‖+ ‖Ixn − Tw‖]}
+ b max{‖Iw − Tw‖, ‖Ixn − Txn‖}.

On taking limits as n→ ∞ and using (4) and (29), we get

‖Tw− w‖ ≤ a max{‖Tw− w‖, c[ ‖Tw − w‖+ ‖w − Tw‖]}
+ b max{‖Tw − Tw‖, ‖w − w‖}

= a max{‖Tw− w‖, 2c‖Tw − w‖} (since c < 1
2 )

≤ a ‖Tw − w‖ < ‖Tw− w‖,
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a contradiction. Thus Tw = w, so that

Tw = Iw = w.

Thus w is a common fixed point of T and I. Uniqueness of the common fixed point
follows from the Ciric’s contraction type condition.

An alternate proof: The proof is similar upto the identity (25). Here we show
that

max{‖Tx− Ty‖, ‖Ix− Iy‖} ≤ 3− a
1− a max{‖Ix− Tx‖, ‖Iy − Ty‖}. (30)

Write R = R(x, y) = max{‖Ix−Tx‖, ‖Iy−Ty‖}. From the inequality (2), we have

‖Tx− Ty‖ ≤ a max{‖Ix− Iy‖, c[ ‖Ix− Ty‖+ ‖Iy − Tx‖]}
+ b max{‖Ix− Tx‖, ‖Iy − Ty‖}

≤ a max{‖Ix− Tx‖+ ‖Tx− Ty‖+ ‖Ty− Iy‖,
c[ ‖Ix− Tx‖+ ‖Tx− Ty‖+ ‖Iy − Ty‖+ ‖Ty − Tx‖ ]}

+b max{‖Ix− Tx‖, ‖Iy − Ty‖}
≤ a max{R+ ‖Tx− Ty‖+R}, c[2R+ 2‖Tx− Ty‖ ]}+ bR
≤ a max{2R+ ‖Tx− Ty‖, 2c[ R+ ‖Tx− Ty‖ ]}+ bR
= (2a+ b)R+ a‖Tx− Ty‖
= (1 + a)R + a‖Tx− Ty‖.

Hence
‖Tx− Ty‖ ≤ 1 + a

1− a R. (31)

Now

‖Ix− Iy‖ ≤ ‖Ix− Ty‖+ ‖Tx− Ty‖+ ‖Ty − Iy‖
≤ R+

1 + a
1− a R+R

=
3− a
1− a R. (32)

From (31) and (32), the inequality (30) follows.

Now, by (25), we can choose a sequence {xn} ∈ X such that

‖Ixn − Txn‖ ≤ 1
n

for n = 1, 2, 3, . . . (33)

From (30) and (33), we have

max{‖Ixn − Txm‖, ‖Txn − Txm‖ ≤ 3− a
1− a · 1

n
for 1 ≤ n ≤ m.

Therefore, both {Ixn} and {Txn} are Cauchy sequence in X and from (33), we
have

lim
n→∞ Ixn = lim

n→∞ Txn = w (say), w ∈ X. (34)
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Since T and I are compatible mappings and I is continuous, we have

IIxn, T Ixn. ITxn → Iw as n→ ∞. (35)

Now we show that Iw = w. Suppose that Iw �= w. On substituting x = xn and
y = Ixn in (2), we have

‖Txn − TIxn‖ ≤ a max{‖Ixn − IIxn‖, c[ ‖Ixn − TIxn‖+ ‖IIxn − Txn‖]}
+ b max{‖Ixn − Txn‖, ‖IIxn − TIxn‖}.

On taking limits as n→ ∞ and using (34) and(35), we have

‖w − Iw‖ ≤ a max{‖w − Iw‖, c[ ‖w − Iw‖+ ‖Iw − w‖]}
+ b max{‖w − w‖, ‖Iw − Iw‖}

= a‖w − Iw‖ < ‖w − Iw‖,
a contradiction. Thus

Iw = w. (36)

Finally, we show that Tw = w. Suppose that Tw �= w. On taking x = w and
y = xn in (2), we have

‖Tw − Txn‖ ≤ a ]max{‖Iw − Ixn‖, c[ ‖Iw − Txn‖+ ‖Ixn − Tw‖]}]]
+ b max{‖Iw − Tw‖, ‖Ixn − Ixn‖}.

On taking limits as n→ ∞ and using (34) and (36), we have

‖Tw − w‖ ≤ a max{‖Iw − w‖, c[ ‖w − w‖ + ‖w − Tw‖]}
+ b max{‖Tw− Tw‖, ‖w − w‖}

= (ac+ b)‖w − Tw‖
= [1− a(1− c)]‖w − Tw‖,

a contradiction. Hence
Tw = w. (37)

From (36) and (37), we have
Tw = Iw = w.

Hence w is a common fixed point of T and I. This completes the proof of Theo-
rem 2.2. ✷

The following is an example in support of Theorem 2.2.

Example 2.3. Let X = R with the usual metric. Define selfmaps T, I on X
by Tx = 2+x

3 and Ix = 3x−1
2 , x ∈ X.

Clearly, I is continuous and affine, but I is not nonexpansive and linear. Ob-
serve that T and I are compatible mappings of X.

Now, for any x, y ∈ X,

‖Tx− Ty‖ = |x− y
3

| = 2
9
‖Ix− Iy‖,
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so that the mappings T and I satisfy the inequality (2) with a = 2
9 , b = 7

9 and
c ≤ 20

47 .

On using Proposition 2.1 and Theorem 2.2, we formulate the following theorem.
Theorem 2.4. Let T and I be compatible selfmaps of X and satisfying the

condition (2). If I is continuous and affine in X and T (X) ⊆ I(X), then T and I
have a unique common fixed point in X if and only if

A = ∩{TKn : n ∈ N} �= φ,

where Kn = ‖x ∈ X : ‖Ix− Tx‖ ≤ 1
n}.

Corollary 2.5. Let T and I be compatible selfmaps of X and satisfying the
inequality

‖Tx− Ty‖ ≤ a ‖Ix− Iy‖+ b max{‖Ix− Ix‖, ‖Iy − Ty‖}
+c [‖Ix− Ty‖+ ‖Iy − Tx‖] (38)

for all x, y ∈ C, where 0 < a < 1, b ≥ 0, c ≥ 0, a + c > 0 and a + b + 4c = 1.
If I is continuous and affine on X and T (X) ⊆ I(X), then T and I have a unique
common fixed point in X.

Proof. Set a+ 4c = a1. Then a1 + b = 1 and we have

‖Tx− Ty‖ ≤ a ‖Ix− Iy‖+ b max{‖Ix− Tx‖, ‖Iy − Ty‖]
+c · 4

1
· 1
4
[‖Ix− Ty‖+ ‖Iy − Tx‖]

≤ (a+ 4c)max{‖Ix− Iy‖, 1
4
[‖Ix− Iy‖+ ‖Iy − Tx‖]}

+b max{‖Ix− Tx}, ‖Iy − Ty‖}.
Since 1

4 ≤ min{ 2+a
5+a ,

2−a
4 , 4

9+a} and a1 + b = 1, where a1 = a+4c, the conclusion
of this corollary follows from Theorem 2.2.

On choosing c = 0 in (2), we have the following corollary.

Corollary 2.6. Let T and I be compatible selfmaps of X and satisfying the
condition (1). Suppose that I is continuous, affine and T (X) ⊆ I(X). Then T and
I have a unique common fixed point in X.

Corollary 2.7(Fisher [5]). Let T be a selfmap of a closed convex subset C of X
and satisfying the condition

‖Tx− Ty‖ ≤ a ‖x− y‖+ b max{‖Tx− x‖, ‖Ty − y‖} (39)

for all x, y ∈ C, where 0 < a < 1 with a+ b = 1. Then T has a unique fixed point
in C.

Proof. Follows by choosing I as the identity map of C in Corollary 3.3. ✷

In the following, we prove a common fixed point theorem for a compatible pair
of selfmaps T and I, which are reciprocal continuous on X .
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Theorem 2.8. Let T and I be compatible selfmaps of X, which are reciprocal
continuous on X, satisfying the Ciric’s contraction type condition (2). If I is affine
on X and T (X) ⊆ I(X), then T and I have a unique common fixed point in X if
and only if A = ∩{TKn : n ∈ N} �= φ, where Kn = ‖x ∈ X : ‖Ix− Tx‖ ≤ 1

n}.
Proof. If w is a common fixed point of T and I, then A �= φ follows trivially

by Proposition 2.1.
Conversely, assume that A �= φ. If w ∈ A then for each n, there exists yn ∈ TKn

such that ‖w − yn‖ < 1
n . Consequently, for each n, there exists xn ∈ Kn such

that yn = Txn and ‖w − Txn‖ < 1
n for all n. On taking limits as n → ∞, we get

Txn → w as n→ ∞.
Since xn ∈ Kn, we have ‖Ixn − Txn‖ ≤ 1

n . Thus

lim
n→∞ Ixn = lim

n→∞ Txn = w. (40)

Since T and I are reciprocally continuous mappings, we have

lim
n→∞ TIxn = Tw and lim

n→∞ ITxn = Tw.

Now since T and I are compatible mappings

Tw = lim
n→∞ TIxn = lim

n→∞ ITxn = Iw. (41)

Now on substituting x = w and for each n, substituting y = Ixn in (2) and using
(40) and (41), as in the alternate proof of Theorem 2.2, it is easy to see that Tw = w.
Thus from (41), w is a common fixed point of T and I. ✷

Example 2.9. Let X = R with the usual metric. Define selfmaps T and I on
X by

Tx =




1
2 , if x ≤ 0 and x = 5

2
and Ix = 3x−1

2 , x ∈ X.
1+x
2 , if x > 0 and x �= 5

2

Clearly, I is affine, but I is not nonexpansive and linear. The mappings T and I
are reciprocal continuous and compatible on X.

Observe that the inequality (2) holds with a = 1
3 , b = 2

3 and for any c ≥ 0 with
c ≤ 7

16 . Thus, all the hypotheses of Theorem 2.4 is satisfied and has a unique fixed
point 1.

Now, for x = 2,

‖TI(2)− IT (2)‖ =
5
4

� 1 = ‖T (2)− I(2)‖.

Thus T and I are not weakly commuting, so that Theorem 1.6 is not applicable.
Since I is not linear, Theorem 1.7 is also not applicable.

Hence, from this example, we conclude that Theorem 2.4 is a generalization of
Theorem 1.6 and Theorem 1.7.
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3. Compatible mappings of type (A), compatible mappings of

type (B) and common fixed point theorems

Definition 3.1(Lal et al. [10]). Two selfmaps T and I of X are said to be
compatible mappings of type (A), if

lim
n→∞ ‖TIxn − IIxn‖ = 0 and lim

n→∞ ‖ITxn − TTxn‖ = 0,

whenever {xn} is a sequence in X such that

lim
n→∞ Ixn = lim

n→∞ Txn = t, for some t ∈ X.

Here we note that compatible mappings and compatible mappings of type (A)
are independent (Lal et al. [10]).

Pathak et al. [13] introduced the concept of compatible mappings of type (B)
as a generalization of compatible mappings of type (A).

Definition 3.2(Pathak et al.[13]). Two selfmaps T and I of X are said to
compatible mappings of type (B), if

lim
n→∞ ‖ITxn − TTxn‖ ≤ 1

2 [ lim
n→∞ ‖ITxn − It‖ + lim

n→∞ ‖It− IIxn‖]
and

lim
n→∞ ‖TIxn − IIxn‖ ≤ 1

2 [ lim
n→∞ ‖TIxn − T t‖ + lim

n→∞ ‖T t− TTxn‖],
whenever {xn} is a sequence in X such that

lim
n→∞ Ixn = lim

n→∞ Txn = t, for some t ∈ X.
Clearly, every compatible mappings of type (A) are compatible mappings of type

(B), but its converse need not be true (Pathak et al. [13]).

Proposition 3.3(Pathak et al. [13]). Two selfmaps T and I of X are compatible
mappings of type (B). Suppose that lim

n→∞ Ixn = lim
n→∞ Txn = t, for some t ∈ X.

Then lim
n→∞ TTxn = It, if I is continuous at t.

Proposition 2.1 remains true, if we replace compatible mappings by
compatible mappings of type (B).

Proposition 3.4. Let T and I be selfmaps of X which are compatible mappings
of type (B) and satisfy the Ciric’s contraction type condition (2). If I is continuous
then Tw = Iw for some w ∈ X if and only if A = ∩{TKn : n ∈ N} �= φ, where
Kn = {x ∈ X : ‖Ix− Tx‖ ≤ 1

n}.
Proof. Follows as on the lines of Proposition 2.1 and using Proposition 3.4. ✷

Theorem 3.5. Let T and I be selfmaps of X, which are compatible mappings
of type (B) and satisfying the condition (2). If I is continuous and affine on X and
T (X) ⊆ I(X), then T and I have a unique common fixed point in X.
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Proof. Follows as on the lines of proof of Theorem 2.2 and Proposition 3.4. ✷

Theorem 3.6. Let T and I be selfmaps of X, which are compatible mappings
of type (B) and satisfying the condition (2). If I is continuous and affine in X and
T (X) ⊂ I(X), then T and I have a unique common fixed point in X if and only if
A = ∩{TKn : n ∈ N} �= φ, where Kn = {x ∈ X : ‖Ix− Tx‖ ≤ 1

n}.
Corollary 3.7. Let T and I be selfmaps of X, which are compatible mappings

of type (A) and satisfying the condition (2). If I is continuous and affine in X and
T (X) ⊂ I(X), then T and I have a unique common fixed point in X if and only if
A = ∩{TKn : n ∈ N} �= φ, where Kn = {x ∈ X : ‖Ix− Tx‖ ≤ 1

n}.
Proof. Since compatible mappings of type (A) implies compatible mappings of

type (B), proof follows from Theorem 3.6. ✷

Corollary 3.8(Greguš [7]). Let T be a selfmap of a closed convex subset C of
X and satisfying the inequality

‖Tx− Ty‖ ≤ p ‖x− y‖+ q ‖Tx− x‖+ r ‖Ty − y‖

for all x, y ∈ C, where 0 < p < 1, q ≥ 0, r ≥ 0 with p+ q + r = 1. Then T has a
unique fixed point in C.
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Sci. 9(1986), 22-28.
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Math. Japonica. 33(1988)5, 745-749.

[12] R.P.Pant, Common fixed points of four mappings, Bull. Cal. Math.Soc.
90(1998), 281-289.

[13] H.K.Pathak, M. S.Khan, Compatible mappings of type (B) and common
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