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1 Department of Mathematics, University of Osijek, Trg Ljudevita Gaja 6, HR-31 000
Osijek, Croatia

Received January 2, 2009; accepted June 8, 2009

Abstract. We explicitly describe Levi subgroups of odd spin groups over algebraic closure
of a p-adic field.

AMS subject classifications: 22E35, 22E50, 20G25

Key words: Levi subgroups, non-archimedean fields, simply-connected algebraic groups

1. Introduction

Let F be an algebraic closure of a p-adic field. For n ∈ N, let Spin(2n + 1, F ) be
the split simply-connected algebraic group of type Bn. Spin(2n+ 1, F ) is a double
covering, as algebraic groups, of the odd special orthogonal group SO(2n+1, F ). In
the representation theory, it is very important to know what Levi subgroups look like
in the considered group. In some other classical groups, such as already mentioned
SO(n, F ), Levi subgroups are isomorphic to a product of some general linear groups
and another SO(m,F ), where m ≤ n, i.e. the product of some general linear groups
and a classical group of a smaller rank and of the same type. But, this is not the
case for spin groups, which implies that some different techniques for investigating
these groups have to be used. Examples of Levi subgroups of Spin(5, F ) can be
found in [1], so we assume n > 2. Examples of Siegel Levi subgroups can be found
in [5].

Here is an outline of the paper. Section 2 presents some preliminaries, mainly
from [3] and [6]. In the third section, we have a case-by-case consideration of Levi
subgroups. The same method was used by Asgari in [2] to determine Levi subgroups
of a simply-connected group of type F4.

2. Preliminaries

Fix a maximal torus T of Spin(2n+1, F ) and a Borel subgroup B containing T . The
based root system associated to (Spin(2n+ 1, F ), B, T ), (X,Σ, X∨,Σ∨), is given by

X = Ze1 ⊕ Ze2 ⊕ · · · ⊕ Zen−1 ⊕ Z
e1 + · · ·+ en

2
,

X∨ = Z(e∨1 − e∨2 )⊕ Z(e∨2 − e∨3 )⊕ · · · ⊕ Z(e∨n−1 − e∨n)⊕ Z2e∨n
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Let Σ = {α1, α2, . . . , αn} be a system of simple roots, where α1 = e1 − e2,
α2 = e2 − e3, . . . , αn−1 = en−1 − en, αn = en. We denote the associated coroots by
Σ∨ = {α∨1 , α∨2 , . . . , α∨n}, where

α∨1 = e∨1 − e∨2 , α∨2 = e∨2 − e∨3 , . . . , α∨n−1 = e∨n−1 − e∨n , α∨n = 2e∨n

(observe that e1, . . . , en are chosen in the standard way, such that 〈ei, e∨j 〉 = δi,j).
Every standard Levi subgroup corresponds to some subset θ of Σ. A subgroup

corresponding to θ will be denoted by Mθ. Each Mθ is an almost direct product of a
connected component of its center and its derived group. A connected component of
the center of Mθ will be denoted by Aθ, while a derived group of Mθ will be denoted
by M ′θ. In other words,

Mθ '
Aθ ×M ′θ
Aθ ∩M ′θ

Since Spin(2n+1, F ) is a simply-connected group, the derived group of each Mθ

is also simply-connected, so it can be obtained directly from θ, i.e. from its root
system. It is well - known that

Aθ = (
⋂
β∈θ

kerβ)0

so Aθ can also be obtained from the set of simple roots θ. After obtaining Aθ and
M ′θ (which will be considered case-by-case, depending on the type of θ), we can
construct their almost direct product to finally obtain Mθ.

The maximal torus of Spin(2n + 1, F ) will be denoted by T . We have the next
proposition ([2, Proposition 3.1.2], or [4, p. 108]), which holds for simply-connected
groups:

Proposition 1. Each t ∈ T can be written uniquely as

t =
n∏
i=1

α∨i (ti), ti ∈ F ∗.

Kernels of simple roots in Σ can now be described as follows:

Proposition 2. Let t ∈ kerαi. Then

αi(t) = αi(
n∏
j=1

α∨j (tj)) =
n∏
j=1

t
〈αi,α

∨
j 〉

j = 1.

This implies:

• if i = 1, then t21 = t2

• if 2 ≤ i ≤ n− 2, then t2i = ti−1ti+1

• if i = n− 1, then t2i = ti−1t
2
i+1

• if i = n, then t2i = ti−1
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Let z = α∨n(−1). From [2, Corollary 3.1.3], follows that the center of Spin(2n+
1, F ) equals {1, z} ' Z2. From now on, z stands for the non-trivial element of the
center of Spin(2n+ 1, F ), for some n ≥ 1. We introduce the notion of general spin
groups, following Asgari [2]. These groups are defined in the following way:

GSpin(2n+ 1, F ) =
GL(1, F )× Spin(2n+ 1, F )

{(1, 1), (−1, z)}
, n ≥ 1,

GSpin(1, F ) = GL(1, F ).

The derived group of a general spin group is a spin group, so general spin groups
are to spin groups as the general linear groups are to special linear groups. An
advantage of general spin groups is that their Levi subgroups are isomorphic to a
product of general linear groups and a general spin group of a smaller rank. This
was proved in [2], using root datum of general spin groups. Another proof can be
found in this manuscript.

3. Levi subgroups

Let us fix some notation. Let θ ⊂ Σ, θ 6= ∅. Here and subsequently, we will write θ
as a union of connected components of its Dyinkin diagram,

θ = θ1 ∪ θ2 ∪ · · · ∪ θk

where θi∩θj = ∅ for i 6= j. We choose θ1, . . . , θk in such a way that for αi1 ∈ θj1 and
αi2 ∈ θj2 , where j1 < j2, then i1 < i2. For 1 ≤ i ≤ k, let ni = |θi|. For a shorten
notation, we write li instead of

∑
1≤j≤i nj . Now it follows that, if mini is the

minimal index such that αmini ∈ θi, then θi = {αmini , αmini+1, . . . , αmini+ni−1}.
Also, if αi1 ∈ θj1 and αi2 ∈ θj2 , where j1 < j2, then i2 − i1 > 1.

We write ζk for the k−th primitive root of identity in F ∗ and In for an n × n
identity matrix.
Now we begin a case-by-case consideration:

(1) Suppose α1 ∈ θ, αn−1, αn /∈ θ. Obviously, α1 ∈ θ1, min1 = 1 and mink +
nk − 1 < n− 1.

We obtain M ′θ using [4, Chapter 5., Theorem 1.33, Lemma 1.35 and Exam-
ple 1.36], where a derived group of Mθ is described. In this case, M ′θ is isomorphic
to SL(n1 + 1, F )× SL(n2 + 1, F )× · · · × SL(nk + 1, F ).

Let λ1 = t1. From Proposition 2 we get t2 = λ2
1, t3 = λ3

1, . . . , tn1 = λn1
1 ,

tn1+1 = λn1+1
1 . Next, put λ2 = tn1+2, λ3 = tn1+3, . . . , λmin2−n1 = tmin2 . If

min2 = n1 + 2, then let µ1 = λn1+1
1 ; let µ1 = λmin2−n1−1 otherwise.

From Proposition 2 again, we obtain

tmin2+1 = t2min2
t−1
min2−1 = λ2

min2−n1
µ−1

1 ,

tmin2+2 = t2min2+1t
−1
min2

= λ4
min2−n1

µ−2
1 λ−1

min2−n1
= λ3

min2−n1
µ−2

1 ,
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tmin2+3 = t2min2+2t
−1
min2+1 = λ4

min2−n1
µ−3

1 ,

...
tmin2+n2−1 = λn2

min2−n1
µ−n2+1

1

tmin2+n2 = λn2+1
min2−n1

µ−n2
1 .

These equations cover kernels of all the roots in θ2, so for each root between θ2 and
θ3 we put

λmin2−n1+1 = tmin2+n2+1, λmin2−n1+2 = tmin2+n2+2, . . . , λmin3−l2 = tmin3 .

If min3 = min2+n2+1, then let µ2 = λn2+1
min2−n1

µ−n2
1 ; let µ2 = λmin3−l2−1 otherwise.

Repeating the procedure similar to that in the previous paragraph, we get

tmin3+1 = t2min3
t−1
min3−1 = λ2

min3−l2µ
−1
2 ,

...
tmin3+n3−1 = λn3

min3−l2µ
−n3+1
2 ,

tmin3+n3 = λn3+1
min3−l2µ

−n3
2 .

We continue by repeating this process for all the remaining subsets θ4, . . . , θk of θ.
At the end we get tmink+nk−1 = λnk

mink−lk−1
µ−nk+1
k−1 and tmink+nk

= λnk+1
mink−lk−1

µ−nk

k−1 .
Since in this case mink + nk < n, we also have to put

λmink−lk−1+1 = tmink+nk+1, . . . , λn−lk = tn.

Finally, we have:

Aθ = {α∨1 (λ1)α∨2 (λ2
1) · · ·α∨n1+1(λn1+1

1 )α∨n1+2(λ2) · · ·α∨min2
(λmin2−n1)

·α∨min2+1(λ2
min2−n1

µ−1
1 )α∨min2+2(λ3

min2−n1
µ−2

1 ) · · ·
·α∨min2+n2

(λn2+1
min2−n1

µ−n2
1 )α∨min2+n2+1(λmin2−n1+1) · · ·α∨min3

(λmin3−l2)

·α∨min3+1(λ2
min3−l2µ

−1
2 ) · · ·α∨min3+n3

(λn3+1
min3−l2µ

−n3
2 ) · · ·

·α∨mink+nk
(λnk+1
mink−lk−1

µ−nk

k−1 )α∨mink+nk+1(λmink−lk−1+1) · · ·α∨n(λn−lk)

: λ1, · · · , λn−lk ∈ F ∗}
' (F ∗)n−lk

After identifying Aθ with GL(1, F )n−lk ' (F ∗)n−lk , we fix (as in [4, Exam-
ple 1.36]) an identification of M ′θ with SL(n1 +1, F )×SL(n2 +1, F )×· · ·×SL(nk+
1, F ) under which the element α∨1 (λ1)α∨2 (λ2

1) · · ·α∨n1
(λn1

1 ) goes to the diagonal ele-
ment diag(λ1, λ1, . . . , λ1, λ

−n1
1 ) of SL(n1 + 1, F ),

α∨min2
(λmin2−n1)α∨min2+1(λ2

min2−n1
µ−1

1 ) · · ·α∨min2+n2−1(λn2
min2−n1

µ−n2+1
1 )

to diag(λmin2−n1 , . . . , λmin2−n1 , λ
−n2
min2−n1

) of SL(n2 +1, F ) and proceed in the same
way for all connected components θ3, . . . , θk (similar identifications are used in all
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cases). Using these identifications, we conclude that in Aθ
⋂
M ′θ we have:

λn1+1
1 = 1, λ2 = λ3 = · · · = µ1 = 1,

λn2+1
min2−n1

= 1, λmin2−n1+1 = λmin2−n1+2 = · · · = µ2 = 1,

λn3+1
min3−l2 = 1, . . . , µk−1 = 1, λnk+1

mink−lk−1
= 1,

λmink−lk−1+1 = · · · = λn−lk = 1,

therefore

Aθ ∩M ′θ = {α∨1 (λ1)α∨2 (λ2
1) · · ·α∨n1

(λn1
1 )α∨min2

(λmin2−n1) · · ·

·α∨min2+n2−1(λn2
min2−n1

) · · ·α∨mink+nk
(λnk

mink−lk−1
)

: λn1+1
1 = 1, λn2+1

min2−n1
= 1, . . . , λnk+1

mink−lk−1
= 1}

' 〈ζn1+1〉 × 〈ζn2+1〉 × · · · × 〈ζnk+1〉

It follows immediately that

Mθ '
(F ∗)n−lk × SL(n1 + 1, F )× · · · × SL(nk + 1, F )

〈ζn1+1〉 × · · · × 〈ζnk+1〉

' F ∗ × SL(n1 + 1, F )
〈ζn1+1〉

× · · · × F ∗ × SL(nk + 1, F )
〈ζnk+1〉

× (F ∗)n−lk−k

' GL(n1 + 1, F )× · · · ×GL(nk + 1, F )×GL(1, F )n−lk−k

because the mapping F ∗ × SL(n, F ) → GL(n, F ), (x, S) 7→ xIn · S, is a surjective
homomorphism whose kernel is isomorphic to 〈ζn〉.

(2) Suppose α1, αn−1, αn /∈ θ. Of course, mink + nk − 1 < n − 1. M ′θ is again
isomorphic to SL(n1 + 1, F )× SL(n2 + 1, F )× · · · × SL(nk + 1, F ). We start with

λ1 = t1, λ2 = t2, . . . , λmin1 = tmin1 .

It follows

tmin1+1 = λ2
min1

λ−1
min1−1, . . . , tmin1+n1−1 = λn1

min1
λ−n1+1
min1−1

and
tmin1+n1 = λn1+1

min1
λ−n1
min1−1.

We can now proceed analogously to case (1):

Aθ = {α∨1 (λ1) · · ·α∨min1
(λmin1)α∨min1+1(λ2

min1
λ−1
min1−1) · · ·

·α∨min1+n1
(λn1+1
min1

λ−n1
min1−1) · · ·α∨mink

(λmink−lk−1) · · ·

·α∨mink+nk
(λnk+1
mink−lk−1

µ−nk

k−1 )α∨mink+nk+1(λmink−lk−1+1) · · ·

·α∨n(λn−lk) : λ1, · · · , λn−lk ∈ F ∗}

' (F ∗)n−lk
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In Aθ ∩M ′θ we have:

λ1 = · · · = λmin1−1 = 1, λn1+1
min1

= 1,

λmin1+1 = · · · = λmin2−n1−1 = µ1 = 1, λn2+1
min2−n1

= 1,
...

λmink−1−lk−2 = · · · = λmink−lk−1−1 = µk−1 = 1,

λnk+1
mink−lk−1

= 1, λmink−lk−1+1 = · · · = λn−lk = 1.

Therefore, Aθ ∩M ′θ ' 〈ζn1+1〉 × 〈ζn2+1〉 × · · · × 〈ζnk+1〉 and again

Mθ ' GL(n1 + 1, F )× · · · ×GL(nk + 1, F )×GL(1, F )n−lk−k

(3) Suppose α1, αn−1, αn ∈ θ. Obviously, min1 = 1 and mink+nk = n+1. M ′θ is
isomorphic to SL(n1+1, F )×SL(n2+1, F )×· · ·×SL(nk−1+1, F )×Spin(2nk+1, F ).

On the set θ \ θk = θ1 ∪ θ2 ∪ · · · ∪ θk−1 we apply the same analysis as in case (1)
and get

λ1 = t1, . . . , λ
n1+1
1 = tn1+1, λ2 = tn1+2,

...
λmink−1−lk−2 = tmink−1 ,

...
tmink−1+nk−1−1 = λ

nk−1
mink−1−lk−2

µ
−nk−1+1
k−2 ,

tmink−1+nk−1 = λ
nk−1+1
mink−1−lk−2

µ
−nk−1
k−2 .

Next, put λmink−1−lk−2+1 = tn. From Proposition 2 applied to the set θk we
obtain: tn−1 = tn−2 = · · · = tn−nk

= λ2
mink−1−lk−2+1. We have two possibilities

which are considered separately:

• mink−1 + nk−1 = n− nk
It follows directly that mink−1− lk−2 = n− lk and λnk−1+1

n−lk µ
−nk−1
k−2 = λ2

n−lk+1.
So, Aθ ' (F ∗)n−lk . In Aθ ∩M ′θ we have:

λn1+1
1 = 1, λ2 = λ3 = · · · = µ1 = 1,

λn2+1
min2−n1

= 1, λmin2−n1+1 = λmin2−n1+2 = · · · = µ2 = 1,
...

λ
nk−1+1
n−lk = 1 = λ2

n−lk+1.

That implies Aθ ∩M ′θ ' 〈ζn1+1〉×〈ζn2+1〉× · · ·×〈ζnk−2+1〉×〈ζ2(nk−1+1)〉 (this
2(nk−1 + 1)-th root of identity comes from the last equation). This gives

Mθ ' GL(n1 + 1, F )× · · · ×GL(nk−2 + 1, F )×GL(1, F )n−lk−k

×GL(1, F )× SL(nk−1 + 1, F )× Spin(2nk + 1, F )
B

,
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where B = {(ζ, ζ2 · Ink−1+1, ζ
nk−1+1) : ζ2(nk−1+1) = 1}. Observe that the

set {ζnk−1+1 : ζ2(nk−1+1) = 1} can be identified with {1, z}, the center of
Spin(2nk + 1, F ).

• mink−1 + nk−1 < n− nk
We put λmink−1−lk−2+2 = tmink−1+nk−1+1 , λmink−1−lk−2+3 = tmink−1+nk−1+2,
. . . , λn−lk = tn−nk−1.
Again, Aθ ' (F ∗)n−lk , while in Aθ ∩M ′θ we have

λn1+1
1 = 1, λ2 = λ3 = · · · = µ1 = 1,

...
λ
nk−1+1
mink−1−lk−2

= 1, µk−2 = 1,

λ2
mink−1−lk−2+1 = 1, λmink−1−lk−2+2 = · · · = λn−lk = 1,

that implies Aθ ∩M ′θ ' 〈ζn1+1〉 × 〈ζn2+1〉 × · · · × 〈ζnk−1+1〉 × 〈ζ2〉.
Observe that 〈ζ2〉 ' {(1, 1), (−1, z)}. We thus get

Mθ ' GL(n1 + 1, F )× · · · ×GL(nk−1 + 1, F )×GL(1, F )n−lk−k

×GL(1, F )× Spin(2nk + 1, F )
〈ζ2〉

' GL(n1 + 1, F )× · · · ×GL(nk−1 + 1, F )×GL(1, F )n−lk−k

×GSpin(2nk + 1, F ).

(4) Suppose α1, αn ∈ θ, αn−1 /∈ θ. Clearly, min1 = 1, θk = {αn} and nk = 1. M ′θ
is isomorphic to SL(n1 + 1, F )×SL(n2 + 1, F )×· · ·×SL(nk−1 + 1, F )×Spin(3, F ).
This case can be handled in pretty much the same way as case (3), so we only state
final results.

• if mink−1 + nk−1 = n− 1, then

Mθ ' GL(n1 + 1, F )× · · · ×GL(nk−2 + 1, F )×GL(1, F )n−lk−k

×GL(1, F )× SL(nk−1 + 1, F )× Spin(3, F )
B

,

where B = {(ζ, ζ2 · Ink−1+1, ζ
nk−1+1) : ζ2(nk−1+1) = 1}

• if mink−1 + nk−1 < n− 1, then

Mθ ' GL(n1 + 1, F )× · · · ×GL(nk−2 + 1, F )×GL(1, F )n−lk−k

×GSpin(3, F ).

(5) Suppose α1 /∈ θ, αn−1, αn ∈ θ. Obviously, min1 > 1 and mink + nk = n+ 1.
M ′θ is isomorphic to

SL(n1 + 1, F )× SL(n2 + 1, F )× · · · × SL(nk−1 + 1, F )× Spin(2nk + 1, F ).
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Let λ1 = tn. From Proposition 2 we conclude that

tn−1 = · · · = tmink
= tmink−1 = λ2

1.

Next, let

λ2 = tmink−2, . . . , λmink−mink−1−nk−1+1 = tmink−1+nk−1−1.

Ifmink−1+nk−1 = mink−1, then put µ1 = λ2
1, otherwise put µ1 = λmink−mink−1−nk−1 .

Using standard calculations, it easily follows:

tmink−1+nk−1−2 = λ2
mink−mink−1−nk−1+1µ

−1
1 ,

tmink−1+nk−1−3 = λ3
mink−mink−1−nk−1+1µ

−2
1 ,

...
tmink−1−1 = λ

nk−1+1
mink−mink−1−nk−1+1µ

−nk
1 .

In the next step, let

λmink−mink−1−nk−1+2 = tmink−1−2,

λmink−mink−1−nk−1+3 = tmink−1−3,

...
λmink−mink−2−nk−1−nk−2+1 = tmink−2+nk−2−1.

If mink−2 + nk−2 = mink−1 − 1, then put µ2 = λ
nk−1+1
mink−mink−1−nk−1+1µ

−nk
1 ,

otherwise put µ2 = λmink−mink−2−nk−1−nk−2 . The rest of this construction runs as
before:

tmink−2+nk−2−2 = λ2
mink−mink−2−nk−1−nk−2+1µ

−1
2 ,

...
tmink−2−1 = λ

nk−2+1
mink−mink−2−nk−1−nk−2+1µ

−nk−1
2 ,

...
tmin1−1 = λn1+1

mink−min1−lk−1+1µ
−n1
k−1 .

Also, we have to add λmink−min1−lk−1+2 = tmin1−2, . . . , λmink−lk−1−1 = t1. From
mink + nk = n+ 1 we easily get that mink − lk−1 − 1 = n− lk.

Aθ = {α∨1 (λn−lk)α∨2 (λn−lk−1) · · ·α∨min1−2(λmink−min1−lk−1+2)

·α∨min1−1(λn1+1
mink−min1−lk+nk+1µ

−n1
k−1) · · ·α∨mink−1(λ2

1) · · ·α∨n(λ1)

: λ1, . . . , λn−lk ∈ F ∗}
' (F ∗)n−lk .
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In Aθ ∩M ′θ we have:

λ2
1 = 1,
λ2 = · · · = λmink−mink−1−nk−1 = µ1 = 1,

λ
nk−1+1
mink−mink−1−nk−1+1 = 1,

...
µk−1 = 1, λn1+1

mink−min1−lk−1+1 = 1,

λmink−min1−lk−1+2 = · · · = λn−lk = 1,

that implies
Aθ ∩M ′θ ' 〈ζn1+1〉 × 〈ζn2+1〉 × · · · × 〈ζnk−2+1〉 × 〈ζ2〉.
Finally,

Mθ ' GL(n1 + 1, F )× · · · ×GL(nk−2 + 1, F )×GL(1, F )n−lk−k

×GL(1, F )× Spin(2nk + 1, F )
〈ζ2〉

' GL(n1 + 1, F )× · · · ×GL(nk−2 + 1, F )×GL(1, F )n−lk−k

×GSpin(2nk + 1, F ).

Observe that, for θ = Σ \ {α1} we have θ = θ1, k = 1, n1 = n− 1 and

MΣ\{α1} 'Mθ = GSpin(2(n− 1) + 1, F ),

which implies that GSpin(2n−1, F ) is the maximal Levi subgroup of Spin(2n+1, F ).

(6) Suppose α1, αn−1 /∈ θ, αn ∈ θ. Of course, min1 > 1 and nk = 1. M ′θ is
isomorphic to SL(n1 + 1, F )× SL(n2 + 1, F )× · · · × SL(nk−1 + 1, F )× Spin(3, F ).
Analysis similar to that in the (5) shows that:

Mθ ' GL(n1 + 1, F )× · · · ×GL(nk−2 + 1, F )×GL(1, F )n−lk−k

×GL(1, F )× Spin(3, F )
{1, z}

' GL(n1 + 1, F )× · · · ×GL(nk−2 + 1, F )×GL(1, F )n−lk−k

×GSpin(3, F ).

(7) Suppose α1, αn−1 ∈ θ, αn /∈ θ. Clearly, min1 = 1 and mink + nk = n. M ′θ is
isomorphic to SL(n1 + 1, F )× SL(n2 + 1, F )× · · · × SL(nk + 1, F ).
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Proceeding analogously to case (1) we obtain:

λ1 = t1, t2 = λ2
1, t3 = λ3

1, . . . , tn1 = λn1
1 , tn1+1 = λn1+1

1 ,

λ2 = tn1+2, λ3 = tn1+3, . . . , λmin2−n1 = tmin2 ,

tmin2+1 = λ2
min2−n1

µ−1
1 , . . . , tmin2+n2 = λn2+1

min2−n1
µ−n2

1 ,

...
tmink+nk−1 = λnk

mink−lk−1
µ−nk+1
k−1 , t2n = t2mink+nk

= λnk+1
mink−lk−1

µ−nk

k−1 .

Suppose θ = Σ\{αn}. Then k = 1, n1 = n−1, M ′θ = SL(n, F ) and t2n = λn1 = tn1 .
If n is even, say n = 2m, then
Aθ = {α∨1 (λ1)α∨2 (λ2

1) · · ·α∨n−1(λn−1
1 )α∨n(λm1 ) : λ1 ∈ F ∗} ' F ∗

Observe that tk could not be equal to −λm1 in Aθ, because Aθ is a connected com-
ponent of the center. In Aθ ∩M ′θ we have λm1 = 1, so Aθ ∩M ′θ ' 〈ζm〉, therefore

Mθ '
GL(1, F )× SL(n, F )

〈ζm〉

If n is odd, then Mθ ' GL(n, F ), as Shahidi asserts in [5, Remark 2.2].
If θ has more than one component, then t2n = λnk+1

mink−lk−1
µ−nk

k−1 . Since nk + 1 and
−nk are of different parities, if nk is even or µk−1 is not equal to λm for some λ ∈ F ∗
and m even, we can proceed in the same way as above and get

Mθ ' GL(n1 + 1, F )× · · · ×GL(nk + 1, F )×GL(1, F )n−lk−k

Now we have to consider the situation when nk is odd and µk−1 = λm, for
λ ∈ F ∗ and m even. If this is the case, then µk−1 = λ

nk−1+1
mink−1−lk−2

µ
−nk−1
k−2 . Again,

this implies that nk−1 is odd and µk−2 = λ
nk−2+1
mink−2−lk−3

µ
−nk−2
k−3 . We continue in this

fashion to obtain µ2 = λn2+1
min2−n1

µ−n2
1 , n2 is odd, µ1 = λn1+1

1 and n1 is odd. We
conclude that nk is odd and µk−1 = λm, for λ ∈ F ∗ and m even, only if ni is odd
for each 1 ≤ i ≤ k and mini +ni = mini+1− 1 for each 1 ≤ i ≤ k− 1. Observe that
this implies mink − lk−1 = k = n− lk. If this is the case, then

Aθ = {α∨1 (λ1)α∨2 (λ2
1) · · ·α∨n1+1(λn1+1

1 )α∨min2
(λ2)

·α∨min2+1(λ2
2µ
−1
1 )α∨min2+2(λ3

2µ
−2
1 ) · · ·

·α∨mink
(λn−lk) · · ·α∨n−1(λnk

n−lkµ
−nk+1
k−1 )α∨n(λ

nk+1
2

n−lk µ)

: λ1, · · · , λn−lk ∈ F ∗, µ2 = µ−nk

k−1}
' (F ∗)n−lk .

In Aθ ∩M ′θ we have:

λn1+1
1 = λn2+1

2 = · · · = λ
nk−1+1
k−1 = λ

nk+1
2

n−lk = µ1 = µ2 = · · · = µk−1 = 1,
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we easily get that λnk+1
n−lk = 1, so Aθ ∩M ′θ ' 〈ζn1+1〉 × 〈ζn2+1〉 × · · · × 〈ζnk+1〉 and

Mθ ' GL(n1 + 1, F )× · · · ×GL(nk + 1, F ).
(8) Suppose α1, αn /∈ θ, αn−1 ∈ θ. Clearly, min1 > 1, θ 6= Σ \ {αn} and

mink+nk = n. M ′θ is isomorphic to SL(n1+1, F )×SL(n2+1, F )×· · ·×SL(nk+1, F ).
By the same method as in case (7), we obtain

Mθ ' GL(n1 + 1, F )× · · · ×GL(nk + 1, F )×GL(1, F )n−lk−k

Remark 1. Cases (2), (5), (6) and (8) together imply that Levi subgroups of the
general spin group GSpin(2n + 1, F ) are isomorphic to GL(n1, F ) × GL(n2, F ) ×
· · · ×GL(nk, F )×GSpin(2m+ 1, F ), m ≤ n.

Remark 2. Observe that F
∗×SL(n,F )
〈ζn〉 is not isomorphic to GL(n, F ) over p-adic field

F , because the image of the given mapping consists of matrices whose determinants
are n-th powers.

Let F1 be a p-adic field. We will denote an algebraic closure of F1 by F 1. Since
spin groups are double coverings of special orthogonal groups, we have the next exact
sequence

1 → {±1} ↪→ Spin(2n + 1, F 1)
f−→ SO(2n + 1, F 1) → 1, where f is a central

isogeny. F1−rational points of Spin(2n+ 1) may be obtained by using the following
exact sequence:

1→ {±1} ↪→ Spin(2n+ 1, F1)
f−→ SO(2n+ 1, F1) δ−→ F ∗1 /(F

∗
1 )2

(homomorphism δ is called the spinor norm)
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