Levi subgroups of p-adic $\operatorname{Spin}(2 n+1)$

Ivan Matić ${ }^{1, *}$
${ }^{1}$ Department of Mathematics, University of Osijek, Trg Ljudevita Gaja 6, HR-31 000
Osijek, Croatia

Received January 2, 2009; accepted June 8, 2009

Abstract

We explicitly describe Levi subgroups of odd spin groups over algebraic closure of a p-adic field. AMS subject classifications: 22E35, 22E50, 20G25

Key words: Levi subgroups, non-archimedean fields, simply-connected algebraic groups

1. Introduction

Let F be an algebraic closure of a p-adic field. For $n \in \mathbb{N}$, let $\operatorname{Spin}(2 n+1, F)$ be the split simply-connected algebraic group of type $B_{n} . \operatorname{Spin}(2 n+1, F)$ is a double covering, as algebraic groups, of the odd special orthogonal group $S O(2 n+1, F)$. In the representation theory, it is very important to know what Levi subgroups look like in the considered group. In some other classical groups, such as already mentioned $S O(n, F)$, Levi subgroups are isomorphic to a product of some general linear groups and another $S O(m, F)$, where $m \leq n$, i.e. the product of some general linear groups and a classical group of a smaller rank and of the same type. But, this is not the case for spin groups, which implies that some different techniques for investigating these groups have to be used. Examples of Levi subgroups of $\operatorname{Spin}(5, F)$ can be found in [1], so we assume $n>2$. Examples of Siegel Levi subgroups can be found in [5].

Here is an outline of the paper. Section 2 presents some preliminaries, mainly from [3] and [6]. In the third section, we have a case-by-case consideration of Levi subgroups. The same method was used by Asgari in [2] to determine Levi subgroups of a simply-connected group of type F_{4}.

2. Preliminaries

Fix a maximal torus T of $\operatorname{Spin}(2 n+1, F)$ and a Borel subgroup B containing T. The based root system associated to $(S \operatorname{pin}(2 n+1, F), B, T),\left(X, \Sigma, X^{\vee}, \Sigma^{\vee}\right)$, is given by

$$
\begin{aligned}
X & =\mathbb{Z} e_{1} \oplus \mathbb{Z} e_{2} \oplus \cdots \oplus \mathbb{Z} e_{n-1} \oplus \mathbb{Z} \frac{e_{1}+\cdots+e_{n}}{2} \\
X^{\vee} & =\mathbb{Z}\left(e_{1}^{\vee}-e_{2}^{\vee}\right) \oplus \mathbb{Z}\left(e_{2}^{\vee}-e_{3}^{\vee}\right) \oplus \cdots \oplus \mathbb{Z}\left(e_{n-1}^{\vee}-e_{n}^{\vee}\right) \oplus \mathbb{Z} 2 e_{n}^{\vee}
\end{aligned}
$$

[^0]Let $\Sigma=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ be a system of simple roots, where $\alpha_{1}=e_{1}-e_{2}$, $\alpha_{2}=e_{2}-e_{3}, \ldots, \alpha_{n-1}=e_{n-1}-e_{n}, \alpha_{n}=e_{n}$. We denote the associated coroots by $\Sigma^{\vee}=\left\{\alpha_{1}^{\vee}, \alpha_{2}^{\vee}, \ldots, \alpha_{n}^{\vee}\right\}$, where

$$
\alpha_{1}^{\vee}=e_{1}^{\vee}-e_{2}^{\vee}, \alpha_{2}^{\vee}=e_{2}^{\vee}-e_{3}^{\vee}, \ldots, \alpha_{n-1}^{\vee}=e_{n-1}^{\vee}-e_{n}^{\vee}, \alpha_{n}^{\vee}=2 e_{n}^{\vee}
$$

(observe that e_{1}, \ldots, e_{n} are chosen in the standard way, such that $\left\langle e_{i}, e_{j}^{\vee}\right\rangle=\delta_{i, j}$).
Every standard Levi subgroup corresponds to some subset θ of Σ. A subgroup corresponding to θ will be denoted by M_{θ}. Each M_{θ} is an almost direct product of a connected component of its center and its derived group. A connected component of the center of M_{θ} will be denoted by A_{θ}, while a derived group of M_{θ} will be denoted by M_{θ}^{\prime}. In other words,

$$
M_{\theta} \simeq \frac{A_{\theta} \times M_{\theta}^{\prime}}{A_{\theta} \cap M_{\theta}^{\prime}}
$$

Since $\operatorname{Spin}(2 n+1, F)$ is a simply-connected group, the derived group of each M_{θ} is also simply-connected, so it can be obtained directly from θ, i.e. from its root system. It is well - known that

$$
A_{\theta}=\left(\bigcap_{\beta \in \theta} \operatorname{ker} \beta\right)^{0}
$$

so A_{θ} can also be obtained from the set of simple roots θ. After obtaining A_{θ} and M_{θ}^{\prime} (which will be considered case-by-case, depending on the type of θ), we can construct their almost direct product to finally obtain M_{θ}.

The maximal torus of $\operatorname{Spin}(2 n+1, F)$ will be denoted by T. We have the next proposition ([2, Proposition 3.1.2], or [4, p. 108]), which holds for simply-connected groups:

Proposition 1. Each $t \in T$ can be written uniquely as

$$
t=\prod_{i=1}^{n} \alpha_{i}^{\vee}\left(t_{i}\right), t_{i} \in F^{*}
$$

Kernels of simple roots in Σ can now be described as follows:
Proposition 2. Let $t \in k e r \alpha_{i}$. Then

$$
\alpha_{i}(t)=\alpha_{i}\left(\prod_{j=1}^{n} \alpha_{j}^{\vee}\left(t_{j}\right)\right)=\prod_{j=1}^{n} t_{j}^{\left\langle\alpha_{i}, \alpha_{j}^{\vee}\right\rangle}=1
$$

This implies:

- if $i=1$, then $t_{1}^{2}=t_{2}$
- if $2 \leq i \leq n-2$, then $t_{i}^{2}=t_{i-1} t_{i+1}$
- if $i=n-1$, then $t_{i}^{2}=t_{i-1} t_{i+1}^{2}$
- if $i=n$, then $t_{i}^{2}=t_{i-1}$

Let $z=\alpha_{n}^{\vee}(-1)$. From [2, Corollary 3.1.3], follows that the center of $\operatorname{Spin}(2 n+$ $1, F)$ equals $\{1, z\} \simeq \mathbb{Z}_{2}$. From now on, z stands for the non-trivial element of the center of $\operatorname{Spin}(2 n+1, F)$, for some $n \geq 1$. We introduce the notion of general spin groups, following Asgari [2]. These groups are defined in the following way:

$$
\begin{aligned}
G \operatorname{Spin}(2 n+1, F) & =\frac{G L(1, F) \times \operatorname{Spin}(2 n+1, F)}{\{(1,1),(-1, z)\}}, n \geq 1 \\
G \operatorname{Spin}(1, F) & =G L(1, F)
\end{aligned}
$$

The derived group of a general spin group is a spin group, so general spin groups are to spin groups as the general linear groups are to special linear groups. An advantage of general spin groups is that their Levi subgroups are isomorphic to a product of general linear groups and a general spin group of a smaller rank. This was proved in [2], using root datum of general spin groups. Another proof can be found in this manuscript.

3. Levi subgroups

Let us fix some notation. Let $\theta \subset \Sigma, \theta \neq \emptyset$. Here and subsequently, we will write θ as a union of connected components of its Dyinkin diagram,

$$
\theta=\theta_{1} \cup \theta_{2} \cup \cdots \cup \theta_{k}
$$

where $\theta_{i} \cap \theta_{j}=\emptyset$ for $i \neq j$. We choose $\theta_{1}, \ldots, \theta_{k}$ in such a way that for $\alpha_{i_{1}} \in \theta_{j_{1}}$ and $\alpha_{i_{2}} \in \theta_{j_{2}}$, where $j_{1}<j_{2}$, then $i_{1}<i_{2}$. For $1 \leq i \leq k$, let $n_{i}=\left|\theta_{i}\right|$. For a shorten notation, we write l_{i} instead of $\sum_{1 \leq j \leq i} n_{j}$. Now it follows that, if $\min _{i}$ is the minimal index such that $\alpha_{\text {min }_{i}} \in \theta_{i}$, then $\theta_{i}=\left\{\alpha_{\text {min }_{i}}, \alpha_{\text {min }_{i}+1}, \ldots, \alpha_{\text {min }_{i}+n_{i}-1}\right\}$. Also, if $\alpha_{i_{1}} \in \theta_{j_{1}}$ and $\alpha_{i_{2}} \in \theta_{j_{2}}$, where $j_{1}<j_{2}$, then $i_{2}-i_{1}>1$.

We write ζ_{k} for the k-th primitive root of identity in F^{*} and I_{n} for an $n \times n$ identity matrix.
Now we begin a case-by-case consideration:
(1) Suppose $\alpha_{1} \in \theta, \alpha_{n-1}, \alpha_{n} \notin \theta$. Obviously, $\alpha_{1} \in \theta_{1}, \min _{1}=1$ and $\min _{k}+$ $n_{k}-1<n-1$.

We obtain M_{θ}^{\prime} using [4, Chapter 5., Theorem 1.33, Lemma 1.35 and Example 1.36], where a derived group of M_{θ} is described. In this case, M_{θ}^{\prime} is isomorphic to $S L\left(n_{1}+1, F\right) \times S L\left(n_{2}+1, F\right) \times \cdots \times S L\left(n_{k}+1, F\right)$.

Let $\lambda_{1}=t_{1}$. From Proposition 2 we get $t_{2}=\lambda_{1}^{2}, t_{3}=\lambda_{1}^{3}, \ldots, t_{n_{1}}=\lambda_{1}^{n_{1}}$, $t_{n_{1}+1}=\lambda_{1}^{n_{1}+1}$. Next, put $\lambda_{2}=t_{n_{1}+2}, \lambda_{3}=t_{n_{1}+3}, \ldots, \lambda_{\min _{2}-n_{1}}=t_{\min _{2}}$. If $\min _{2}=n_{1}+2$, then let $\mu_{1}=\lambda_{1}^{n_{1}+1}$; let $\mu_{1}=\lambda_{\min _{2}-n_{1}-1}$ otherwise.

From Proposition 2 again, we obtain

$$
\begin{aligned}
& t_{\min _{2}+1}=t_{\min _{2}}^{2} t_{\min _{2}-1}^{-1}=\lambda_{\min _{2}-n_{1}}^{2} \mu_{1}^{-1} \\
& t_{\min _{2}+2}=t_{\min _{2}+1}^{2} t_{\min _{2}}^{-1}=\lambda_{\min _{2}-n_{1}}^{4} \mu_{1}^{-2} \lambda_{\min _{2}-n_{1}}^{-1}=\lambda_{\min _{2}-n_{1}}^{3} \mu_{1}^{-2}
\end{aligned}
$$

$$
\begin{aligned}
t_{\min _{2}+3} & =t_{\min _{2}+2}^{2} t_{\min _{2}+1}^{-1}=\lambda_{\min _{2}-n_{1}}^{4} \mu_{1}^{-3} \\
& \vdots \\
t_{\min _{2}+n_{2}-1} & =\lambda_{\min _{2}-n_{1}}^{n_{2}} \mu_{1}^{-n_{2}+1} \\
t_{\min _{2}+n_{2}} & =\lambda_{m_{i n_{2}-n_{1}}^{n_{2}+1}} \mu_{1}^{-n_{2}}
\end{aligned}
$$

These equations cover kernels of all the roots in θ_{2}, so for each root between θ_{2} and θ_{3} we put

$$
\lambda_{\min _{2}-n_{1}+1}=t_{\min _{2}+n_{2}+1}, \lambda_{\min _{2}-n_{1}+2}=t_{\min _{2}+n_{2}+2}, \ldots, \lambda_{\min _{3}-l_{2}}=t_{\min _{3}}
$$

If $\min _{3}=\min _{2}+n_{2}+1$, then let $\mu_{2}=\lambda_{\min _{2}-n_{1}}^{n_{2}+1} \mu_{1}^{-n_{2}}$; let $\mu_{2}=\lambda_{\min _{3}-l_{2}-1}$ otherwise. Repeating the procedure similar to that in the previous paragraph, we get

$$
\begin{aligned}
t_{\min _{3}+1}= & t_{\min _{3}}^{2} t_{\min _{3}-1}^{-1}=\lambda_{\min _{3}-l_{2}}^{2} \mu_{2}^{-1} \\
& \vdots \\
t_{\min _{3}+n_{3}-1} & =\lambda_{\min _{3}-l_{2}}^{n_{3}} \mu_{2}^{-n_{3}+1} \\
t_{\text {min }_{3}+n_{3}} & =\lambda_{\text {min }_{3}-l_{2}}^{n_{3}+1} \mu_{2}^{-n_{3}}
\end{aligned}
$$

We continue by repeating this process for all the remaining subsets $\theta_{4}, \ldots, \theta_{k}$ of θ. At the end we get $t_{\min _{k}+n_{k}-1}=\lambda_{\min _{k}-l_{k-1}}^{n_{k}} \mu_{k-1}^{-n_{k}+1}$ and $t_{\min _{k}+n_{k}}=\lambda_{\min _{k}-l_{k-1}}^{n_{k}+1} \mu_{k-1}^{-n_{k}}$.

Since in this case $\min _{k}+n_{k}<n$, we also have to put

$$
\lambda_{\min _{k}-l_{k-1}+1}=t_{\min _{k}+n_{k}+1}, \ldots, \lambda_{n-l_{k}}=t_{n}
$$

Finally, we have:

$$
\begin{aligned}
& A_{\theta}=\{ \left\{\alpha_{1}^{\vee}\left(\lambda_{1}\right) \alpha_{2}^{\vee}\left(\lambda_{1}^{2}\right) \cdots \alpha_{n_{1}+1}^{\vee}\left(\lambda_{1}^{n_{1}+1}\right) \alpha_{n_{1}+2}^{\vee}\left(\lambda_{2}\right) \cdots \alpha_{\min _{2}}^{\vee}\left(\lambda_{\min _{2}-n_{1}}\right)\right. \\
& \cdot \alpha_{\min _{2}+1}^{\vee}\left(\lambda_{\min _{2}-n_{1}}^{2} \mu_{1}^{-1}\right) \alpha_{\min _{2}+2}^{\vee}\left(\lambda_{\min _{2}-n_{1}}^{3} \mu_{1}^{-2}\right) \cdots \\
& \cdot \alpha_{\min _{2}+n_{2}}^{\vee}\left(\lambda_{\min _{2}-n_{1}}^{n_{2}+1} \mu_{1}^{-n_{2}}\right) \alpha_{\text {min }_{2}+n_{2}+1}^{\vee}\left(\lambda_{\min _{2}-n_{1}+1}\right) \cdots \alpha_{\min _{3}}^{\vee}\left(\lambda_{\min _{3}-l_{2}}\right) \\
& \cdot \alpha_{\min _{3}+1}^{\vee}\left(\lambda_{\min _{3}-l_{2}}^{2} \mu_{2}^{-1}\right) \cdots \alpha_{\min _{3}+n_{3}}^{\vee}\left(\lambda_{\min _{3}-l_{2}}^{n_{3}+1} \mu_{2}^{-n_{3}}\right) \cdots \\
& \cdot \alpha_{\min _{k}+n_{k}}^{\vee}\left(\lambda_{\min _{k}-l_{k-1}}^{n_{k}+1} \mu_{k-1}^{-n_{k}}\right) \alpha_{\min _{k}+n_{k}+1}^{\vee}\left(\lambda_{\min _{k}-l_{k-1}+1}^{\vee}\right) \cdots \alpha_{n}^{\vee}\left(\lambda_{n-l_{k}}\right) \\
&: \lambda_{1}, \cdots, \lambda_{\left.n-l_{k} \in F^{*}\right\}}^{\simeq} \\
&\left(F^{*}\right)^{n-l_{k}}
\end{aligned}
$$

After identifying A_{θ} with $G L(1, F)^{n-l_{k}} \simeq\left(F^{*}\right)^{n-l_{k}}$, we fix (as in [4, Example 1.36]) an identification of M_{θ}^{\prime} with $S L\left(n_{1}+1, F\right) \times S L\left(n_{2}+1, F\right) \times \cdots \times S L\left(n_{k}+\right.$ $1, F)$ under which the element $\alpha_{1}^{\vee}\left(\lambda_{1}\right) \alpha_{2}^{\vee}\left(\lambda_{1}^{2}\right) \cdots \alpha_{n_{1}}^{\vee}\left(\lambda_{1}^{n_{1}}\right)$ goes to the diagonal element $\operatorname{diag}\left(\lambda_{1}, \lambda_{1}, \ldots, \lambda_{1}, \lambda_{1}^{-n_{1}}\right)$ of $S L\left(n_{1}+1, F\right)$,

$$
\alpha_{m_{i n_{2}}}^{\vee}\left(\lambda_{\min _{2}-n_{1}}\right) \alpha_{\min _{2}+1}^{\vee}\left(\lambda_{\min _{2}-n_{1}}^{2} \mu_{1}^{-1}\right) \cdots \alpha_{\min _{2}+n_{2}-1}^{\vee}\left(\lambda_{\min _{2}-n_{1}}^{n_{2}} \mu_{1}^{-n_{2}+1}\right)
$$

to $\operatorname{diag}\left(\lambda_{\min _{2}-n_{1}}, \ldots, \lambda_{\min _{2}-n_{1}}, \lambda_{\min _{2}-n_{1}}^{-n_{2}}\right)$ of $S L\left(n_{2}+1, F\right)$ and proceed in the same way for all connected components $\theta_{3}, \ldots, \theta_{k}$ (similar identifications are used in all
cases). Using these identifications, we conclude that in $A_{\theta} \bigcap M_{\theta}^{\prime}$ we have:

$$
\begin{aligned}
\lambda_{1}^{n_{1}+1} & =1, \lambda_{2}=\lambda_{3}=\cdots=\mu_{1}=1 \\
\lambda_{\min _{2}-n_{1}}^{n_{2}+1} & =1, \lambda_{\min _{2}-n_{1}+1}=\lambda_{\min _{2}-n_{1}+2}=\cdots=\mu_{2}=1 \\
\lambda_{\min _{3}-l_{2}}^{n_{3}+1} & =1, \ldots, \mu_{k-1}=1, \lambda_{\min _{k}-l_{k-1}}^{n_{k}+1}=1, \\
\lambda_{\min _{k}-l_{k-1}+1} & =\cdots=\lambda_{n-l_{k}}=1,
\end{aligned}
$$

therefore

$$
\begin{aligned}
A_{\theta} \cap M_{\theta}^{\prime}= & \left\{\alpha_{1}^{\vee}\left(\lambda_{1}\right) \alpha_{2}^{\vee}\left(\lambda_{1}^{2}\right) \cdots \alpha_{n_{1}}^{\vee}\left(\lambda_{1}^{n_{1}}\right) \alpha_{\min _{2}}^{\vee}\left(\lambda_{\min _{2}-n_{1}}\right) \cdots\right. \\
& \cdot \alpha_{m_{i n_{2}+n_{2}-1}^{\vee}\left(\lambda_{m_{2 n_{2}-n_{1}}}^{n_{2}}\right) \cdots \alpha_{m_{i n_{k}+n_{k}}^{\vee}}\left(\lambda_{m_{i n_{k}-l_{k-1}}^{n_{k}}}\right)} \\
& \left.: \lambda_{1}^{n_{1}+1}=1, \lambda_{\min _{2}-n_{1}}^{n_{2}+1}=1, \ldots, \lambda_{\text {min }_{k}-l_{k-1}}^{n_{k}+1}=1\right\} \\
\simeq & \left\langle\zeta_{n_{1}+1}\right\rangle \times\left\langle\zeta_{n_{2}+1}\right\rangle \times \cdots \times\left\langle\zeta_{n_{k}+1}\right\rangle
\end{aligned}
$$

It follows immediately that

$$
\begin{aligned}
M_{\theta} & \simeq \frac{\left(F^{*}\right)^{n-l_{k}} \times S L\left(n_{1}+1, F\right) \times \cdots \times S L\left(n_{k}+1, F\right)}{\left\langle\zeta_{n_{1}+1}\right\rangle \times \cdots \times\left\langle\zeta_{n_{k}+1}\right\rangle} \\
& \simeq \frac{F^{*} \times S L\left(n_{1}+1, F\right)}{\left\langle\zeta_{n_{1}+1}\right\rangle} \times \cdots \times \frac{F^{*} \times S L\left(n_{k}+1, F\right)}{\left\langle\zeta_{n_{k}+1}\right\rangle} \times\left(F^{*}\right)^{n-l_{k}-k} \\
& \simeq G L\left(n_{1}+1, F\right) \times \cdots \times G L\left(n_{k}+1, F\right) \times G L(1, F)^{n-l_{k}-k}
\end{aligned}
$$

because the mapping $F^{*} \times S L(n, F) \rightarrow G L(n, F),(x, S) \mapsto x I_{n} \cdot S$, is a surjective homomorphism whose kernel is isomorphic to $\left\langle\zeta_{n}\right\rangle$.
(2) Suppose $\alpha_{1}, \alpha_{n-1}, \alpha_{n} \notin \theta$. Of course, $\min _{k}+n_{k}-1<n-1$. M_{θ}^{\prime} is again isomorphic to $S L\left(n_{1}+1, F\right) \times S L\left(n_{2}+1, F\right) \times \cdots \times S L\left(n_{k}+1, F\right)$. We start with

$$
\lambda_{1}=t_{1}, \lambda_{2}=t_{2}, \ldots, \lambda_{\min _{1}}=t_{\min _{1}}
$$

It follows

$$
t_{\min _{1}+1}=\lambda_{\min _{1}}^{2} \lambda_{\min _{1}-1}^{-1}, \ldots, t_{\min _{1}+n_{1}-1}=\lambda_{\min _{1}}^{n_{1}} \lambda_{\min _{1}-1}^{-n_{1}+1}
$$

and

$$
t_{\min _{1}+n_{1}}=\lambda_{\min _{1}}^{n_{1}+1} \lambda_{\min _{1}-1}^{-n_{1}}
$$

We can now proceed analogously to case (1):

$$
\begin{aligned}
A_{\theta}= & \left\{\alpha_{1}^{\vee}\left(\lambda_{1}\right) \cdots \alpha_{\min _{1}}^{\vee}\left(\lambda_{\min _{1}}\right) \alpha_{\min _{1}+1}^{\vee}\left(\lambda_{\min _{1}}^{2} \lambda_{\min _{1}-1}^{-1}\right) \cdots\right. \\
& \cdot \alpha_{\min _{1}+n_{1}}^{\vee}\left(\lambda_{\min _{1}}^{n_{1}+1} \lambda_{\min _{1}-1}^{-n_{1}}\right) \cdots \alpha_{\min _{k}}^{\vee}\left(\lambda_{\min _{k}-l_{k-1}}\right) \cdots \\
& \cdot \alpha_{\min _{k}+n_{k}}^{\vee}\left(\lambda_{\min _{k}-l_{k-1}}^{n_{k}+1} \mu_{k-1}^{-n_{k}}\right) \alpha_{\min _{k}+n_{k}+1}^{\vee}\left(\lambda_{\min _{k}-l_{k-1}+1}\right) \cdots \\
& \left.\cdot \alpha_{n}^{\vee}\left(\lambda_{n-l_{k}}\right): \lambda_{1}, \cdots, \lambda_{n-l_{k}} \in F^{*}\right\} \\
\simeq & \left(F^{*}\right)^{n-l_{k}}
\end{aligned}
$$

In $A_{\theta} \cap M_{\theta}^{\prime}$ we have:

$$
\begin{aligned}
\lambda_{1} & =\cdots=\lambda_{\min _{1}-1}=1, \lambda_{\min _{1}}^{n_{1}+1}=1 \\
\lambda_{\min _{1}+1} & =\cdots=\lambda_{\min _{2}-n_{1}-1}=\mu_{1}=1, \lambda_{\min _{2}-n_{1}}^{n_{2}+1}=1 \\
& \vdots \\
\lambda_{\min _{k-1}-l_{k-2}} & =\cdots=\lambda_{\min _{k}-l_{k-1}-1}=\mu_{k-1}=1, \\
\lambda_{\min _{k}-l_{k-1}}^{n_{k}+1} & =1, \lambda_{\min _{k}-l_{k-1}+1}=\cdots=\lambda_{n-l_{k}}=1
\end{aligned}
$$

Therefore, $A_{\theta} \cap M_{\theta}^{\prime} \simeq\left\langle\zeta_{n_{1}+1}\right\rangle \times\left\langle\zeta_{n_{2}+1}\right\rangle \times \cdots \times\left\langle\zeta_{n_{k}+1}\right\rangle$ and again

$$
M_{\theta} \simeq G L\left(n_{1}+1, F\right) \times \cdots \times G L\left(n_{k}+1, F\right) \times G L(1, F)^{n-l_{k}-k}
$$

(3) Suppose $\alpha_{1}, \alpha_{n-1}, \alpha_{n} \in \theta$. Obviously, $\min _{1}=1$ and $\min _{k}+n_{k}=n+1 . M_{\theta}^{\prime}$ is isomorphic to $S L\left(n_{1}+1, F\right) \times S L\left(n_{2}+1, F\right) \times \cdots \times S L\left(n_{k-1}+1, F\right) \times \operatorname{Spin}\left(2 n_{k}+1, F\right)$.

On the set $\theta \backslash \theta_{k}=\theta_{1} \cup \theta_{2} \cup \cdots \cup \theta_{k-1}$ we apply the same analysis as in case (1) and get

$$
\begin{aligned}
\lambda_{1}=t_{1}, \ldots, \lambda_{1}^{n_{1}+1} & =t_{n_{1}+1}, \lambda_{2}=t_{n_{1}+2} \\
& \vdots \\
\lambda_{\text {min }_{k-1}-l_{k-2}} & =t_{\text {min }_{k-1}} \\
& \vdots \\
t_{\min _{k-1}+n_{k-1}-1} & =\lambda_{\min _{k-1}-l_{k-2}}^{n_{k-1}} \mu_{k-2}^{-n_{k-1}+1} \\
t_{\min _{k-1}+n_{k-1}} & =\lambda_{\min _{k-1}-l_{k-2}}^{n_{k-1}+1} \mu_{k-2}^{-n_{k-1}}
\end{aligned}
$$

Next, put $\lambda_{\min _{k-1}-l_{k-2}+1}=t_{n}$. From Proposition 2 applied to the set θ_{k} we obtain: $t_{n-1}=t_{n-2}=\cdots=t_{n-n_{k}}=\lambda_{\min _{k-1}-l_{k-2}+1}^{2}$. We have two possibilities which are considered separately:

- $\min _{k-1}+n_{k-1}=n-n_{k}$

It follows directly that $\min _{k-1}-l_{k-2}=n-l_{k}$ and $\lambda_{n-l_{k}}^{n_{k-1}+1} \mu_{k-2}^{-n_{k-1}}=\lambda_{n-l_{k}+1}^{2}$.
So, $A_{\theta} \simeq\left(F^{*}\right)^{n-l_{k}}$. In $A_{\theta} \cap M_{\theta}^{\prime}$ we have:

$$
\begin{aligned}
\lambda_{1}^{n_{1}+1} & =1, \lambda_{2}=\lambda_{3}=\cdots=\mu_{1}=1 \\
\lambda_{m_{2 n_{2}-n_{1}}^{n_{2}+1}} & =1, \lambda_{\min _{2}-n_{1}+1}=\lambda_{\min _{2}-n_{1}+2}=\cdots=\mu_{2}=1 \\
& \vdots \\
\lambda_{n-l_{k}}^{n_{k-1}+1} & =1=\lambda_{n-l_{k}+1}^{2}
\end{aligned}
$$

That implies $A_{\theta} \cap M_{\theta}^{\prime} \simeq\left\langle\zeta_{n_{1}+1}\right\rangle \times\left\langle\zeta_{n_{2}+1}\right\rangle \times \cdots \times\left\langle\zeta_{n_{k-2}+1}\right\rangle \times\left\langle\zeta_{2\left(n_{k-1}+1\right)}\right\rangle$ (this $2\left(n_{k-1}+1\right)$-th root of identity comes from the last equation). This gives

$$
\begin{aligned}
M_{\theta} \simeq & G L\left(n_{1}+1, F\right) \times \cdots \times G L\left(n_{k-2}+1, F\right) \times G L(1, F)^{n-l_{k}-k} \\
& \times \frac{G L(1, F) \times S L\left(n_{k-1}+1, F\right) \times \operatorname{Spin}\left(2 n_{k}+1, F\right)}{B}
\end{aligned}
$$

where $B=\left\{\left(\zeta, \zeta^{2} \cdot I_{n_{k-1}+1}, \zeta^{n_{k-1}+1}\right): \zeta^{2\left(n_{k-1}+1\right)}=1\right\}$. Observe that the set $\left\{\zeta^{n_{k-1}+1}: \zeta^{2\left(n_{k-1}+1\right)}=1\right\}$ can be identified with $\{1, z\}$, the center of $\operatorname{Spin}\left(2 n_{k}+1, F\right)$.

- $\min _{k-1}+n_{k-1}<n-n_{k}$

We put $\lambda_{\min _{k-1}-l_{k-2}+2}=t_{\min _{k-1}+n_{k-1}+1}, \lambda_{\min _{k-1}-l_{k-2}+3}=t_{\min _{k-1}+n_{k-1}+2}$, $\ldots, \lambda_{n-l_{k}}=t_{n-n_{k}-1}$.
Again, $A_{\theta} \simeq\left(F^{*}\right)^{n-l_{k}}$, while in $A_{\theta} \cap M_{\theta}^{\prime}$ we have

$$
\begin{aligned}
\lambda_{1}^{n_{1}+1} & =1, \lambda_{2}=\lambda_{3}=\cdots=\mu_{1}=1 \\
& \vdots \\
\lambda_{\min _{k-1}-l_{k-2}}^{n_{k-1}+1} & =1, \mu_{k-2}=1 \\
\lambda_{\min _{k-1}-l_{k-2}+1}^{2} & =1, \lambda_{\min _{k-1}-l_{k-2}+2}=\cdots=\lambda_{n-l_{k}}=1
\end{aligned}
$$

that implies $A_{\theta} \cap M_{\theta}^{\prime} \simeq\left\langle\zeta_{n_{1}+1}\right\rangle \times\left\langle\zeta_{n_{2}+1}\right\rangle \times \cdots \times\left\langle\zeta_{n_{k-1}+1}\right\rangle \times\left\langle\zeta_{2}\right\rangle$.
Observe that $\left\langle\zeta_{2}\right\rangle \simeq\{(1,1),(-1, z)\}$. We thus get

$$
\begin{aligned}
M_{\theta} \simeq & G L\left(n_{1}+1, F\right) \times \cdots \times G L\left(n_{k-1}+1, F\right) \times G L(1, F)^{n-l_{k}-k} \\
& \times \frac{G L(1, F) \times \operatorname{Spin}\left(2 n_{k}+1, F\right)}{\left\langle\zeta_{2}\right\rangle} \\
\simeq & G L\left(n_{1}+1, F\right) \times \cdots \times G L\left(n_{k-1}+1, F\right) \times G L(1, F)^{n-l_{k}-k} \\
& \times G \operatorname{Spin}\left(2 n_{k}+1, F\right)
\end{aligned}
$$

(4) Suppose $\alpha_{1}, \alpha_{n} \in \theta, \alpha_{n-1} \notin \theta$. Clearly, $\min _{1}=1, \theta_{k}=\left\{\alpha_{n}\right\}$ and $n_{k}=1$. M_{θ}^{\prime} is isomorphic to $S L\left(n_{1}+1, F\right) \times S L\left(n_{2}+1, F\right) \times \cdots \times S L\left(n_{k-1}+1, F\right) \times \operatorname{Spin}(3, F)$. This case can be handled in pretty much the same way as case (3), so we only state final results.

- if $\min _{k-1}+n_{k-1}=n-1$, then

$$
\begin{aligned}
M_{\theta} \simeq & G L\left(n_{1}+1, F\right) \times \cdots \times G L\left(n_{k-2}+1, F\right) \times G L(1, F)^{n-l_{k}-k} \\
& \times \frac{G L(1, F) \times S L\left(n_{k-1}+1, F\right) \times \operatorname{Spin}(3, F)}{B}
\end{aligned}
$$

where $B=\left\{\left(\zeta, \zeta^{2} \cdot I_{n_{k-1}+1}, \zeta^{n_{k-1}+1}\right): \zeta^{2\left(n_{k-1}+1\right)}=1\right\}$

- if $\min _{k-1}+n_{k-1}<n-1$, then

$$
\begin{aligned}
M_{\theta} \simeq & G L\left(n_{1}+1, F\right) \times \cdots \times G L\left(n_{k-2}+1, F\right) \times G L(1, F)^{n-l_{k}-k} \\
& \times G \operatorname{Spin}(3, F)
\end{aligned}
$$

(5) Suppose $\alpha_{1} \notin \theta, \alpha_{n-1}, \alpha_{n} \in \theta$. Obviously, $\min _{1}>1$ and $\min _{k}+n_{k}=n+1$. M_{θ}^{\prime} is isomorphic to

$$
S L\left(n_{1}+1, F\right) \times S L\left(n_{2}+1, F\right) \times \cdots \times S L\left(n_{k-1}+1, F\right) \times \operatorname{Spin}\left(2 n_{k}+1, F\right)
$$

Let $\lambda_{1}=t_{n}$. From Proposition 2 we conclude that

$$
t_{n-1}=\cdots=t_{\min _{k}}=t_{\min _{k}-1}=\lambda_{1}^{2}
$$

Next, let

$$
\lambda_{2}=t_{\min _{k}-2}, \ldots, \lambda_{\min _{k}-\min _{k-1}-n_{k-1}+1}=t_{\min _{k-1}+n_{k-1}-1}
$$

If $\min _{k-1}+n_{k-1}=\min _{k}-1$, then put $\mu_{1}=\lambda_{1}^{2}$, otherwise put $\mu_{1}=\lambda_{\min _{k}-\min _{k-1}-n_{k-1}}$. Using standard calculations, it easily follows:

$$
\begin{aligned}
t_{\min _{k-1}+n_{k-1}-2} & =\lambda_{\min _{k}-\min _{k-1}-n_{k-1}+1}^{2} \mu_{1}^{-1} \\
t_{\min _{k-1}+n_{k-1}-3} & =\lambda_{\min _{k}-\min _{k-1}-n_{k-1}+1}^{3} \mu_{1}^{-2} \\
& \vdots \\
t_{\min _{k-1}-1} & =\lambda_{\min _{k}-\min _{k-1}-n_{k-1}+1}^{n_{k-1}+1} \mu_{1}^{-n_{k}} .
\end{aligned}
$$

In the next step, let

$$
\begin{aligned}
\lambda_{\min _{k}-\min _{k-1}-n_{k-1}+2} & =t_{\min _{k-1}-2} \\
\lambda_{\min _{k}-\min _{k-1}-n_{k-1}+3} & =t_{\min _{k-1}-3} \\
& \vdots \\
\lambda_{\min _{k}-\min _{k-2}-n_{k-1}-n_{k-2}+1} & =t_{\min _{k-2}+n_{k-2}-1}
\end{aligned}
$$

If $\min _{k-2}+n_{k-2}=\min _{k-1}-1$, then put $\mu_{2}=\lambda_{\min _{k}-\min _{k-1}-n_{k-1}+1}^{n_{k-1}+1} \mu_{1}^{-n_{k}}$, otherwise put $\mu_{2}=\lambda_{\min _{k}-\min _{k-2}-n_{k-1}-n_{k-2}}$. The rest of this construction runs as before:

$$
\begin{aligned}
t_{\min _{k-2}+n_{k-2}-2} & =\lambda_{\min _{k}-\min _{k-2}-n_{k-1}-n_{k-2}+1}^{2} \mu_{2}^{-1} \\
& \vdots \\
t_{\text {min }_{k-2}-1} & =\lambda_{\min _{k}-\min _{k-2}-n_{k-1}-n_{k-2}+1}^{n_{k-2}+1} \mu_{2}^{-n_{k-1}} \\
& \vdots \\
t_{\text {min }_{1}-1} & =\lambda_{\min _{k}-\min _{1}-l_{k-1}+1}^{n_{1}+1} \mu_{k-1}^{-n_{1}} .
\end{aligned}
$$

Also, we have to add $\lambda_{\min _{k}-\min _{1}-l_{k-1}+2}=t_{\min _{1}-2}, \ldots, \lambda_{\min _{k}-l_{k-1}-1}=t_{1}$. From $\min _{k}+n_{k}=n+1$ we easily get that $\min _{k}-l_{k-1}-1=n-l_{k}$.

$$
\begin{aligned}
A_{\theta}= & \left\{\alpha_{1}^{\vee}\left(\lambda_{n-l_{k}}\right) \alpha_{2}^{\vee}\left(\lambda_{n-l_{k}-1}\right) \cdots \alpha_{\min _{1}-2}^{\vee}\left(\lambda_{\min _{k}-\min _{1}-l_{k-1}+2}\right)\right. \\
& \cdot \alpha_{\min _{1}-1}^{\vee}\left(\lambda_{\min _{k}-\min _{1}-l_{k}+n_{k}+1}^{n_{1}+1} \mu_{k-1}^{-n_{1}}\right) \cdots \alpha_{\min _{k}-1}^{\vee}\left(\lambda_{1}^{2}\right) \cdots \alpha_{n}^{\vee}\left(\lambda_{1}\right) \\
& \left.: \lambda_{1}, \ldots, \lambda_{n-l_{k}} \in F^{*}\right\} \\
\simeq & \left(F^{*}\right)^{n-l_{k}} .
\end{aligned}
$$

In $A_{\theta} \cap M_{\theta}^{\prime}$ we have:

$$
\begin{aligned}
& \lambda_{1}^{2}=1 \\
& \lambda_{2}=\cdots=\lambda_{\min _{k}-\min _{k-1}-n_{k-1}}=\mu_{1}=1 \\
& \lambda_{\min _{k}-\min _{k-1}-n_{k-1}+1}^{n_{k-1}+1} \\
& \quad \vdots \\
& \mu_{k-1}=1, \lambda_{\min _{k}-\min _{1}-l_{k-1}+1}^{n_{1}+1}=1 \\
& \lambda_{\min _{k}-\min _{1}-l_{k-1}+2}=\cdots=\lambda_{n-l_{k}}=1
\end{aligned}
$$

that implies
$A_{\theta} \cap M_{\theta}^{\prime} \simeq\left\langle\zeta_{n_{1}+1}\right\rangle \times\left\langle\zeta_{n_{2}+1}\right\rangle \times \cdots \times\left\langle\zeta_{n_{k-2}+1}\right\rangle \times\left\langle\zeta_{2}\right\rangle$.
Finally,

$$
\begin{aligned}
M_{\theta} \simeq & G L\left(n_{1}+1, F\right) \times \cdots \times G L\left(n_{k-2}+1, F\right) \times G L(1, F)^{n-l_{k}-k} \\
& \times \frac{G L(1, F) \times \operatorname{Spin}\left(2 n_{k}+1, F\right)}{\left\langle\zeta_{2}\right\rangle} \\
\simeq & G L\left(n_{1}+1, F\right) \times \cdots \times G L\left(n_{k-2}+1, F\right) \times G L(1, F)^{n-l_{k}-k} \\
& \times G \operatorname{Spin}\left(2 n_{k}+1, F\right) .
\end{aligned}
$$

Observe that, for $\theta=\Sigma \backslash\left\{\alpha_{1}\right\}$ we have $\theta=\theta_{1}, k=1, n_{1}=n-1$ and

$$
M_{\Sigma \backslash\left\{\alpha_{1}\right\}} \simeq M_{\theta}=G \operatorname{Spin}(2(n-1)+1, F)
$$

which implies that $\operatorname{GSpin}(2 n-1, F)$ is the maximal Levi subgroup of $\operatorname{Spin}(2 n+1, F)$.
(6) Suppose $\alpha_{1}, \alpha_{n-1} \notin \theta, \alpha_{n} \in \theta$. Of course, $\min _{1}>1$ and $n_{k}=1 . M_{\theta}^{\prime}$ is isomorphic to $S L\left(n_{1}+1, F\right) \times S L\left(n_{2}+1, F\right) \times \cdots \times S L\left(n_{k-1}+1, F\right) \times \operatorname{Spin}(3, F)$. Analysis similar to that in the (5) shows that:

$$
\begin{aligned}
M_{\theta} \simeq & G L\left(n_{1}+1, F\right) \times \cdots \times G L\left(n_{k-2}+1, F\right) \times G L(1, F)^{n-l_{k}-k} \\
& \times \frac{G L(1, F) \times \operatorname{Spin}(3, F)}{\{1, z\}} \\
\simeq & G L\left(n_{1}+1, F\right) \times \cdots \times G L\left(n_{k-2}+1, F\right) \times G L(1, F)^{n-l_{k}-k} \\
& \times G \operatorname{Spin}(3, F) .
\end{aligned}
$$

(7) Suppose $\alpha_{1}, \alpha_{n-1} \in \theta, \alpha_{n} \notin \theta$. Clearly, $\min _{1}=1$ and $\min _{k}+n_{k}=n . M_{\theta}^{\prime}$ is isomorphic to $S L\left(n_{1}+1, F\right) \times S L\left(n_{2}+1, F\right) \times \cdots \times S L\left(n_{k}+1, F\right)$.

Proceeding analogously to case (1) we obtain:

$$
\begin{aligned}
\lambda_{1} & =t_{1}, t_{2}=\lambda_{1}^{2}, t_{3}=\lambda_{1}^{3}, \ldots, t_{n_{1}}=\lambda_{1}^{n_{1}}, t_{n_{1}+1}=\lambda_{1}^{n_{1}+1}, \\
\lambda_{2} & =t_{n_{1}+2}, \lambda_{3}=t_{n_{1}+3}, \ldots, \lambda_{\min _{2}-n_{1}}=t_{m_{i n_{2}}} \\
t_{\min _{2}+1} & =\lambda_{\min _{2}-n_{1}}^{2} \mu_{1}^{-1}, \ldots, t_{\min _{2}+n_{2}}=\lambda_{\min _{2}-n_{1}}^{n_{2}+1} \mu_{1}^{-n_{2}}, \\
& \vdots \\
t_{\min _{k}+n_{k}-1} & =\lambda_{\min _{k}-l_{k-1}}^{n_{k}} \mu_{k-1}^{-n_{k}+1}, t_{n}^{2}=t_{\min _{k}+n_{k}}^{2}=\lambda_{\min _{k}-l_{k-1}}^{n_{k}+1} \mu_{k-1}^{-n_{k}} .
\end{aligned}
$$

Suppose $\theta=\Sigma \backslash\left\{\alpha_{n}\right\}$. Then $k=1, n_{1}=n-1, M_{\theta}^{\prime}=S L(n, F)$ and $t_{n}^{2}=\lambda_{1}^{n}=t_{1}^{n}$. If n is even, say $n=2 m$, then
$A_{\theta}=\left\{\alpha_{1}^{\vee}\left(\lambda_{1}\right) \alpha_{2}^{\vee}\left(\lambda_{1}^{2}\right) \cdots \alpha_{n-1}^{\vee}\left(\lambda_{1}^{n-1}\right) \alpha_{n}^{\vee}\left(\lambda_{1}^{m}\right): \lambda_{1} \in F^{*}\right\} \simeq F^{*}$
Observe that t_{k} could not be equal to $-\lambda_{1}^{m}$ in A_{θ}, because A_{θ} is a connected component of the center. In $A_{\theta} \cap M_{\theta}^{\prime}$ we have $\lambda_{1}^{m}=1$, so $A_{\theta} \cap M_{\theta}^{\prime} \simeq\left\langle\zeta^{m}\right\rangle$, therefore

$$
M_{\theta} \simeq \frac{G L(1, F) \times S L(n, F)}{\left\langle\zeta^{m}\right\rangle}
$$

If n is odd, then $M_{\theta} \simeq G L(n, F)$, as Shahidi asserts in [5, Remark 2.2].
If θ has more than one component, then $t_{n}^{2}=\lambda_{m_{i n_{k}-l_{k-1}}^{n_{k}+1}} \mu_{k-1}^{-n_{k}}$. Since $n_{k}+1$ and $-n_{k}$ are of different parities, if n_{k} is even or μ_{k-1} is not equal to λ^{m} for some $\lambda \in F^{*}$ and m even, we can proceed in the same way as above and get

$$
M_{\theta} \simeq G L\left(n_{1}+1, F\right) \times \cdots \times G L\left(n_{k}+1, F\right) \times G L(1, F)^{n-l_{k}-k}
$$

Now we have to consider the situation when n_{k} is odd and $\mu_{k-1}=\lambda^{m}$, for $\lambda \in F^{*}$ and m even. If this is the case, then $\mu_{k-1}=\lambda_{\min _{k-1}-l_{k-2}}^{n_{k-1}+1} \mu_{k-2}^{-n_{k-1}}$. Again, this implies that n_{k-1} is odd and $\mu_{k-2}=\lambda_{\min _{k-2}-l_{k-3}}^{n_{k-2}+1} \mu_{k-3}^{-n_{k-2}}$. We continue in this fashion to obtain $\mu_{2}=\lambda_{\min _{2}-n_{1}}^{n_{2}+1} \mu_{1}^{-n_{2}}, n_{2}$ is odd, $\mu_{1}=\lambda_{1}^{n_{1}+1}$ and n_{1} is odd. We conclude that n_{k} is odd and $\mu_{k-1}=\lambda^{m}$, for $\lambda \in F^{*}$ and m even, only if n_{i} is odd for each $1 \leq i \leq k$ and $\min _{i}+n_{i}=\min _{i+1}-1$ for each $1 \leq i \leq k-1$. Observe that this implies $\min _{k}-l_{k-1}=k=n-l_{k}$. If this is the case, then

$$
\begin{aligned}
A_{\theta}= & \left\{\alpha_{1}^{\vee}\left(\lambda_{1}\right) \alpha_{2}^{\vee}\left(\lambda_{1}^{2}\right) \cdots \alpha_{n_{1}+1}^{\vee}\left(\lambda_{1}^{n_{1}+1}\right) \alpha_{m_{i n_{2}}}^{\vee}\left(\lambda_{2}\right)\right. \\
& \cdot \alpha_{m_{i n_{2}+1}}^{\vee}\left(\lambda_{2}^{2} \mu_{1}^{-1}\right) \alpha_{m_{i n_{2}+2}^{\vee}}^{\vee}\left(\lambda_{2}^{3} \mu_{1}^{-2}\right) \cdots \\
& \cdot \alpha_{m_{i n_{k}}}^{\vee}\left(\lambda_{n-l_{k}}\right) \cdots \alpha_{n-1}^{\vee}\left(\lambda_{n-l_{k}}^{n_{k}} \mu_{k-1}^{-n_{k}+1}\right) \alpha_{n}^{\vee}\left(\lambda_{n-l_{k}}^{\frac{n_{k}+1}{2}} \mu\right) \\
& \left.: \lambda_{1}, \cdots, \lambda_{n-l_{k}} \in F^{*}, \mu^{2}=\mu_{k-1}^{-n_{k}}\right\} \\
\simeq & \left(F^{*}\right)^{n-l_{k}} .
\end{aligned}
$$

In $A_{\theta} \cap M_{\theta}^{\prime}$ we have:

$$
\lambda_{1}^{n_{1}+1}=\lambda_{2}^{n_{2}+1}=\cdots=\lambda_{k-1}^{n_{k-1}+1}=\lambda_{n-l_{k}}^{\frac{n_{k}+1}{2}}=\mu_{1}=\mu_{2}=\cdots=\mu_{k-1}=1
$$

we easily get that $\lambda_{n-l_{k}}^{n_{k}+1}=1$, so $A_{\theta} \cap M_{\theta}^{\prime} \simeq\left\langle\zeta_{n_{1}+1}\right\rangle \times\left\langle\zeta_{n_{2}+1}\right\rangle \times \cdots \times\left\langle\zeta_{n_{k}+1}\right\rangle$ and $M_{\theta} \simeq G L\left(n_{1}+1, F\right) \times \cdots \times G L\left(n_{k}+1, F\right)$.
(8) Suppose $\alpha_{1}, \alpha_{n} \notin \theta, \alpha_{n-1} \in \theta$. Clearly, $\min _{1}>1, \theta \neq \Sigma \backslash\left\{\alpha_{n}\right\}$ and $\min _{k}+n_{k}=n . M_{\theta}^{\prime}$ is isomorphic to $S L\left(n_{1}+1, F\right) \times S L\left(n_{2}+1, F\right) \times \cdots \times S L\left(n_{k}+1, F\right)$. By the same method as in case (7), we obtain

$$
M_{\theta} \simeq G L\left(n_{1}+1, F\right) \times \cdots \times G L\left(n_{k}+1, F\right) \times G L(1, F)^{n-l_{k}-k}
$$

Remark 1. Cases (2), (5), (6) and (8) together imply that Levi subgroups of the general spin group $G \operatorname{Spin}(2 n+1, F)$ are isomorphic to $G L\left(n_{1}, F\right) \times G L\left(n_{2}, F\right) \times$ $\cdots \times G L\left(n_{k}, F\right) \times G \operatorname{Spin}(2 m+1, F), m \leq n$.
Remark 2. Observe that $\frac{F^{*} \times S L(n, F)}{\left\langle\zeta_{n}\right\rangle}$ is not isomorphic to $G L(n, F)$ over p-adic field F, because the image of the given mapping consists of matrices whose determinants are n-th powers.

Let F_{1} be a p-adic field. We will denote an algebraic closure of F_{1} by \bar{F}_{1}. Since spin groups are double coverings of special orthogonal groups, we have the next exact sequence
$1 \rightarrow\{ \pm 1\} \hookrightarrow \operatorname{Spin}\left(2 n+1, \bar{F}_{1}\right) \xrightarrow{f} S O\left(2 n+1, \bar{F}_{1}\right) \rightarrow 1$, where f is a central isogeny. F_{1}-rational points of $\operatorname{Spin}(2 n+1)$ may be obtained by using the following exact sequence:

$$
1 \rightarrow\{ \pm 1\} \hookrightarrow S \operatorname{pin}\left(2 n+1, F_{1}\right) \xrightarrow{f} S O\left(2 n+1, F_{1}\right) \xrightarrow{\delta} F_{1}^{*} /\left(F_{1}^{*}\right)^{2}
$$

(homomorphism δ is called the spinor norm)

Acknowledgment

The author wishes to express his thanks to Prof. Goran Muić and Prof. Marcela Hanzer for their active interest in the publication of this paper. The author would also like to thank M. Asgari for useful discussions about general spin groups.

References

[1] M. Asgari, Local L-functions for split spinor groups, Canad. J. Math. 54(2002), 673693.
[2] M. Asgari, On the holomorphy of local Langlands L-functions, Ph. D. thesis, Purdue University, 2000.
[3] A. Borel, Linear algebraic groups, Springer, New York, 1991.
[4] J. W. Cogdell, H. H. Kim, M. R. Murty, Lectures on automorphic L-functions, American Mathematical Society, Providence, 2004.
[5] F. Shahidi, On non-vanishing of twisted symmetric and exterior square L-functions for $G L(n)$, Pacific J. Math. 181(1997), 311-322.
[6] T. A. Springer, Automorphic forms, representations and L-functions, American Mathematical Society, Providence, 1979.

[^0]: *Corresponding author. Email address: imatic@mathos.hr (I. Matić)
 http://www.mathos.hr/mc © 2009 Department of Mathematics, University of Osijek

