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Abstract. In this paper, we give a definition of harmonic curvature functions in terms
of Vn and we define a new kind of a slant helix. We call this new slant helix a Vn-slant
helix in n-dimensional Euclidean space En and define it by using new harmonic curvature
functions. We also define a vector field D which we call a Darboux vector field of a Vn-slant
helix in n-dimensional Euclidean space En and we give a new characterization as:

“α : I ⊂ R −→ En is a Vn-slant helix ⇔ H∗′
n−2 − k1H

∗
n−3 = 0”,

where H∗
n−2, H

∗
n−3 are harmonic curvature functions and k1 shows the first curvature func-

tion of the curve α.
AMS subject classifications: 14H45, 14H50, 53A04
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1. Introduction

Harmonic curvature functions were defined earlier by Özdamar and Hacısalihoğlu
[9] . In [9] , the authors generalize inclined curves in E3 to En and then give a
characterization for the inclined curves in En : “If a curve α is an inclined curve,

then
n−2∑
i=1

H
2

i = constant”. Recently, many studies have been reported on generalized

helices and inclined curves [1] , [4] , [9] .
The definition given in [4] by Hayden is restrictive: The fixed direction makes a

constant angle with all the vectors of the Frenet frame. This definition only works
in the odd dimensional case. Moreover, in the same reference it is proved that the
definition is equivalent to the fact that the ratios kn−1

kn−2
, kn−3

kn−4
, ..., k2

k1
of the curvatures,

are constants. This statement is related with the Lancret Theorem for generalized
helices in E3 (the ratio of torsion to curvature is constant).

More recently, Izumiya and Takeuchi defined a new kind of helix (slant helix)
and gave a characterization of slant helices in Euclidean 3−space E3 [5]. Followingly
Kula and Yaylı investigated spherical images; the tangent indicatrix and binormal
indicatrix of a slant helix [6] . Morever, they gave a characterization for slant helices
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in E3: “For involute of a curve γ, γ is a slant helix if and only if its involute is
a general helix”. In [7] , the curves in En for which all the ratios kn−1

kn−2
, kn−3

kn−4
, ..., k2

k1

are constants were called ccr curves. In the same reference it is shown that in the
even dimensional case a curve has constant curvature ratios if and only if its tangent
indicatrix is a geodesic in the flat torus. In 2008, Önder et al. defined a new kind of
a slant helix in Euclidean 4−space E4 which they called a B2−slant helix and gave
characterizations of this slant helix in Euclidean 4−space E4 [8] .

In this study we define a new kind of a slant helix in Euclidean n−space En,
where we use the constant angle ϕ in between a fixed direction X and the nth Frenet
vector field Vn of the curve, that is,

〈Vn, X〉 = cosϕ, ϕ 6= π

2
, ϕ = constant.

Since the n-th Frenet vector field Vn of a curve makes a constant angle with a fixed
direction X, we call this curve a Vn−slant helix in Euclidean n−space En. Firstly,
we give a generalization of Hacısalihoğlu’s harmonic curvature functions [9] . Next,
we define a new Darboux vector field D and give new characterizations for Vn−slant
helices. Finally, we show that Önder et al. study [8] is a special case for n = 4 of
our study, and that one of the theorems in their paper is not correct, and we present
a counter-example.

2. Preliminaries

Let α : I ⊂ R −→ En be an arbitrary curve in En. Recall that the curve α is said to
be a unit speed curve (or parameterized by arclength functions) if 〈α′(s), α′(s)〉 = 1,
where 〈., .〉 denotes the standard inner product of Rn given by

〈X,Y 〉 =
n∑

i=1

xiyi

for each X = (x1, x2,...,xn), Y = (y1, y2,...,yn) ∈ Rn. In particular, the norm of a
vector X ∈ Rn is given by ‖X‖ =

√
〈X,X〉. Let {V1, V2, ..., Vn} be the moving

Frenet frame along the unit speed curve α, where Vi (i = 1, 2, ..., n) denotes the ith
Frenet vector field. Then Frenet formulas are given by

V
′

1

V
′

2

V
′

3
...

V
′

n−2

V
′

n−1

V
′

n


=



0 k1 0 0 . . . 0 0 0
−k1 0 k2 0 . . . 0 0 0

0 −k2 0 0 . . . 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 ... 0 kn−2 0
0 0 0 0 ... −kn−2 0 kn−1

0 0 0 0 ... 0 −kn−1 0


·



V1

V2

V3

...
Vn−2

Vn−1

Vn


where ki(i = 1, 2, ..., n) denotes the ith curvature function of the curve [2], [3] . If all
of the curvatures ki (i = 1, 2, ..., n) of the curve vanish nowhere in I ⊂ R, the curve
is called a non-degenerate curve.
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Definition 1. Let α : I ⊂ R −→ En be a curve in En with arc-length parameter s,
and let X be a unit constant vector of En. For all s ∈ I, if

〈α′(s), X〉 = cosϕ, ϕ 6= π

2
, ϕ = constant,

then the curve α is called a general helix or inclined curve in En; where α′(s) is
the unit tangent vector of α at its point α(s), and ϕ is a constant angle between the
vectors α′ and X [9].

3. Vn-slant helix and its harmonic curvature functions

In this section we give characterizations for a Vn−slant helix in Euclidean n−space
En by using harmonic curvature functions in terms of Vn of the curve.

Definition 2. Let α : I ⊂ R −→ En be a unit speed curve with nonzero curvatures
ki(i = 1, 2, ..., n) in En and let {V1, V2, ..., Vn} denote the Frenet frame of the curve
α. We call α a Vn−slant helix, if the nth unit vector field Vn makes a constant angle
ϕ with a fixed direction X, that is,

〈Vn, X〉 = cosϕ, ϕ 6= π

2
, ϕ = constant

along the curve, where X is unit vector field in En.

Definition 3. Let α : I ⊂ R −→ En be a unit speed curve with nonzero curvatures
ki(i = 1, 2, ..., n) in En. Harmonic curvature functions in terms of Vn of α are
defined by H∗i : I ⊂ R −→ R,

H∗i =


0, i = 0,
kn−1
kn−2

, i = 1,{
kn−iH

∗
i−2 −H∗

′

i−1

}
1

kn−(i+1)
, i = 2, 3, ..., n− 2.

(1)

Proposition 1. Let α : I ⊂ R −→ En be an arc-lengthed curve in En, {H∗1 , H∗2 , . . . ,
H∗n−2

}
the harmonic curvature functions of the curve α and

{
H∗
′

1 , H
∗′
2 , . . . ,H

∗′
n−2

}
the differentiation of

{
H∗1 , H

∗
2 , . . . ,H

∗
n−2

}
, then we may write

H∗
′

1

H∗
′

2

H∗
′

3
...

H∗
′

n−4

H∗
′

n−3

0


=



0 −kn−3 0 0 . . . 0 0 0
kn−3 0 −kn−4 0 . . . 0 0 0

0 kn−4 0 −kn−5 . . . 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 . . . 0 −k2 0
0 0 0 0 . . . k2 0 −k1

0 0 0 0 . . . 0 0 0


·



H∗1
H∗2
H∗3

...
H∗n−4

H∗n−3

H∗n−2


.

Proof. It is obvious from Definition 3.
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Proposition 2. Let α : I ⊂ R −→ En be an arc-lengthed parameter curve in En

and X a unit constant vector field of Rn. {V1, V2, ..., Vn} denote the Frenet frame
of the curve α and

{
H∗1 , H

∗
2 , ...,H

∗
n−2

}
denote the harmonic curvature functions of

the curve α. If α : I ⊂ R −→ En is a Vn−slant helix with X as its axis, then we
have for all i = 0, 1, ..., n− 2〈

Vn−(i+1), X
〉

= H∗i 〈Vn, X〉 . (2)

Proof. We apply the induction method for the proof .
The case of i = 1:

Since X is a unit constant vector field such that 〈Vn(s), X〉 = cosϕ, for all s ∈ I,
then differentiating this, with respect to s, we obtain

〈
V
′

n(s), X
〉

= 0 or from Serret
Frenet formulas 〈−kn−1Vn−1, X〉 = 0, where kn−1 6= 0, then

〈Vn−1, X〉 = 0. (3)

Again, differentiating (3), with respect to s, and by using the Serret-Frenet equations
we have 〈

V
′

n−1, X
〉

= 0,

〈−kn−2Vn−2 + kn−1Vn, X〉 = 0,
−kn−2 〈Vn−2, X〉+ kn−1 〈Vn, X〉 = 0

and so (1) gives us

〈Vn−2, X〉 =
kn−1

kn−2
〈Vn, X〉 ,

〈Vn−2, X〉 = H∗1 〈Vn, X〉 .

The case of i = 2 :
Differentiating the last equation of i = 1 with respect to s, we have〈

V
′

n−2, X
〉

= H∗
′

1 〈Vn, X〉

〈−kn−3Vn−3 + kn−2Vn−1, X〉 = H∗
′

1 〈Vn, X〉
−kn−3 〈Vn−3, X〉+ kn−2 〈Vn−1, X〉 = H∗

′

1 〈Vn, X〉

and by using (3) and Proposition 1, we have 〈Vn−3, X〉 = H∗2 〈Vn, X〉 . Let us assume
that Proposition 2 is true for the case i− 1. This means that

〈Vn−i, X〉 = H∗i−1 〈Vn, X〉 . (4)

Differentiating (4) with respect to s, we have
〈
V
′

n−i, X
〉

= H∗
′

i−1 〈Vn, X〉 or from
Serret Frenet formulas

〈−kn−i−1Vn−i−1 + kn−iVn−i+1, X〉 = H∗
′

i−1 〈Vn, X〉 , (5)

−kn−i−1 〈Vn−i−1, X〉+ kn−i 〈Vn−i+1, X〉 = H∗
′

i−1 〈Vn, X〉 .
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Let us assume that Proposition (2) is true for the case i− 2. This means that

〈Vn−i+1, X〉 = H∗i−2 〈Vn, X〉 .

If we substitute this in (5) we have〈
Vn−(i+1), X

〉
=

1
kn−(i+1)

{
kn−iH

∗
i−2 −H∗

′

i−1

}
〈Vn, X〉

and then using (1) we obtain
〈
Vn−(i+1), X

〉
= H∗i 〈Vn, X〉 which completes the proof.

Corollary 1. Let α : I ⊂ R −→ En be an arc-lengthed parameter curve in En and
X a unit constant vector field of Rn. {V1, V2, ..., Vn} denote the Frenet frame of
the curve α and

{
H∗1 , H

∗
2 , ...,H

∗
n−2

}
denote the harmonic curvature functions of the

curve α. If the axis of a Vn−slant helix α is X, then we write

X =
{
H∗n−2V1 +H∗n−3V2 + · · ·+H∗1Vn−2 + Vn

}
〈Vn, X〉

or

X =
{
H∗n−2V1 +H∗n−3V2 + · · ·+H∗1Vn−2 + Vn

}
cosϕ.

Proof. If the axis of a Vn−slant helix α in En is X, then we can write X =
n∑

i=1

λiVi,

Then by using Proposition 2

λ1 = 〈V1, X〉 = H∗n−2 〈Vn, X〉 ,
λ2 = 〈V2, X〉 = H∗n−3 〈Vn, X〉 ,

...
λn−2 = 〈Vn−2, X〉 = H∗1 〈Vn, X〉 ,
λn−1 = 0,
λn = 〈Vn, X〉 .

Thus it is easy to obtain X =
{
H∗n−2V1 +H∗n−3V2 + · · ·+H∗1Vn−2 + Vn

}
〈Vn, X〉 .

Definition 4. Let α be a unit speed curve in En. {V1, V2, ..., Vn} denote the Frenet
frame of the curve and

{
H∗1 , H

∗
2 , ...,H

∗
n−2

}
denote the harmonic curvature functions.

The vector

D = H∗n−2V1 +H∗n−3V2 + · · ·+H∗1Vn−2 + Vn

is called a Darboux vector of the Vn−slant helix α.

Theorem 1. Let α be a unit speed curve in En. {V1, V2, ..., Vn} denote the Frenet
frame of the curve and

{
H∗1 , H

∗
2 , ...,H

∗
n−2

}
denote the harmonic curvature functions.

Then α is a Vn−slant helix if and only if D is a constant vector field.



322 İ. Gök, Ç. Camci and H. H. Hacisalihoğlu

Proof. Let α be a Vn−slant helix in En and X the axis of α. From Corollary 1, we
have

X =
{
H∗n−2V1 +H∗n−3V2 + · · ·+H∗1Vn−2 + Vn

}
cosϕ,

where cosϕ is a constant and hence D is a constant vector field.
Conversely, if D is a constant vector field, then we have

〈D,Vn〉 = 1,
‖D‖ ‖Vn‖ cosϕ = 1,

‖D‖ cosϕ = 1.

Thus we get cosϕ = 1/‖D‖, where ϕ is a constant angle between D and Vn. In
this case we can define a unique axis of the Vn−slant helix as X = cosϕD, where
〈X,Vn〉 = 1/‖D‖ = cosϕ. Thus X is a constant vector and α is a Vn−slant helix.
This completes the proof.

Theorem 2. Let α be a unit speed curve in En. {V1, V2, ..., Vn} denote the Frenet
frame of the curve and

{
H∗1 , H

∗
2 , ...,H

∗
n−2

}
denote the harmonic curvature functions.

Then α is a Vn−slant helix if and only if

H∗
′

n−2 − k1H
∗
n−3 = 0. (6)

Proof. If we differentiate D along the curve α, we get

D′ = H∗
′

n−2V1 +H∗n−2V
′

1 +H∗
′

n−3V2 +H∗n−3V
′

2 + ...+H∗
′

1 Vn−2 +H∗1V
′

n−2 + V
′

n.

The Serret-Frenet formulas and Proposition 1 give

D′ =
{
H∗
′

n−2 − k1H
∗
n−3

}
V1. (7)

Since α is a Vn−slant helix, D is a constant vector field. Thus we can write D′ = 0
or H∗

′

n−2 − k1H
∗
n−3 = 0.

Conversely, if (6) is zero, that is, H∗
′

n−2 − k1H
∗
n−3 = 0 , we can easily see that

D′ = 0 or D is a constant vector field, and then from Theorem 1 we have that α is
a Vn−slant helix in En. This completes the proof.

Corollary 2. Let α be a unit speed curve in E3. {T,N,B} denote the Frenet frame
and {k1, k2} nonzero curvature functions of the curve. Then α is a B−slant helix if
and only if α is a generalized helix.

Proof. Let α be a B−slant helix in E3. Then from Theorem 2 we have H∗
′

1 −
k1H

∗
0 = 0. By using Definition 3 (

k2

k1

)′
= 0, (8)

and then k2
k1

= constant, and thus k1
k2

= constant, so α is a generalized helix.
Conversely, let α be a generalized helix. So, k1

k2
and k2

k1
= constant. Thus,(

k2
k1

)′
= 0 or H∗

′

1 − k1H
∗
0 = 0. Then from Theorem 2 α is a B−slant helix. This

completes the proof.
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Corollary 3. Let α be a unit speed curve in E4. {V1, V2, V3, V4} denote the Frenet
frame and {k1, k2, k3} curvature functions of the curve. Then α is a V4−slant helix
(B2−slant helix) if and only if

[
1
k1

(
k3

k2

)′]′
+ k1

k3

k2
= 0. (9)

Proof. Let α be a V4−slant helix in E4. Then from Theorem 2 we have H∗
′

2 −
k1H

∗
1 = 0. By using Definition 3 we have[

1
k1

(
k3

k2

)′]′
+ k1

k3

k2
= 0.

Conversely, we assume that the equation
[

1
k1

(
k3
k2

)′]′
+ k1

k3
k2

= 0 holds. Then from

Theorem 2 and Definition 3 we easily obtain that α is a V4−slant helix.

Remark 1. Önder et al. [8] gave the following characterization for a B2−slant helix
(V4−slant helix) by using curvature functions of the curve.

Theorem 3. A unit speed curve α : I ⊂ R −→ E4 with nonzero curvature functions
k1(s), k2(s), k3(s) is a B2−slant helix (V4−slant helix) if and only if the following
condition is satisfied,(

k3

k2

)2

+
1
k2
1

((
k3

k2

)′)2

= tan2 ϕ3 = constant,

where ϕ3 is the constant angle between the second binormal unit vector field B2 and
a constant unit vector U.

The above theorem is true for the necessity case but not true for the sufficiency
case, because if we differentiate the formula in Theorem 3, we have(

k3

k2

)′{
k1
k3

k2
+

[
1
k1

(
k3

k2

)′]′}
= 0.

Therefore, Theorem 3 is true only if k3
k2

is not a constant. We can give the following
Example 1 which demonstrates this fact.

Example 1. α(s) =

 a cos
(

r√
a2r2+b2

s
)
, a sin

(
r√

a2r2+b2
s
)
,

b cos
(

1√
a2r2+b2

s
)
, b sin

(
1√

a2r2+b2
s
)  is a unit speed curve

in E4. If we denote

1√
a2r2 + b2

= m and
1√

a2r4 + b2
= n,
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it is easy to obtain the Frenet vectors and curvature functions as follows:

V1 = T = (−amr sin (mrs) , amr cos (mrs) ,−bm sin (ms) , bm cos (ms)),
V2 = N = (−anr2 cos(mrs),−anr2 sin(mrs),−bn cos(ms),−bn sin(ms)),
V3 = B1 = (bm sin (mrs) ,−bm cos (mrs) ,−amr sin (ms) , amr cos (ms)),
V4 = B2 = (bn cos (mrs) , bn sin (mrs) ,−anr2 cos(ms),−anr2 sin(ms)).

Let

k1 =
m2

n
,

k2 = m2nabr(r2 − 1),
k3 = nr.

The Darboux vector field of the above curve is

D = −

[
1
k1

(
k3

k2

)′]
V1 +

k3

k2
V2 + V4.

Since
(

k3
k2

)′
= 0, we can write that D = k3

k2
V2 + V4. Thus we obtain that D′ 6= 0.

Although
(

k3
k2

)2

+ 1
k2
1

((
k3
k2

)′)2

= constant, D is not a constant vector field. Ac-

cording to Theorem 1, α is not a V4−slant helix (B2−slant helix.)
Instead of Önder et al’s Theorem 3, we can give the following one in En, n ≥ 3.

Theorem 4. Let α be a unit speed non-degenerate curve in En with Frenet vector
fields {V1, V2, ..., Vn} and the harmonic curvature functions

{
H∗1 , H

∗
2 , ...,H

∗
n−2

}
. If

α is a Vn−slant helix, then

n−2∑
i=1

H∗
2

i = constant.

Proof. Let α : I ⊂ R −→ En be a Vn−slant helix. By using Corollary 1, since the
axis of α is a unit vector field, we have{

H∗
2

1 +H∗
2

2 + · · ·+H∗
2

n−3 +H∗
2

n−2

}
cos2 ϕ+ cos2 ϕ = 1. (10)

Thus we get

n−2∑
i=1

H∗
2

i =
1− cos2 ϕ

cos2 ϕ
= tan2 ϕ = constant,

which completes the proof.

In this case we can give the following corollary in E4 :
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Corollary 4. If a unit speed curve α : I ⊂ R −→ E4 with nonzero curvatures k1(s),
k2(s), k3(s) is a V4−slant helix (B2−slant helix), then we have(

k3

k2

)2

+
1
k2
1

((
k3

k2

)′)2

= tan2 ϕ = constant, (11)

where ϕ is the constant angle between the second binormal unit vector field V4 and
the constant unit vector field X.

Proof. It is obvious from Theorem 4 for n = 4.

Theorem 5. Let α : I ⊂ R −→ E2m+1 be a unit speed curve in E2m+1 and{
H∗1 , H

∗
2 , ...,H

∗
2m−1

}
the harmonic curvature functions. If the ratios

k2

k1
,
k4

k3
,
k6

k5
, . . . ,

k2m−2

k2m−3
,
k2m

k2m−1

are constant, then we have H∗2i = 0, for 1 ≤ i ≤ m and

H∗2i−1 =
k2m

k2m−1
.
k2m−2

k2m−3
.
k2m−4

k2m−5
...

k2m−(2i−3)

k2m+1−(2i−2)

k2m+1−(2i−1)

k2m+1−2i
.

Proof. We apply the induction method for the proof .
The case of i = 1:
From Definition 3 we may write

H∗2 =
{
k2m−1H

∗
0 −H∗

′

1

} 1
k2m−2

,

or

H∗2 = − 1
k2m−2

(
k2m

k2m−1

)′
,

where k2m

k2m−1
= constant, so H∗2 = 0 and again Definition 3 gives us

H∗3 =
{
k2m−2H

∗
1 −H∗

′

2

} 1
k2m−3

.

By using H∗2 = 0 and Definition 3 we can write

H∗3 =
k2m−2

k2m−3

k2m

k2m−1
.

Let us assume that Theorem 5 is true for the case i = p, then we may write

H∗2p = 0

and

H∗2p−1 =
k2m

k2m−1
.
k2m−2

k2m−3
.
k2m−4

k2m−5
...

k2m−(2p−3)

k2m+1−(2p−2)

k2m+1−(2p−1)

k2m+1−2p
.
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Definition 3 gives H∗2p+1 =
{
k2m−2pH

∗
2p−1 −H∗

′

2p

}
1

k2m−2p−1
. By using H∗2p = 0 and

Definition 3, we can write

H∗2p+1 =
k2m

k2m−1
.
k2m−2

k2m−3
.
k2m−4

k2m−5
...
k2m+1−(2p−1)

k2m+1−2p
.
k2m+1−(2p+1)

k2m+1−(2p+2)
,

which completes the proof.

Here we can give the following results:

Corollary 5. Let α : I ⊂ R −→ E2m+1 be a unit speed curve in E2m+1 and
{k1, k2, ..., k2m} denote the curvature functions of the curve. If the ratios k2

k1
, k4

k3
, k6

k5
k2m−2
k2m−3

, k2m

k2m−1
are constants, then the axis of a V2m+1−slant helix α is

D = H∗2m−1V1 +H∗2m−3V3 + · · ·+H∗1V2m−1 + V2m+1.

Proof. According to Definition 4, for n = 2m+ 1 we have

D = H∗2m−1V1 +H∗2m−2V2 + · · ·+H∗1V2m−1 + V2m+1

where from Theorem 5 we get

D = H∗2m−1V1 +H∗2m−3V3 + · · ·+H∗1V2m−1 + V2m+1.

This completes the proof.

Corollary 6. Let α : I ⊂ R −→ E2m+1 be a unit speed curve in E2m+1 and
{k1, k2, ..., k2m} denote the curvature functions of the curve. If the ratios k2

k1
, k4

k3
, k6

k5
k2m−2
k2m−3

, k2m

k2m−1
are constants, then α is a V2m+1−slant helix.

Proof. Let the ratios k2
k1
, k4

k3
, k6

k5
, . . . , k2m−2

k2m−3
, k2m

k2m−1
be constant. Then from Theo-

rem 5 H∗2i−1 is constant for 1 ≤ i ≤ m. In this case, according to Corollary 5, D is
a constant vector field, then Theorem 1 give us that α is a V2m+1−slant helix. This
completes the proof.

4. Geometrical means of the Darboux vector of the Vn-slant
helix

Lemma 1 (see [10]). The Darboux axis at the time s is determined by the kernel of
the Frenet matrix M3(s) given with respect to the basis T,N,B,

M3(s) =

 0 k1 0
−k1 0 k2

0 −k2 0

 ∈ R3
3.
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Theorem 6. Let α be a unit speed non-degenerate curve in En(n =odd) and {k1, k2, ..., kn−1}
denote the curvature functions of the curve, then the Frenet matrix Mn(s) is given
by

Mn(s) =



0 k1 0 0 · · · 0 0 0
−k1 0 k2 0 · · · 0 0 0

0 −k2 0 k3 · · · 0 0 0
...

...
...

... · · ·
...

...
...

0 0 0 0 · · · 0 kn−2 0
0 0 0 0 · · · −kn−2 0 kn−1

0 0 0 0 · · · 0 −kn−1 0


∈ Rn

n.

Then α is a Vn−slant helix if and only if the vector D =
[
H∗n−2, H

∗
n−1, ...,H

∗
1 , H

∗
0 , 1
]
∈

Rn satisfies the Frenet equations:

d

ds

[
H∗n−2, H

∗
n−1, ...,H

∗
1 , H

∗
0 , 1
]T = Mn(s)

[
H∗n−2, H

∗
n−1, ...,H

∗
1 , H

∗
0 , 1
]T
. (12)

Proof. Direct substitution shows that

Mn(s)DT =



0 k1 0 0 · · · 0 0 0
−k1 0 k2 0 · · · 0 0 0

0 −k2 0 k3 · · · 0 0 0
...

...
...

... · · ·
...

...
...

0 0 0 0 · · · 0 kn−2 0
0 0 0 0 · · · −kn−2 0 kn−1

0 0 0 0 · · · 0 −kn−1 0


·



H∗n−2

H∗n−3

H∗n−4
...
H∗1
H∗0
1


=
[
k1H

∗
n−3, H

∗′
n−3, H

∗′
n−4, ...,H

∗′
1 , H

∗′
0 , 1

]T
This equality can be written as:

Mn(s)DT =
d

ds

[
H∗n−2, H

∗
n−1, ...,H

∗
1 , H

∗
0 , 1
]T − (H∗

′

n−2 − k1H
∗
n−3) [1, 0, 0, ..., 0, 0, 0]T .

Since α is a Vn−slant helix, Theorem 2 gives

d

ds

[
H∗n−2, H

∗
n−1, ...,H

∗
1 , H

∗
0 , 1
]T = Mn(s)

[
H∗n−2, H

∗
n−1, ...,H

∗
1 , H

∗
0 , 1
]T
.

This completes the proof.

Now, we can ask the question: When does the Darboux vector field D belong to
the kernel of Mn(s)?

Case I: The question in R3 is that d
ds [H∗1 , H

∗
0 , 1]T = d

ds

[
k2
k1
, 0, 1

]T
= 0, so the

Darboux vector field D lies in the kernel of M3(s).
Case II: The question in R4 is that by using Example 1 we show that any ccr-

curve is not a V4−slant helix. So, the Darboux vector field D cannot be the kernel
of M4(s).
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Case III: When the curve satisfies that some quotients ki

ki−1
are constant for all

i = 2, 3, ..., n− 1 in Rn(n =odd), then we have again that

d

ds

[
H∗n−2, H

∗
n−1, ...,H

∗
1 , H

∗
0 , 1
]T = 0.

Then, the Darboux vector field D belongs to the kernel of Mn(s).
Case IV: The question for n =even in Rn, then Mn(s) is a regular matrix and

only zero vector is in the kernel of Mn(s). Since the Darboux vector field D is not
zero, it cannot be the kernel of Mn(s).

Proposition 3 (see [10]). The Darboux axis at the time s is determined by the
kernel of the Frenet matrix M2m+1(s) given with respect to the basis V1, V2, ..., V2m+1

in R2m+1, m > 2. Then the Darboux vector can be given as

D = a0V1 + a1V3 + ...+ amV2m+1,

where a0 = k2k4...k2m, a1 = k1
k2
a0, a2 = k3

k4
a1, . . . ai = k2i−1

k2i
ai−1, . . . am = k2m−1

km
am−1

= k1k3...k2m−1.

Definition 5. Let α : I ⊂ R −→ E2m+1 be a unit speed non-degenerate curve in
E2m+1. Let us assume that {k1, k2, ..., k2m} are the curvature functions of the curve
α. If the ratios k2

k1
, k4

k3
, k6

k5
, ..., k2m−2

k2m−3
, k2m

k2m−1
are constants, then the curve α is called a

V2m+1−slant helix in the sense of Hayden .

Proposition 4 (see [10]). The Darboux vector d = a0V1 +a1V3 + ...+amV2m+1 lies
in the kernel of the Frenet matrix M2m+1(s) in E2m+1, m > 2.

Proposition 5. Let α : I ⊂ R −→ E2m+1 be a unit speed curve in E2m+1. The
Darboux vector D of the curve α lies in the kernel of M2m+1(s) if and only if the
curve α is a V2m+1−slant helix in the sense of Hayden.

Proof. In this case we have D = 1
am

d, where am = k1k3...k2m−1 and since the
Darboux vector D of the curve α lies in the kernel of M2m+1(s), then from (12)
and Theorem 2 we easily obtain that the curve α is a V2m+1−slant helix in the sense
of Hayden.

Conversely, let us assume that the curve α is a V2m+1−slant helix in the sense of
Hayden, then from Definition 5 and Eq.(12) we can easily show that the Darboux
vector D of the curve α lies in the kernel of M2m+1(s). This completes the proof.

Corollary 7. Let α : I ⊂ R −→ E2m+1 be a unit speed curve in E2m+1. The curve
α is a V2m+1−slant helix in the sense of Hayden if and only if the curve α is a
generalized helix in the sense of Hayden.

Proof. Let α be a V2m+1−slant helix in the sense of Hayden. According to Defini-
tion 5, the ratios k2

k1
, k4

k3
, k6

k5

k2m−2
k2m−3

, k2m

k2m−1
are constants, hence the ratios k1

k2
, k3

k4
, k5

k6
k2m−3
k2m−2

, k2m−1
k2m

are constants. Then, from [4] α is a generalized helix in the sense of
Hayden.

A converse case is obvious. This completes the proof.
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