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On certain Durrmeyer type operators∗
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Abstract. Deo [5] introduced n-th Durrmeyer operators defined for functions integrable in
some interval I. There are gaps and mistakes in some of his lemmas and theorems. Further,
in his paper [4] he did not give results on simultaneous approximation as the title reveals.
The purpose of this paper is to correct those mistakes.

AMS subject classifications: 41A25, 41A30

Key words: Durrmeyer type operators, ordinary approximation, simultaneous approxi-
mation

1. Introduction

Deo proposed the following operators defined for functions integrable on I as

(Vnf)(x) = (n− c)
⊗∑
pn,k(x)

∫
I

pn,k(t)f(t) dt x ∈ I,

pn,k(x) = (−x)kφ(k)
n (x)

k! whenever the right-hand side makes sense and φn(x), I, c,
∑⊗

are given as:

φn(x) =

{ (1− x)n, I = [0, 1], c = −1,
e−nx, I = [0,∞), c = 0
(1 + cx)−

n
c , I = [0,∞), c > 0,∑⊗ =

∑∞
k=0 for c > 0 and

∑⊗ =
∑n
k=0 when c = −1.

We introduce the class H defined by

H def≡
{
f |
∫
I

|f(t)|
βn(t)

dt <∞, for some n ∈ N, t ∈ I = [0,∞)
}
,

where the function βn is defined as:

βn(t) =

{
(1 + ct)n/c, c > 0

ent, c = 0.
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Clearly the class H contains the class L of all Lebesgue integrable functions on
[0,∞). Further, we assume that

φα(t) =

{
tα, c > 0
eαt, c = 0,

where α > 0.

We define the norm ‖ · ‖Cα in the space H by ‖f‖Cα = sup
06t<∞

|f(t)|
φα(t)

.

Let d0, d1, ...dk be (k+1) arbitrary but fixed distinct positive integers. We define
the linear combination Vn(f, k, x) of the operators Vn, as follows:

Vn(f, k, x) =
k∑
j=0

C(j, k)Vdjn(f, x),

where

C(j, k) =
k∏

i=0,i6=j

dj
dj − di

, k 6= 0 and C(0, 0) = 1.

The aim of this paper is to correct and improve the results given in [5]. Further,
we extend the results proved in [4] to the case of simultaneous approximation.

2. Auxiliary results

Lemma 1 (see [5]). Let r,m ∈ N∪{0} and n > cr, we define the functions µr,n,m(x)
as follows

µr,n,m(x) = [n− c(r + 1)]
∞∑
k=0

pn+cr,k(x)
∫
I

pn−cr,k+r(t)(t− x)m dt, x ∈ I.

Then, there holds the recurrence relation

[n− c(r +m+ 2)]µr,n,m+1(x) = x(1 + cx){µ′r,n,m(x) + 2mµr,n,m−1(x)}
+(r +m+ 1)(1 + 2cx)µr,n,m(x),

n > c(r +m+ 2).

Consequently,

µr,n,0(x) = 1, µr,n,1(x) =
(r + 1)(1 + 2cx)
n− c(r + 2)

and

µr,n,2(x) =
2(n− c)(x(1 + cx)) + (r + 1)(r + 2)(1 + 2cx)2

(n− c(r + 2))(n− c(r + 3))
.

For all x ∈ I, µr,n,m(x) =
(
n−[(m+1)/2]

)
, where [α] denotes the integer part of α.
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In the proof of [5, Lemma 2.2], from the step

(V (r)
n f)(x) = (n− c)

∞∑
k=0

(−1)r(−x)kφ(k+r)
n (x)

k!

×
∫
I

r∑
i=0

(
r

i

){
(−1)r−i(−t)k+iφ(k+i)

n (t)
(k + i)!

}
f(t) dt

the lemma is proved using integration by parts r times. But for this the expressions
of the type p(r−j)

n−cr,k+r(t)f
(j−1)(t)|I , j = 1, 2, ..., r must be zero; and in order to claim

this we must have f (r−1)(t) = O(φα(t)) for some α > 0 as t → ∞ and n > α + cr,
r = 1, 2, 3.... Hence [5, Lemma 2.2] should be stated as follows (the proof remains
the same).

Lemma 2. Let f be r times differentiable on [0,∞) such that f (r−1)(t) = O(φα(t))
for some α > 0 as t→∞. Then for r = 1, 2, .. and n > α+ cr, we have

(V (r)
n f)(x) = (n− c)β(n, r)

∞∑
k=0

pn+cr,k(x)
∫
I

pn−cr,k+r(t)f (r)(t) dt,

where β(n, r) =
r−1∏
j=0

n+ cj

n− c(j + 1)
.

3. Main result

In [5] Deo has stated the following theorem:

Theorem 1. If f (r)(t), r > 0 is bounded and integrable in I and if admits the (r+2)-
th derivative at a point x ∈ I, and f (r)(t) = O(tα) as t → ∞ for some α > 0, then
we get

lim
x→∞

n

{
n− c(r + 1)

(n− c)β(n, r)
(V (r)
n f)(x)− f (r)(x)

}
= (r + 1)(1 + 2cx)f (r+1)(x)

+φ2(x)f (r+2)(x).

We wish to make the following comment regarding Theorem 1:
(i) in the hypothesis of the theorem, the existence of the r-th derivative of f is

assumed globally while the conclusion is obtained locally.
So Theorem 1 should be stated as follows:

Theorem 2. Let f ∈ H be bounded on every finite sub-interval of [0,∞) admitting
a derivative of order (r + 2) at a fixed point x ∈ (0,∞). Let f(t) = O(φα(t)) as
t→∞ for some α > 0, then we have

lim
x→∞

n

{
n− c(r + 1)

(n− c)β(n, r)
(V (r)
n f)(x)− f (r)(x)

}
= (r + 1)(1 + 2cx)f (r+1)(x)

+φ2(x)f (r+2)(x).
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Proof. By Taylor’s expansion of f, we write

f(t) =
r+2∑
i=0

f (i)(x)
i!

(t− x)i + ε(t, x)(t− x)r+2,

where ε(t, x)→ 0 as t→ x.
Using [5, Lemma 2.2], we can write

n

[
n− c(r + 1)

(n− c)β(n, r)
(V (r)
n f)(x)−f (r)(x)

]
=n[n− c(r + 1)]

[ r+2∑
i=r+1

f (i)(x)
i!

∞∑
k=0

pn+cr,k(x)

×
∫
I

pn−cr,k−r(t)
dr

dxr
(t− x)i dt

+n
[n− c(r + 1)]

β(n, r)

∞∑
k=0

p
(r)
n,k(x)

×
∫
I

pn,k(t)ε(t, x)(t− x)r+2 dt

]
= n

[
f (r+1)(x)µr,n,1(x)+

1
2
f (r+1)µr,n,2(x)

]
+In,

where

In =
n[n− c(r + 1)]

β(n, r)

∞∑
k=0

p
(r)
n,k(x)

∫
I

pn,k(t)ε(t, x)(t− x)r+2 dt.

In order to prove the theorem it is sufficient to show that In → 0 as n→∞. Using
Lorentz type lemma, we get

|In| 6
n[n− c(r + 1)]

β(n, r)

⊗∑ ∑
2i+j6r
i,j>0

ni|k − nx|j |qi,j,r(x)|(
x(1 + cx)

)r pn,k(x)

×
∫
I

pn,k(t)|ε(t, x)||(t− x)|r+2 dt

6 C
n[n− c(r + 1)]

β(n, r)

∑
2i+j6r
i,j>0

ni
⊗∑
pn,k(x)|k − nx|j

×
∫
I

pn,k(t)|ε(t, x)||(t− x)|r+2 dt

6 C
n[n− c(r + 1)]

β(n, r)

∑
2i+j6r
i,j>0

ni
( ⊗∑

pn,k(x)(k − nx)2j
)1/2

×
( ⊗∑

pn,k(x)
(∫

I

pn,k(t)|ε(t, x)||(t− x)|r+2 dt
)2)1/2
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i.e.

6 C
n[n− c(r + 1)]

β(n, r)
nr/2

( ⊗∑
pn,k(x)

×
(∫

I

pn,k(t)|ε(t, x)||(t− x)|r+2 dt
)2)1/2

,

where C = C(x) = sup
2i+j6r
i,j>0

|qi,j,r(x)|(
x(1 + cx)

)r .

For a given ε > 0, there exists a δ > 0 such that |ε(t, x)| < ε whenever
0 < |t − x| < δ. For |t − x| > δ, we have |ε(t, x)| 6 K|t − x|2s, for any s > 0.
Therefore, we have(∫

I

pn,k(t)|ε(t, x)||t−x|r+2 dt
)2

6
(∫

I

pn,k(t) dt
)(∫

I

pn,k(t)
(
ε(t, x)

)2(t−x)2r+4 dt
)

=
1

(n− c)

(∫
|t−x|<δ

+
∫
|t−x|>δ

)
pn,k(t)

(
ε(t, x)

)2
×(t− x)2r+4 dt

=
1

(n− c)

(∫
|t−x|<δ

pn,k(t)ε2(t− x)2r+4 dt

+
∫
|t−x|>δ

pn,k(t)K2(t− x)2r+2s+4 dt
)
.

In view of [5, Lemma 2.1],

⊗∑
pn,k(x)

(∫
I

pn,k(t)|ε(t, x)||(t− x)|r+2 dt
)2

6
(n− c)
(n− c)2

⊗∑
pn,k(x)

×
∫
I

pn,k(t)ε2(t− x)2r+4 dt

+
K2(n− c)
(n− c)2

⊗∑
pn,k(x)

×
∫
|t−x|>δ

pn,k(t)(t− x)2r+2s+4 dt

= ε2O
(
n−(r+4)

)
+K2O

(
n−(r+s+4)

)
= ε2O

(
n−(r+4)

)
+O

(
n−(r+s+4)

)
.

This in view of [5, Lemma 2.1] gives

|In| 6 C
n[n− c(r + 1)]

β(n, r)
nr/2 × ε2O

(
n−(r+4)

)1/2 + o(1)

6 ε+ o(1), choosing s > 0.

Since ε is arbitrary, this implies that In → 0 as n→∞.
Finally, taking the limit n → ∞ and using the values of µr,n,1(x) and µr,n,2(x)

the theorem is proved.
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Remark 1. If f (r)(t) = O(tα) (as t→∞), then f(t) will be of order tα+r. Moreover,
sin et is of order O(1) while its r-th derivative (r > 1) is not of O(tα). So the
hypothesis of Theorem 2 is certainly weaker than the hypothesis of Theorem 1.

Further, in [5] the author gave another theorem as:

Theorem 3. Let f (r+1) ∈ C[0,∞) and [0, λ] ⊆ [0,∞) and let ω(f (r+1); .) be the
modulus of continuity of f (r+1), then for r = 0, 1, 2, ...∥∥∥∥ n− c(r + 1)

(n− c)β(n, r)
(V (r)
n f)(x)− f (r)(x)

∥∥∥∥
C[0,λ]

6
(r + 1)(1 + 2cλ)

[n− c(r + 2)]
‖f (r+1)‖

+C(n, r)
(
√
η +

η

2

)
×ω
(
f (r+1);C(n, r)

)
,

where the norm is sup-norm over [o, λ],

η = 2λ2{c2(2r2 + 6r + 3) + cn}+ 2λ{2c(r2 + 3r + 1) + n}+ (r2 + 3r + 2)

and
C(n, r) =

1
(n− c(r + 2))(n− c(r + 3))

.

Regarding this theorem, we wish to make the following comments:
(i) in the hypothesis of the theorem the existence of the (r+ 1)th derivative of f

is assumed globally while the conclusion is obtained locally.
(ii) in the proof of the theorem, the property ω(f (r+1); δ) → 0 as δ → 0 is used

which need not be true unless one assumes that f (r+1) is uniformly continuous on
[0,∞).

For example, consider the function g(x) = cosπx2, x ∈ [0,∞).
Clearly, this function is bounded and continuous on [0,∞). But, |g(

√
n+ 1) −

g(
√
n)| = 2, while |

√
n+ 1 −

√
n| → 0 as n → ∞, so the function is not uniformly

continuous. Hence ω(g; δ) does not tend to zero as δ tends to zero.
In the light of above comments, Theorem 3 should be stated as follows:

Theorem 4. Let f ∈ H be bounded on every finite subinterval of [0,∞) and
f(t) = O(φα(t)) as t → ∞ for some α > 0. If f (r+1) exists and if it is contin-
uous on (a− δ, b+ δ) ⊂ (0,∞), δ > 0, then for sufficiently large n,∥∥(V (r)

n f)(x)− f (r)(x)
∥∥ 6 C1n

−1
(
‖f (r)‖+ ‖f (r+1)‖

)
+C2n

−1/2ω
(
f (r+1), n−1/2

)
+O(n−s/2) for any s > 0,

where C1 and C2 are both independent of f and n, and ‖.‖ is sup-norm on [a, b].

Proof. By finite Taylor’s expansion of f we write

f(t) =
r+1∑
i=0

f (i)(x)
i!

(t− x)i +

{
f (r+1)(ξ)− f (r+1)(x)

}
(r + 1)!

(t− x)r+1χ(t)

+h(t, x)
(
1− χ(t)

)
,
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where ξ lies between t and x and χ(t) is the characteristic function of (a− δ, b+ δ).
For t ∈ (a− δ, b+ δ) and x ∈ [a, b] we have

f(t) =
r+1∑
i=0

f (i)(x)
i!

(t− x)r +

{
f (r+1)(ξ)− f (r+1)(x)

}
(r + 1)!

(t− x)r+1.

For t ∈ [0,∞) \ (a− δ, b+ δ) and x ∈ [a, b] we define

h(t, x) = f(t)−
r+1∑
i=0

f (i)(x)
i!

(t− x)i.

Now

(V (r)
n f)(x)− f (r)(x) = (n− c)β(n, r)

[r+1∑
i=0

f (i)(x)
i!

∞∑
k=0

pn+cr,k(x)

×
∫
I

pn−cr,k−r(t)
dr

dxr
(t− x)i dt

]
− f (r)(x)

+(n− c)
∞∑
k=0

p
(r)
n,k(x)

∫
I

pn,k(t)
[{
f (r+1)(ξ)− f (r+1)(x)

}
(r + 1)!

×(t− x)r+1χ(t) + h(t, x)
(
1− χ(t)

)]
dt

= I1 + I2 + I3, say.

Using [5, Lemma 2.1], we obtain

I1 =
(

(n− c)β(n, r)
[n− c(r + 1)]

µr,n,0(x)− 1
)
f (r)(x) +

(n− c)β(n, r)
[n− c(r + 1)]

µr,n,1(x)f (r+1)(x),

in view of
dr

dxr
(t− x)i = 0 for i < r.

Next, using Lorentz type lemma, we get

I2 6 (n− c)
⊗∑ ∑

2i+j6r
i,j>0

ni|k − nx|j |qi,j,r(x)|
xr(1 + cx)r

pn,k(x)

×
∫
I

pn,k(t)

∣∣f (r+1)(ξ)− f (r+1)(x)
∣∣

(r + 1)!
(t− x)r+1χ(t) dt

6 (n− c)
∑

2i+j6r
i,j>0

ni
⊗∑
pn,k(x)|k − nx|j

×
∫
I

pn,k(t)
(

1 +
|t− x|
δ

)
ω
(
f (r+1), δ

)
|t− x|r+1 dt, for all δ > 0,
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i.e

= C(n− c)ω
(
f (r+1), δ

) ∑
2i+j6r
i,j>0

ni
⊗∑
pn,k(x)|k − nx|j

×
∫
I

pn,k(t)
(
|t− x|r+1 +

|t− x|r+2

δ

)
dt.

By induction it can be easily shown that for p = 0, 1, 2, ...

⊗∑
pn,k(x)|k − nx|j ×

∫
I

pn,k(t)|t− x|p dt =
1√
n− c

O
(
n(j−p)/2).

Hence, choosing δ = n−1/2 we have

|I2| 6 Cn−1/2ω
(
f (r+1), n−1/2

)
.

Now, from the definition of h(t, x), we have h(t, x) = O
(
φα(t)

)
⇒ h(t, x) = O(t−x)s,

for any s ∈ N with s > α.

|I3| 6 M ′
∑

2i+j6r
i,j>0

ni|k − nx|jpn,k(x)

×
∫
|t−x|>δ

pn,k(t)|h(t, x)| dt.

Applying Cauchy’s inequality [5, Lemma 2.1] we obtain

|I3| 6 M ′(n− c)
⊗∑ ∑

2i+j6r
i,j>0

nipn,k(x)|k − nx|j

×
∫
|t−x|>δ

pn,k(t)M ′′|t− x|s dt

6 C n(1+r−s)/2 ω
(
f (r+1), δ

)
.

Choosing s > r + 1, we get the limit I3 → 0 as n→∞.
Combining the estimates of I1, I2 and I3, we get the required result.

4. Simultaneous approximation

Theorem 5. Let f ∈ H and let it be bounded on every finite subinterval of [0,∞)
admitting a derivative of order 2k+ r+ 2 at a point x ∈ (0,∞). Let f(t) = O(φα(t))
as t→∞ for some α > 0. Then

lim
n→∞

nk+1
[
V (r)
n (f, k, x)− f (r)(x)

]
=

2k+2+r∑
j=r

f (j)(x)
j!

Q(j, k, r, c, x) (1)
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and
lim
n→∞

nk+1
[
V (r)
n (f, k + 1, x)− f (r)(x)

]
= 0, (2)

where Q(j, k, r, c, x) are certain polynomials in x. Further, if f (2k+2+r) exists and if
it is continuous on (a − η, b + η) ⊂ (0,∞), η > 0, then (1) and (2) hold uniformly
on [a, b].

Proof. The proof is similar to [1, Theorem 2].

In our next result we obtain an estimate of the degree of approximation.

Theorem 6. Let f ∈ H be bounded on every finite subinterval of [0,∞) and
f(t) = O(φα(t)) as t → ∞ for some α > 0. Further, let 1 6 p 6 2k + 2 and
r ∈ N. If f (p+r) exists and if it is continuous on (a− δ, b+ δ) ⊂ (0,∞), δ > 0, then
for sufficiently large n,

‖V (r)
n (f, k, .)− f (r)(.)‖ 6 max

{
C1n

−p/2ω
(
f (p+r), n−1/2

)
, C2n

−(k+1)
}
,

where C1 = C1(k, p, c, r), C2 = C2(k, p, r, c, f) and ω
(
f (p+r), .

)
denotes the modulus

of continuity of f (p+r) on (a− δ; b+ δ).

Proof. The proof is similar to [1, Theorem 3] and hence it is omitted.

Theorem 7. Let f ∈ H be bounded on [0,∞) and f(t) = O(φα(t)) as t → ∞ for
some α > 0. If f (r) exists and if it is continuous on (a − η, b + η), η > 0, then for
sufficiently large n,∥∥V (r)

n (f, k, .)− f (r)(.)
∥∥
C(I)

6 C n−(k+1)

×
{
‖f‖Cα + ω2k+2

(
f (r);n−1/2; (a− η, b+ η)

)}
,

where C is independent of f and n.

Proof. The proof follows along the lines [3, Theorem 3]
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