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Abstract. In this paper we find a minimal index and determine all integral elements with
the minimal index in two families of totally real bicyclic biquadratic fields

Kc = Q
(√

(c− 2) c,
√

(c+ 2) c
)

and Lc = Q
(√

(c− 2) c,
√

(c+ 4) c
)
.
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1. Introduction

Consider an algebraic number field K of degree n with a ring of integers OK . It is
a classical problem in algebraic number theory to decide if K admits power integral
bases, that is, integral bases of the form

{
1, α, ..., αn−1

}
. If there exist power integral

bases in K, then OK is a simple ring extension Z [α] of Z and it is called monogenic.
Let α ∈ OK be a primitive element of K, that is, K = Q (α) . Index of α is defined
by

I (α) =
[
O+
K : Z [α]+

]
,

where O+
K and Z [α]+ denote the additive groups of OK and the polynomial ring

Z [α], respectively. Therefore, the primitive element α ∈ OK generates a power
integral basis if and only if I (α) = 1. The minimal index µ (K) of K is the minimum
of the indices of all primitive integers in the field K. The greatest common divisor
of indices of all primitive integers of K is called the field index of K, and will be
denoted by m (K). Monogenic fields have both µ (K) = 1 and m (K) = 1, but
m (K) = 1 is not sufficient for the monogenity.

For any integral basis {1, ω2, ..., ωn} of K let

Li (X) = X1 + ω
(i)
2 X2 + ...+ ω(i)

n Xn, i = 1, ..., n,
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where superscripts denote the conjugates. Then∏
1≤i<j≤n

(Li (X)− Lj (X))2 = (I (X2, ..., Xn))2DK ,

where DK denotes the discriminant of K and I (X2, ..., Xn) is a homogenous polyno-
mial in n− 1 variables of degree n (n− 1) /2 with rational integer coefficients. This
form is called the index form corresponding to the integral basis {1, ω2, ..., ωn} . It
can be shown that if the primitive integer α ∈ OK is represented by an integral basis
as α = x1 + x2ω2 + ... + xnωn, then the index of α is just I (α) = |I (x2, ..., xn)| .
Consequently, the minimal µ ∈ N for which the equation I (x2, ..., xn) = ±µ is solv-
able in x2, ..., xn ∈ Z is a minimal index µ (K). Further results on power integral
bases, index form equations and related topics can be found in I. Gaál [11].

Biquadratic fields K = Q (
√
m,
√
n) (where m, n are distinct square-free integers)

were considered by several authors. K. S. Williams [26] gave an explicit formula for
the integral basis and the discriminant of these fields. Necessary and sufficient
conditions for biquadratic fields being monogenic were given by M. N. Gras and
F. Tanoe [19]. T. Nakahara [23] proved that infinitely many fields of this type are
monogenic but the minimal index of such fields can be arbitrary large. I. Gaál,
A. Pethő and M. Pohst [16] gave an algorithm for determining the minimal index
and all generators of integral bases in the totally real case by solving systems of
simultaneous Pellian equations. G. Nyul [22] gave a complete characterization of
power integral bases in the monogenic totally complex fields of this type. The field
indices of biquadratic fields was determined by I. Gaál, A. Pethő and M. Pohst [14].
P−adic index form equations in biquadratic fields were studied by I. Gaál and G.
Nyul [18]. Index form equations in general quartic fields were completely solved
by I. Gaál, A. Pethő and M. Pohst [17]. In [21] we have determined the minimal
index and all elements with the minimal index for an infinite family of totally real
bicyclic biquadratic fields of the form K = Q

(√
(4c+ 1) c,

√
(c− 1) c

)
using theory

of continued fractions. In the present paper, we will do the same for the following
two infinite families of totally real bicyclic biquadratic fields

Kc = Q
(√

(c− 2) c,
√
c (c+ 2)

)
(1)

= Q
(√

(c+ 2) (c− 2),
√
c (c− 2)

)
= Q

(√
(c+ 2) (c− 2),

√
(c+ 2) c

)
and

Lc = Q
(√

(c− 2) c,
√
c (c+ 4)

)
(2)

= Q
(√

(c+ 4) (c− 2),
√
c (c− 2)

)
= Q

(√
(c+ 4) (c− 2),

√
(c+ 4) c

)
.

The main results of the present paper are given in the following theorems:
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Theorem 1. Let c ≥ 3 be an odd integer such that c, c − 2, c + 2 are square-free
integers. Then (1) is a totally real bicyclic biquadratic field and

i) its field index is m (Kc) = 1 for all c,

ii) the minimal index of Kc is µ (Kc) = 4 for all c,

iii) all integral elements with the minimal index are given by

x1 + x2

√
c (c− 2) + x3

√
c (c− 2) +

√
c (c+ 2)

2
+ x4

1 +
√

(c− 2) (c+ 2)
2

,

where x1 ∈ Z and (x2, x3, x4) = ± (0,±1, 1) ,± (1, 1,−1) ,± (−1,−1, 1).

Theorem 2. Let c ≥ 3 be an integer such that c ≡ 1 or 3 (mod 6) and c, c−2, c+ 4
are square-free integers. Then (2) is a totally real bicyclic biquadratic field and

i) its field index is m (Lc) = 1 for all c,

ii) the minimal index of Lc is µ (Lc) = 12 if c ≥ 7 and µ (Lc) = 1 if c = 3,

iii) all integral elements with the minimal index are given by

x1 +x2

√
(c− 2) (c+ 4)+x3

√
(c− 2) (c+ 4) +

√
(c− 2) c

2
+x4

1 +
√
c (c+ 4)
2

,

where x1 ∈ Z, (x2, x3, x4) = ± (0, 1, 1) ,± (0, 1,−1) ,± (1,−1,−1) ,± (1,−1, 1)
if c ≥ 7 and (x2, x3, x4) = ± (−1, 1, 0) ,± (0, 1, 0) if c = 3.

2. Preliminaries

Let m, n be distinct square-free integers, l = gcd (m,n), and define m1, n1 by
m = lm1, n = ln1. Under these conditions the quartic field K = Q (

√
m,
√
n) has

three distinct quadratic subfields, namely Q (
√
m) , Q (

√
n), Q

(√
m1n1

)
and Galois

group V4 (the Klein four group).
The integral basis and the discriminant of K were described by K. S. Williams [26]

in terms of m, n, m1, n1, l. He distinguished five cases according to the congruence
behavior of m, n, m1, n1 modulo 4. In [14], I. Gaál, A. Pethő and M. Pohst
described the corresponding index forms I (x2, x3, x4) . They showed that in all five
cases the index form is a product of three quadratic factors. For x2, x3, x4 ∈ Z the
quadratic factors of the index form admit integral values. If we fix the order of the
factors in the index form and if we denote the absolute value of the first, second
and third factor by F1 = F1 (x2, x3, x4) , F2 = F3 (x2, x3, x4) , F3 = F3 (x2, x3, x4),
respectively, then finding the minimal index µ (K) is equivalent to finding integers
x2, x3, x4 such that the product F1F2F3 is minimal. It can be easily shown that ±F1,
±F2, ±F3 are not independent, i.e. that they are related, according to five possible
cases, by relations given in [16, Lemma 1]. Biquadratic field K = Q (

√
m,
√
n) is

either totally complex or totally real (there are no mixed fields of this type). In
the totally real case the index form is the product of three factors F1, F2, F3, of
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“Pellian type”, i.e. by equating the first, second and third factor by ±F1, ±F2 and
±F3, respectively, we obtain a system of three Pellian equations such that only two
of them are independent. In this case I. Gaál, A. Pethő and M. Pohst [16] gave the
following algorithm for finding the minimal index and all elements with the minimal
index. Consider the system of equations obtained by equating the first quadratic
factor of the index form with ±F1 and the second factor with ±F2. The system of
these two equations can be written as

Ax2 −By2 = C (3)
Dx2 − Fz2 = G in x, y, z ∈ Z, (4)

where the values of A,B,C,D, F,G and the new variables x, y, z, according to five
possible cases, are listed in the table (see [16, p. 104]). In each particular case, first
we find the field index m (K) which can be easily calculated from [14, Theorem 4].
We proceed with µ = ν ·m (K) (ν = 1, 2, ...). For each such µ we try to find positive
integers F1, F2, F3 with µ = F1F2F3 satisfying the corresponding relation of [16,
Lemma 1]. If there exist such F1, F2, F3, then we calculate all such triples. For
each such triple we determine all solutions of the corresponding system (3) and (4).
If none of these systems of equations have solutions, then we proceed to the next ν,
otherwise µ is the minimal index and collecting all solutions of systems of equations
corresponding to valid factors F1, F2, F3 of µ we get all solutions of the equation

I (x2, x3, x4) = ±µ,

i.e. we obtain all integral elements with the minimal index in K.

3. Minimal index of the field Kc

Let c ≥ 3 be an integer such that c, c − 2, c + 2 are square-free integers relatively
prime in pairs. Let m = m1l, n = n1l, where m1, n1, l ∈ {c, c− 2, c+ 2} are distinct
integers. Then field (1) is a totally real bicyclic biquadratic field.

First note that c, c−2, c+2 are integers relatively prime in pairs if and only if c is
an odd integer. Furthermore, by [10], there are infinitely many positive integers c for
which c (c− 2) (c+ 2) is square-free. Therefore, there are infinitely many positive
integers c for which c, c− 2, c+ 2 are square-free integers relatively prime in pairs,
which again implies that there are infinitely many totally real bicyclic biquadratic
fields of the form (1). Thus, in Theorem 1 we need the assumptions: c ≥ 3 is an odd
integer such that c, c− 2, c+ 2 are square-free integers. But it is important to note
that in almost all intermediate results in this section we do not have the assumption
that c, c− 2, c+ 2 are square-free integers, since this assumption is not necessary for
proving them.

In order to prove Theorem 1 we will use a method of I. Gaál, A. Pethő and M.
Pohst [16] given in the previous section. Let n1 = c− 2, m1 = c+ 2 and l = c. We
have to observe the following cases:

i) If c ≡ 1 (mod 4) , then n1 ≡ 3 (mod 4) , m1 ≡ 3 (mod 4) , l ≡ 1 (mod 4) which
implies m = m1l ≡ 3 (mod 4) and n = n1l ≡ 3 (mod 4);
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ii) If c ≡ 3 (mod 4) , then n1 ≡ 1 (mod 4) , m1 ≡ 1 (mod 4) , l ≡ 3 (mod 4) which
implies m = m1l ≡ 3 (mod 4) and n = n1l ≡ 3 (mod 4).

Since in both cases we have (m,n) ≡ (3, 3) (mod 4), by equating the first, second
and third quadratic factor of the corresponding index form with ±F1, ±F2 and ±F3,
respectively, according to [16], we obtain the system

cU2 − (c− 2)V 2 = ±F1 (5)
cZ2 − (c+ 2)V 2 = ±F2 (6)

(c− 2)Z2 − (c+ 2)U2 = ±4F3, (7)

where
U = 2x2 + x4, V = x4, Z = x3, (8)

and from [16, Lemma 1] we have that

± (c+ 2)F1 ± (c− 2)F2 = ±4cF3 (9)

must hold. In this case the integral basis of Kc is{
1,
√
c (c+ 2),

√
c (c+ 2) +

√
c (c− 2)

2
,

1 +
√

(c− 2) (c+ 2)
2

}

and its discriminant is DKc = (4c (c− 2) (c+ 2))2 .
Now we will prove statement i) of Theorem 1. First we form differences d1 = m1−

l, d2 = n1 − l, d3 = m1 − n1. We have d1 = 2, d2 = −2, d3 = 4. Since neither 3 nor
4 divides all three differences d1, d2, d3, according to [14, Theorem 4], we conclude
m (Kc) = 1.

Now we will formulate our strategy of searching the minimal index µ (Kc) :=
µ (c) and all elements with the minimal index. Finding the minimal index µ (c) is
equivalent to finding the system of the above form with minimal product F1F2F3

which has a solution.
Observe that if (±F1,±F2,±F3) = (2,−2, 1) , then system (5), (6) and (7) has

solutions (U, V, Z) = (±1,±1,±1) which implies that µ (c) ≤ 4 for all c.
For c = 3 and c = 5 we have discriminant DKc < 106. In [16] I. Gaál, A. Pethő

and M. Pohst determined minimal indices and all elements with the minimal index
in all 196 fields and totally real bicyclic biquadratic fields with discriminant < 106.
It can be found there that µ (3) = µ (5) = 4 and all elements with the minimal index
are given by (x2, x3, x4) = ± (0,±1, 1) ,± (1, 1,−1) ,± (−1,−1, 1).

First suppose that (U, V, Z) is a nonnegative integer solution of the system of
equations (5), (6) and (7) with F1F2F3 ≤ 4. Observe that if one of the integers
U, V, Z is equal to zero, then (5), (6) and (7) imply that the other two integers are
not equal to zero.

i) If V = 0, then (5) and (6) imply cU2 = ±F1, cZ
2 = ±F2. Therefore we have

F1F2 = c2Z2U2 ≤ 4. Since c ≥ 3 and U, Z 6= 0, we obtain a contradiction.
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ii) If Z = 0, then (6) and (7) imply − (c+ 2)V 2 = ±F2,− (c+ 2)U2 = ±4F3.

Therefore we have F2F3 = (c+2)2

4 U2V 2 ≤ 4. Since c ≥ 3 and U , V 6= 0, we
obtain a contradiction.

iii) If U = 0, then (5), (6) and (7) imply − (c− 2)V 2 = ±F1, cZ
2−(c+ 2)V 2 = ±

F2 and (c− 2)Z2 = ±4F3. Therefore we have F1F3 = (c−2)2

4 V 2Z2 ≤ 4 and Z
is an even integer. Since V 6= 0 and Z2 ≥ 4, we obtain a contradiction if c 6= 3.
If c = 3, then F1F3 = 1

4V
2Z2 ≤ 4 which implies (V,Z) = (1, 2) . Additionally,

we have

F1F2F3 =
∣∣cZ2 − (c+ 2)V 2

∣∣ · (c− 2)2

4
· V 2Z2 ≤ 4. (10)

Now, for c = 3 and (V,Z) = (1, 2) inequality (10) gives a contradiction.

Let (U, V, Z) be a positive integer solution of the system of Pellian equations

cU2 − (c− 2)V 2 = λ1, (11)
cZ2 − (c+ 2)V 2 = λ2, (12)

where λ1 and λ2 are integers such that |λ1| ≤ 4 and |λ2| ≤ 4. We have∣∣∣∣∣
√

c

c− 2
− V

U

∣∣∣∣∣ =

∣∣∣∣∣ c

c− 2
− V 2

U2

∣∣∣∣∣ ·
∣∣∣∣∣
√

c

c− 2
+
V

U

∣∣∣∣∣
−1

<
|λ1|

(c− 2)U2
·
√
c− 2
c
≤ 4√

c (c− 2)U2
≤


3
U2 , if c = 3
2
U2 , if c = 5
1
U2 , if c ≥ 7

.

Similarly,∣∣∣∣∣
√
c+ 2
c
− Z

V

∣∣∣∣∣ =

∣∣∣∣∣c+ 2
c
− Z2

V 2

∣∣∣∣∣ ·
∣∣∣∣∣
√
c+ 2
c

+
Z

V

∣∣∣∣∣
−1

<
|λ2|
cV 2

·
√

c

c+ 2
≤ 4√

c (c+ 2)V 2
≤
{

2
V 2 , if c = 3
1
V 2 , if c ≥ 5 .

The simple continued fraction expansion of a quadratic irrational α = a+
√
d

b is
periodic. This expansion can be obtained using the following algorithm. Multiplying
the numerator and the denominator by b, if necessary, we may assume that b|(d−a2).
Let s0 = a, t0 = b and

an =
⌊
sn+
√
d

tn

⌋
, sn+1 = antn − sn, tn+1 = d−s2n+1

tn
for n ≥ 0 (13)

(see [24, Chapter 7.7]). If (sj , tj) = (sk, tk) for j < k, then

α = [a0, . . . , aj−1, aj , . . . , ak−1].
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Applying this algorithm to the quadratic irrational
√

c+2
c =

√
c(c+2)

c we find that√
c+ 2
c

=
[
1, c, 2

]
, where (s0, t0) = (0, c) ,

(s1, t1) = (c, 2) , (s2, t2) = (c, c) , (s3, t3) = (c, 2) .

The expansion of the quadratic irrational
√

c
c−2 can be obtained from the ex-

pansion of
√

c+2
c by replacing c by c− 2.

Let pn/qn denote the nth convergent of α. The following result of Worley [27] and
Dujella [5] extends classical results of Legendere and Fatou concerning Diophantine
approximations of the form

∣∣α− a
b

∣∣ < 1
2b2 and

∣∣α− a
b

∣∣ < 1
b2 .

Theorem 3 (Worley [27], Dujella [5]). Let α be a real number and a and b coprime
nonzero integers, satisfying the inequality∣∣∣α− a

b

∣∣∣ < M

b2
,

where M is a positive real number. Then (a, b) = (rpn+1 ± upn, rqn+1 ± uqn) , for
some n ≥ −1 and nonnegative integers r and u such that ru < 2M .

We would like to apply Theorem 3 in order to determine all values of λ1 with
|λ1| ≤ 4, for which equation (11) has solutions in coprime integers and all values
of λ2 with |λ2| ≤ 4 for which equation (12) has solutions in coprime integers. An
explicit version of Theorem 3 for M = 2, was given by Worley [27, Corollary, p. 206].
Recently, Dujella and Ibrahimpašić [6, Propositions 2.1 and 2.2] extended Worley’s
work and gave explicit and sharp versions of Theorem 3 for M = 3, 4, ..., 12. We
need the following lemma (see [8, Lemma 1]).

Lemma 1. Let αβ be a positive integer which is not a perfect square, and let pn/qn
denote the nth convergent of a continued fraction expansion of

√
α
β . Let the sequences

(sn) and (tn) be defined by (13) for the quadratic irrational
√
αβ
β . Then

α(rqn+1 + uqn)2 − β(rpn+1 + upn)2 = (−1)n(u2tn+1 + 2rusn+2 − r2tn+2). (14)

Since the period length of the continued fraction expansions of both
√

c+2
c and√

c
c−2 is equal to 2, according to Lemma 1, we have to consider only the fractions

(rpn+1 + upn)/(rqn+1 + uqn) for n = 0 and n = 1. By checking all possibilities, it is
now easy to prove the following results.

Proposition 1. Let c ≥ 3 be an odd integer and λ1 an integer such that |λ1| ≤ 4
and such that equation (11) has a solution in relatively prime integers U and V .

i) If c ≥ 7, then λ1 ∈ A1 (c) = {2} .

ii) If c = 5, then λ1 ∈ A1 (5) = {2, 2− c, 32− 7c} = {2,−3} .
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iii) If c = 3, then λ1 ∈ A1 (3) = {2, c, 2− c, 8− 3c, 18− 5c} = {2, 3,−1} .

Proposition 2. Let c ≥ 3 be an odd integer and λ1 an integer such that |λ1| ≤ 4
and such that equation (12) has a solution in relatively prime integers V and Z.

i) If c ≥ 5, then λ2 ∈ A2 (c) = {−2} .

ii) If c = 3, then λ2 ∈ A2 (c) = {−2, c, 7c− 18} = {−2, 3} .

Corollary 1. Let c ≥ 3 be an odd integer.

i) Let (U, V ) be a positive integer solution of equation (5) such that
gcd (U, V ) = d and F1 ≤ 4d2. Then

±F1 ∈
{
λ1d

2 : λ1 ∈ A1 (c)
}
,

where the sets A1 (c) are given in Proposition 1.

ii) Let (V,Z) be a positive integer solution of equation (6)such that
gcd (V,Z) = g and F2 ≤ 4g2. Then

±F2 ∈
{
λ2g

2 : λ2 ∈ A2 (c)
}
,

where the sets A2 (c) are given in Proposition 2.

Proof. Directly from Propositions 1 and 2.

Proposition 3. Let c ≥ 3 be an odd integer. Let (U, V, Z) be a positive inte-
ger solution of the system of Pellian equations (5) and (6), where gcd (U, V ) = d,
gcd (V,Z) = g and F1, F2 ≤ 4. Then

i) (±F1,±F2) ∈ B (c)×D (c) , where B (c) = B0∪B1 (c), D (c) = D0∪D1 (c) and
B0 = {2} , D0 = {−2} , B1 (5) = {−3} , B1 (3) = {3,−1,−4} , B1 (c) = ∅, c ≥
7, and D1 (3) = {3} , D1 (c) = ∅, c ≥ 5,

ii) Additionally, if F1F2 ≤ 4, then (±F1,±F2) ∈ S (c), where S (c) = S0 ∪ S1 (c)
and S0 = {(2,−2)} , S1 (3) = {(−1,−2) , (−1, 3)} , S1 (c) = ∅ for c ≥ 5.

Proof. Consider i): From Corollary 1 we have ±F1 ∈
{
λ1d

2 : λ1 ∈ A1 (c)
}

and
±F2 ∈

{
λ2g

2 : λ2 ∈ A2 (c)
}

, where sets A1 (c) and A2 (c) are given in Propositions
1 and 2, respectively.

a) For all c ≥ 3 we have ±F1 = 2d2. Additionally, we have ±F1 = −3d2 if c = 5
and ±F1 = 3d2, −d2 if c = 3. Since F1 ≤ 4, we obtain:

i. F1 = 2d2 ≤ 4 implies d = 1, i.e. ±F1 = 2;

ii. F1 = 3d2 ≤ 4 implies d = 1. Thus, ±F1 = −3 for c = 5 and ±F1 = 3 for
c = 3;

iii. F1 = d2 ≤ 4 implies d = 1, 2. Thus, ±F1 = −1,−4 for c = 3.
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• Therefore, we obtain sets B (c).

b) For all c ≥ 3 we have ±F2 = −2g2. Additionally, we have ±F2 = 3g2 if c = 3.
Since F2 ≤ 4, we obtain:

i. F2 = 2g2 ≤ 4 implies g = 1, i.e. ±F2 = −2;

ii. F2 = 3g2 ≤ 4 implies g = 1. Thus, ±F2 = 3 for c = 3.

• Therefore, we get sets D (c).

Proof of ii) follows directly from i) since S (c) = {(s, t) ∈ B (c)×D (c) : |s| · |t| ≤ 4} .

If system (5), (6) and (7) has a solution for some positive integers F1, F2, F3,
F1F2F3 ≤ 4, then (±F1,±F2) ∈ S (c) , where the set S (c) is given in Proposition 3
and triple (±F1,±F2,±F3) satisfies one of the equations in (9). First, for each pair
(±F1,±F2) ∈ S (c) we check if there exists F3 ∈ N, F1F2F3 ≤ 4, such that some
of the equations (9) holds. For all pairs of the form (±F1,±F2) = (s, t) condition
F1F2F3 ≤ 4 is satisfied if F3 ∈ F (s, t) = {k ∈ N : k |s| |t| ≤ 4} . Therefore, for each
pair (s, t) ∈ S (c) and for each k ∈ F (s, t), we have to check if some of these four
equations

s (c+ 2) + t (c− 2) = ±4kc or s (c+ 2)− t (c− 2) = ±4kc (15)

holds. For example, if c ≥ 3, then (±F1,±F2) = (2,−2) ∈ S (c) . From (15) we
obtain

8 = ±4kc or 4c = ±4kc.

Since k ∈ F (2,−2) = {1} , the only possibility is ±F3 = 1. We proceed
similarly for (−1,−2) , (−1, 3) ∈ S (3). The only triple obtained in this way is
(±F1,±F2,±F3) = (2,−2, 1) and the corresponding system is

cU2 − (c− 2)V 2 = 2 (16)
cZ2 − (c+ 2)V 2 = −2 (17)

(c− 2)Z2 − (c+ 2)U2 = 4. (18)

Since this system has solution (U, V, Z) = (±1,±1,±1) , we have µ (c) = 4 for all c.
The next step is finding all elements with the minimal index. Therefore we have

to solve the above system.
In [20], Ibrahimpašić found all primitive solutions of the Thue inequality∣∣x4 − 2cx3y + 2x2y2 + 2cxy3 + y4

∣∣ ≤ 6c+ 4,

where c ≥ 3 is an integer. He showed that solving the above inequality reduces to
solving the systems of Pellian equations of the form

cU2 − (c− 2)V 2 = 2µ, cZ2 − (c+ 2)V 2 = −2µ with |µ| ≤ 6c+ 4, (19)

where U = −x2 + 2xy+ y2, V = x2 + y2, Z = x2 + 2xy− y2. First, using continued
fractions (i.e. using Theorem 3), Ibrahimpašić found the set of all values of µ for
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which system (19) has solutions. Then, for all obtained values of µ, he solved
corresponding systems by using the method given in [7]. Note, if we put µ = 1
in (19), then we obtain equations (16) and (17). In [20, Section 3], Ibrahimpašić
showed the following result

Lemma 2. Let c ≥ 3 be an integer. The only solutions of system (16) and (17) are
(U, V, Z) = (±1,±1,±1) .

Therefore we have the following proposition which finishes the proof of Theo-
rem 1.

Proposition 4. Let c ≥ 3 be an odd integer such that c, c+2, c−2 are square-free in-
tegers. Then all integral elements with the minimal index in the field Kc= Q

(√
(c− 2) c ,√

c (c+ 2)
)

are given by (x2, x3, x4) = ± (0,±1, 1) ,± (1, 1,−1) ,± (−1, 1, 1) .

Proof. By Lemma 2, all solutions of system (16), (17) and (18) are given by
(U, V, Z) = (±1,±1,±1) and since we have U = 2x2 + x4, V = x4, Z = x3, we
obtain

2x2 + x4 = ±1, x4 = ±1, x3 = ±1,

which implies (x2, x3, x4) = ± (0,±1, 1) ,± (1, 1,−1) ,± (−1, 1, 1) .

4. Minimal index of the field Lc

Let c ≥ 3 be an integer such that c, c − 2, c + 4 are square-free integers relatively
prime in pairs. Then field (2) is a totally real bicyclic biquadratic field.

Note that c, c−2, c+4 are integers relatively prime in pairs if and only if c ≡ 1 or
3(mod 6). Furthermore, by [10], there are infinitely many positive integers c for which
c (c− 2) (c+ 4) is a square-free integer. Therefore, there are infinitely many positive
integers c for which c, c − 2, c + 4 are square-free integers relatively prime in pairs,
which again implies that there are infinitely many totally real bicyclic biquadratic
fields of the form (2). Hence, in Theorem 2 we need the assumptions: c ≥ 3 is an
integer such that c ≡ 1 or 3 (mod 6) and c, c− 2, c+ 2 are square-free integers. But,
similarly to Section 3, in almost all intermediate results in this section we do not
have the assumption that c, c−2, c+4 are square-free integers, since this assumption
is not necessary for proving them.

In order to prove Theorem 2 we will use a method of I. Gaál, A. Pethő and M.
Pohst [16] again. We have to observe the following cases:

i) If c ≡ 1 (mod 4) , l = c − 2, m1 = c + 4 and n1 = c, then n1 ≡ 1 (mod 4) ,
m1 ≡ 1 (mod 4) , l ≡ 3 (mod 4) which implies m = m1l ≡ 3 (mod 4) and
n = n1l ≡ 3 (mod 4) ;

ii) Let c ≡ 3 (mod 4) , l = c − 2, m1 = c + 4 and n1 = c. Then l ≡ 1 (mod 4) ,
m1 ≡ 3 (mod 4) , n1 ≡ 3 (mod 4) which implies m = m1l ≡ 3 (mod 4) and
n = n1l ≡ 3 (mod 4).
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Since in both cases we have (m,n) ≡ (3, 3) (mod 4) , similarly to Section 3,
according to [16], we obtain the system

(c− 2)U2 − cV 2 = ±F1 (20)
(c− 2)Z2 − (c+ 4)V 2 = ±F2 (21)

cZ2 − (c+ 4)U2 = ±4F3, (22)

where
U = 2x2 + x3, V = x4, Z = x3, (23)

and from [16, Lemma 1] we obtain that

± (c+ 4)F1 ± cF2 = ±4 (c− 2)F3 (24)

must hold. In this case the integral basis of Lc is{
1,
√

(c− 2) (c+ 4),

√
(c− 2) (c+ 4) +

√
(c− 2) c

2
,

1 +
√
c (c+ 4)
2

}

and its discriminant is D = (4c (c− 2) (c+ 4))2 .

Now we will calculate the field indexm (Lc) of Lc. We form differences d1 = m1−
l = 6, d2 = n1 − l = 2, d3 = m1 − n1 = 4. Since neither 3 nor 4 divides all
three differences d1, d2, d3, according to [14, Theorem 4], we conclude m (Lc) = 1.
Therefore, we have proved statement i) of Theorem 2.

We will apply the same strategy of searching the minimal index and all elements
with the minimal index as in the previous case. Observe that if

(±F1,±F2,±4F3) = (−2,−6,−4) ,

then system (20), (21) and (22) has solutions (U, V, Z) = (±1,±1,±1) which implies
that µ (Lc) := µ (c) ≤ 12.

Also, if c = 3 and (±F1,±F2,±4F3) = (1, 1,−4), then system (20), (21) and
(22) has solutions (U, V, Z) = (±1, 0,±1) which implies that µ (3) = 1, i.e. field L3

is monogenic. In [16, p. 109] it can be found that µ (3) = 1 and all elements with
the minimal index are given by (x2, x3, x4) = ± (−1, 1, 0) ,± (0, 1, 0) .

4.1. Finding the minimal index

Let c ≥ 7 be an integer such that c ≡ 1 or 3 (mod 6) . First suppose that (U, V, Z)
is a nonnegative integer solution of the system of equations (20), (21) and (22) with
F1F2F3 ≤ 12. If one of the integers U, V, Z is equal to zero, then (20), (21) and (22)
imply that the other two integers are not equal to zero. Thus we have:

i) If V = 0, then (20) and (21) imply (c− 2)U2 = ±F1, (c− 2)Z2 = ±F2.

Therefore we have F1F2 = (c− 2)2 Z2U2 ≤ 12. If c ≥ 7 and U , Z 6= 0, we
obtain a contradiction.
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ii) If Z = 0, then (21) and (22) imply − (c+ 4)V 2 = ±F2,− (c+ 4)U2 = ±4F3.

Therefore we have F2F3 = (c+4)2

4 U2V 2 ≤ 12. Since c ≥ 7 and U , V 6= 0, we
obtain a contradiction.

iii) If U = 0, then (20) and (22) imply −cV 2 = ±F1, cZ
2 = ±4F3. Therefore we

have F1F3 = c2

4 V
2Z2 ≤ 12 and Z is an even integer. Since c ≥ 7, V 6= 0 and

Z2 ≥ 4 we obtain a contradiction.

To find triple (±F1,±F2,±4F3) for which the system of the form (20), (21) and
(22), with F1F2F3 ≤ 12, has positive solutions we will use the same method as in

Section 3. Since quadratic irrational
√

c+4
c−2 has a quite irregular continued fraction

expansion, we will observe the system of equations (20) and (22) instead of (20) and
(21).

Let (U, V, Z) be a positive integer solution of the system of Pellian equations

(c− 2)U2 − cV 2 = λ1, (25)
cZ2 − (c+ 4)U2 = λ3, (26)

where λ1 and λ3 are integers such that |λ1| ≤ 12 and |λ3| ≤ 48. We have∣∣∣∣∣
√

c

c− 2
− U

V

∣∣∣∣∣ =

∣∣∣∣∣ c

c− 2
− U2

V 2

∣∣∣∣∣ ·
∣∣∣∣∣
√

c

c− 2
+
U

V

∣∣∣∣∣
−1

<
|λ1|

(c− 2)V 2
·
√
c− 2
c
≤ 12√

c (c− 2)V 2
≤


3
V 2 , if c = 7
2
V 2 , if c = 9, 13
1
V 2 , if c ≥ 15

and ∣∣∣∣∣
√
c+ 4
c
− Z

U

∣∣∣∣∣ =

∣∣∣∣∣c+ 4
c
− Z2

U2

∣∣∣∣∣ ·
∣∣∣∣∣
√
c+ 4
c

+
Z

U

∣∣∣∣∣
−1

<
|λ3|
cU2

·
√

c

c+ 4
≤ 48√

c (c+ 4)U2
≤ M

U2
,

where M = 1 if c ≥ 49, M = 2 if 25 ≤ c ≤ 45, M = 3 if 15 ≤ c ≤ 21, M = 4 if
c = 13, M = 5 if c = 9 and M = 6 if c = 7.

Applying algorithm (13) to quadratic irrational
√

c+4
c =

√
c(c+4)

c we find that if
c > 1 is an odd integer, then√

c+ 4
c

=
[
1,
c− 1

2
, 1, 2c+ 2, 1,

c− 1
2

, 2
]

and (s0, t0) = (0, c) , (s1, t1) = (c, 4) , (s2, t2) = (c− 2, 2c− 1) , (s3, t3) = (c+ 1, 1) ,
(s4, t4) = (c+ 1, 2c− 1) , (s5, t5) = (c− 2, 4) , (s6, t6) = (c, c) , (s7, t7) = (c, 4).

Note that the continued fraction expansion of the quadratic irrational
√

c
c−2 was

obtained in Section 3.
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Now we will apply Theorem 3 and Lemma 1 in order to determine all values of
λ1 with |λ1| ≤ 12, for which equation (11) has solutions in relatively prime integers
and all values of λ3 with |λ3| ≤ 48 for which equation (12) has solutions in relatively
prime integers.

Since the period length of the continued fraction expansion of
√

c+4
c is equal to

6 if c > 1 is odd, according to Lemma 1, we have to consider only the fractions
(rpn+1 + upn)/(rqn+1 + uqn) for n = 0, 1, ...., 5.

Since the period length of the continued fraction expansion of
√

c
c−2 is equal to 2,

according to Lemma 1, we have to consider only the fractions (rpn+1+upn)/(rqn+1+
uqn) for n = 0, 1.

By checking all possibilities, it is now easy to prove the following results.

Proposition 5. Let c ≥ 7 be an integer such that c ≡ 1 or 3 (mod 6) and λ1 an
integer such that |λ1| ≤ 12 and equation (25) has a solution in relatively prime
integers U and V .

i) If c ≥ 15, then λ1 ∈ A1 (c) = {−2} .

ii) If c = 13, then λ1 ∈ A1 (13) = {−2, c− 2} = {−2, 11} .

iii) If c = 9, then λ1 ∈ A1 (9) = {−2,−c, c− 2} = {−2,−9, 7} .

iv) If c = 7, then λ1 ∈ A1 (7) = {−2,−c, c− 2, 11c− 72} = {−2,−7, 5} .

Proposition 6. Let c ≥ 7 be an integer such that c ≡ 1 or 3 (mod 6) and λ3 an
integer such that |λ3| ≤ 48 and equation (26) has a solution in relatively prime
integers V and Z.

i) If c ≥ 49, then λ3 ∈ A3 (c) = {−1,−4} .

ii) If c = 45, then λ3 ∈ A3 (c) = {−1,−4, c} = {−1,−4, 45} .

iii) If 25 ≤ c ≤ 43, then λ3 ∈ A3 (c) = {−1,−4,−c− 4, c} .

iv) If c = 21, then λ3 ∈ A3 (c)= {−1,−4, 2c− 1,−c− 4, c} = {−1,−4, 41,−25, 21} .

v) If c = 19, then λ3 ∈ A3 (c) = {−1,−4,−2c− 9, 2c− 1,−c− 4, c} = {−1,−4,
−47, 37,−23, 19} .

vi) If c = 15, then λ3 ∈ A3 (c) = {−1,−4,−2c− 9, 2c− 1,−c− 4, 3c− 4, c}
= {−1,−4,−39, 29,−19, 41, 15} .

vii) If c = 13, then λ3 ∈ A3 (c) = {−1,−4, 4c−9,−2c−9, 12c−121, 14c−169, 16c−
225, 2c−1,−c−4, 3c−4, 11c−100, 13c−144, 15c−196, c} = {−1,−4, 43,−35,
35, 13,−17, 25}.

viii) If c = 9, then λ3 ∈ A3(c) = {−1,−4, 4c− 9,−2c− 9, 4c, 6c− 25, 8c− 49, 10c−
81, 12c−121, 14c−169, 16c−225, 2c−1,−c−4, 3c−4, 5c−16, 7c−36, 9c−64, 11c−
100,−3c− 16, 13c− 144, c} = {−1,−4, 27,−27, 36, 29, 23, 9,−13,−43, 17}.
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ix) If c = 7, then λ3 ∈ A3 (c) = {−1,−4, 4c− 9,−2c− 9, 4c, 6c− 25, 8c− 49, 10c−
81, 12c−121, 6c−1,−4c−16, 2c−1,−c−4, 3c−4, 5c−16, 7c−36, 9c−64, 11c−
100,−3c−16, 5c−16, 9c−64, 11c−100,−3c−16, 5c−16, c} = {−1,−4, 19,−23,
28, 17, 7,−11,−37, 41,−44, 13}.

Corollary 2. Let c ≥ 7 be an integer such that c ≡ 1 or 3 (mod 6).

i) Let (U, V ) be a positive integer solution of equation (20) such that gcd (U, V )
= d and F1 ≤ 12d2. Then ±F1 ∈

{
λ1d

2 : λ1 ∈ A1 (c)
}
, where the sets A1 (c)

are given in Proposition 5.

ii) Let (V,Z) be a positive integer solution of equation (21) such that gcd (V,Z)
= g and 4F3 ≤ 48g2. Then ±4F3 ∈

{
λ3g

2 : λ3 ∈ A3 (c)
}
, where the sets A3 (c)

are given in Proposition 6.

Proof. Directly from Propositions 5 and 6.

Proposition 7. Let c ≥ 7 be an integer such that c ≡ 1 or 3 (mod 6). Let (U, V, Z)
be a positive integer solution of the system of Pellian equations (20) and (21) where
gcd (U, V ) = d, gcd (V,Z) = g and F1, F3 ≤ 12. Then

i) (±F1,±4F3) ∈ B (c)×D (c) , where B (c) = B0∪B1 (c), D (c) = D0∪D1 (c) and
B0 = {−2,−8} , D0 = {−4,−16,−36} , B1 (7) = {5,−7} , B1 (9) = {7,−9},
B1 (13) = {11} , B1 (c) = ∅, c ≥ 15, and D1 (7) = {28,−44} , D1 (9) = {36},
D1 (c) = ∅, c ≥ 13.

ii) Additionally, if F1F3 ≤ 12, then (±F1,±4F3) ∈ S (c), where S (c) = S0∪S1 (c)
and S0 = {(−2,−4) , (−2,−16) , (−8,−4)} , S1 (7) = {(5,−4) , (−7,−4)},
S1 (9) = {(7,−4) , (−9,−4)} , S1 (13) = {(11,−4)} and S1 (c) = ∅ for c ≥ 15.

Proof. Let us consider i). From Corollary 2 we have ±F1 ∈
{
λ1d

2 : λ1 ∈ A1 (c)
}

and ±4F3 ∈
{
λ3g

2 : λ3 ∈ A3 (c)
}

, where sets A1 (c) and A3 (c) are given in Propo-
sitions 5 and 6, respectively.

a) For all c ≥ 7 we have ±F1 = −2d2. Additionally, we have ±F1 = (c− 2) d2 if
c ≤ 13 and ±F1 = −cd2 if c ≤ 9. Since F1 ≤ 12, we obtain:

i. F1 = 2d2 ≤ 12 implies d = 1, 2, i.e. ±F1 = −2,−8;

ii. F1 = (c− 2) d2 ≤ 12 implies d ≤
√

12
c−2 < 2. Thus, ±F1 = 5 for c = 7,

±F1 = 7 for c = 9 and ±F1 = 11 for c = 13;

iii. F1 = cd2 ≤ 12 implies d ≤
√

12
c < 2. Thus, ±F1 = −7 for c = 7 and

±F1 = −9 for c = 9.

• Therefore, we obtain sets B (c).

b) For all c ≥ 7 we have ±4F3 = −g2, −4g2. Since F3 ≤ 12, we obtain:

i. 4F3 = g2 ≤ 48 implies g = 2, 4, 6, i.e. ±4F3 = −4,−16,−36;
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ii. 4F3 = 4g2 ≤ 48 implies g = 1, 2, 3. Thus, ±4F3 = −4,−16,−36.

• Additionally, we have ±4F3 = cg2 if c ≤ 45, ±4F3 = (−c− 4) g2 if c ≤ 43,
±4F3 = (2c− 1) g2 if c ≤ 21, ±4F3 = (−2c− 9) g2 if c ≤ 19,±4F3 = (3c− 4) g2

if c ≤ 15, ±4F3 = (4c− 9) g2, (12c− 121) g2, (11c− 100) g2 if c ≤ 13,±4F3 =
36g2, 29g2, 23g2,−43g2 if c = 9 and ±4F3 = 28g2, 17g2, 41g2,−44g2 if c = 7.
Similarly, since F3 ≤ 12, we obtain:

iii. 4F3 = cg2 ≤ 48 implies g = 2 if c = 7, 9, i.e. ±4F3 = 28 if c = 7 and
±4F3 = 36 if c = 9;

iv. 4F3 = (c+ 4) g2 ≤ 48 implies g = 2 if c = 7, i.e. ±4F3 = −44 if c = 7;

v. 4F3 = |11c− 100| g2 ≤ 48 implies g = 2 if c = 9, i.e. ±4F3 = −4 if c = 9;

vi. 4F3 = 36g2 ≤ 48 implies g = 1, i.e. ±4F3 = 36 if c = 9;

vii. 4F3 = 28g2 ≤ 48 implies g = 1, i.e. ±4F3 = 28 if c = 7;

viii. 4F3 = 44g2 ≤ 48 implies g = 1, i.e. ±4F3 = −44 if c = 7.

• All other cases give a contradiction. Therefore, we get sets D (c).

The proof of ii) follows directly from i) since S (c) = {(s, t) ∈ B (c)×D (c) : |s| · |t|
≤ 48}.

If system (20), (21) and (22) has a solution for some positive integers F1, F2, F3,
F1F2F3 ≤ 12, then (±F1,±4F3) ∈ S (c) , where the set S (c) is given in Proposition 7
and the triple (±F1,±F2,±4F3) satisfies one of the equations in (24). First, for each
pair (±F1,±4F3) ∈ S (c) we check if there exist F2 ∈ N, F1F2F3 ≤ 12 such that any
of the equations (24) holds. For all pairs of the form (±F1,±4F3) = (s, t) condition
F1F2F3 ≤ 12 is satisfied if F2 ∈ F (s, t) = {k ∈ N : k |s| |t| ≤ 48} . Therefore, for each
pair (s, t) ∈ S (c) and for each k ∈ F (s, t), we have to check if any of these four
equations

(c+ 4) s+ (c− 2) t = ±ck or (c+ 4) s− (c− 2) t = ±ck (27)

holds. For example, if c ≥ 7, then (±F1,±4F3) = (−2,−4) ∈ S (c) . From (27) we
obtain

−6c = ±ck or 2c− 16 = ±ck.
Since k ∈ F (−2,−4) = {1, 2, 3, 4, 5, 6}, the only possibility is ±F2 = −6. We

proceed similarly for every element from set S (c) , c ≥ 7. The only triple obtained
in this way is (±F1,±F2,±4F3) = (−2,−6,−4) and the corresponding system is

(c− 2)U2 − cV 2 = −2 (28)
(c− 2)Z2 − (c+ 4)V 2 = −6 (29)

cZ2 − (c+ 4)U2 = −4. (30)

Since this system has solution (U, V, Z) = (±1,±1,±1) , we have µ (c) = 12 if c ≥ 7.
The next step is to find all elements with the minimal index. Therefore we have

to solve system (28), (29) and (30). It will be done in the next subsection.
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4.2. Finding all elements with the minimal index

Now, we have to solve system (28), (29) and (30) obtained in the previous subsection.
That system is very suitable for application of the method given in [7]. We will prove
the following result

Theorem 4. Let c ≥ 7 be an integer. The only solutions to system (28) and (30)
are (U, V, Z) = (±1,±1,±1) .

Therefore we have the following corollary which finishes the proof of Theorem 2.

Corollary 3. Let c ≥ 7 be an integer such that c ≡ 1 or 3 (mod 6) and c, c−2, c+4
are square-free integers. Then all integral elements with the minimal index in field
(2) are given by (x2, x3, x4) = ± (0, 1, 1) , ± (0, 1,−1) , ± (1,−1,−1) , ± (1,−1, 1) .

Proof. Since all solutions of system (28), (29) and (30) are given by (U, V, Z) =
(±1,±1,±1) and since in this case we have U = 2x2 + x3, V = x4, Z = x3, we
obtain

x4 = ±1, 2x2 + x3 = ±1, x3 = ±1,

which implies (x2, x3, x4) = ± (0, 1, 1) , ± (0, 1,−1) , ± (1,−1,−1) , ± (1,−1, 1) .

In order to prove Theorem 4, first we will find a lower bound for solutions of
this system using the ”congruence method” introduced in [9]. The comparison of
this lower bound with an upper bound obtained from a theorem of Bennett [4] on
simultaneous approximations of algebraic numbers finishes the proof for c ≥ 292023.
For c ≤ 292022 we use a theorem of Baker and Wüstholz [3] and a version of the
reduction procedure due to Baker and Davenport [2].

Lemma 3. Let (U, V, Z) be a positive integer solution of the system of Pellian
equations (28) and (30). Then there exist nonnegative integers m and n such that

U = um = vn,

where sequences (um), (vn) are given by

u0 = 1, u1 = 2c− 1, um+2 = (2c− 2)um+1 − um, m ≥ 0, (31)
v0 = 1, v1 = c+ 1, vn+2 = (c+ 2) vn+1 − vn, n ≥ 0. (32)

Proof. If (U, V ) is a solution of equation (28), then there exist m ≥ 0 such that
U = um, where sequence (um) is given by (31) (see [7, Lemma 2]).
Let Z1 = cZ, then equation (30) is equivalent to equation

Z2
1 − c (c+ 4)U2 = −4c. (33)

It is obvious that (a1, b1) = (c+ 2, 1) is the fundamental solution of the equation

A2 − c (c+ 4)B2 = 4.
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By [25, Theorem 2], it follows that if (z0, v0) is the fundamental solution of a class
of equation (33), then inequalities

0 < |z0| ≤
√

(a1 − 2) · c = c

0 < v0 ≤
b1√

(a1 − 2)

√
c = 1

must hold. This implies that (z0, v0) = (c, 1) and (z′0, v
′
0) = (−c, 1) are possible

fundamental solutions of equation (33). Since

z0v
′
0 ≡ z′0v0(mod 2c),

these solutions belong to the same class (see [25, Theorem 4]). Therefore we have
only one fundamental solution (z0, v0) = (c, 1). Now, all solutions (z, v) of equation
(33) in positive integers are given by (Z1, U) = (zn, vn) where

zn + vn
√
c (c+ 4) =

(
c+

√
c (c+ 4)

)(c+ 2 +
√
c (c+ 4)

2

)n
(34)

and n is a nonnegative integer (see [25, Theorem 3]). From (34) we obtain that if
(Z,U) is a solution of equation (28), then there exist n ≥ 0 such that U = vn, where
sequence (vn) is given by (32).

Therefore, in order to prove Theorem 4, it suffices to show that um = vn implies
m = n = 0.

Solving recurrences (31) and (32) we find

um =
1

2
√
c− 2

[
(
√
c+
√
c− 2)

(
c− 1 +

√
c(c− 2)

)m
−(
√
c−
√
c− 2)

(
c− 1−

√
c(c− 2)

)m]
, (35)

vn =
1

2
√
c+ 4

[
(
√
c+
√
c+ 4)

(c+ 2 +
√
c (c+ 4)

2

)n
−(
√
c−
√
c+ 4)

(c+ 2−
√
c (c+ 4)

2

)n]
. (36)

4.2.1. Congruence relations

Now we will find a lower bound for nontrivial solutions using the congruence method.

Lemma 4. Let sequences (um) and (vn) be defined by (31) and (32), respectively.
Then for all m,n ≥ 0 we have

um ≡ (−1)m−1 (m(m+ 1)c− 1) (mod 4c2), (37)

vn ≡
n(n+ 1)

2
c+ 1 (mod c2) . (38)

Proof. We have obtained congruence (37) in [7, Lemma 3]. Congruence (38) can
be proved easily by induction.
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Suppose that m and n are positive integers such that um = vn. Then, of course,
um ≡ vn (mod c2). By Lemma 4, we have (−1)m ≡ 1 (mod c) and therefore m is
even.

Assume that n(n + 1) < 2
3c. Since m ≤ n, we also have m(m + 1) < 2

3c.
Furthermore, Lemma 4 implies

1−m(m+ 1)c ≡ n(n+ 1)
2

c+ 1 (mod c2)

and

−m(m+ 1) ≡ n(n+ 1)
2

(mod c). (39)

Consider the positive integer

A =
n(n+ 1)

2
+m(m+ 1).

We have 0 < A < c and, by (39) A ≡ 0(mod c), a contradiction.
Hence n(n+ 1) ≥ 2

3c and it implies n >
√

0.703c− 0.5. Therefore we proved

Proposition 8. If um = vn and m 6= 0, then n >
√

0.703c− 0.5.

4.2.2. An application of a theorem of Bennett

It is clear that solutions of system (28) and (30) induce good rational approximations
to the irrational numbers

θ1 =

√
c− 2
c

and θ2 =

√
c+ 4
c

.

More precisely, we have

Lemma 5. All positive integer solutions (U, V, Z) of the system of Pellian equations
(28) and (30) satisfy

|θ1 −
V

U
| < 1√

c (c− 2)
· U−2, |θ2 −

Z

U
| < 2√

c (c+ 4)
· U−2.

Proof. We have∣∣∣∣∣
√
c− 2
c
− V

U

∣∣∣∣∣ =

∣∣∣∣∣c− 2
c
− V 2

U2

∣∣∣∣∣ ·
∣∣∣∣∣
√
c− 2
c

+
V

U

∣∣∣∣∣
−1

<
2
cU2

· 1
2

√
c

c− 2
=

1√
c (c− 2)

· U−2

and ∣∣∣∣∣
√
c+ 4
c
− Z

U

∣∣∣∣∣ =

∣∣∣∣∣c+ 4
c
− Z2

U2

∣∣∣∣∣ ·
∣∣∣∣∣
√
c+ 4
c

+
Z

U

∣∣∣∣∣
−1

<
4
cU2

·
√

c

c+ 4
=

4√
c (c+ 4)

· U−2
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Numbers θ1 and θ2 are square roots of rationals which are very close to 1. For
simultaneous Diophantine approximations to such kind of numbers we will use the
following theorem of Bennett [4, Theorem 3.2].

Theorem 5. If ai, pi, q and N are integers for 0 ≤ i ≤ 2, with a0 < a1 < a2,
aj = 0 for some 0 ≤ j ≤ 2, q nonzero and N > M9, where

M = max
0≤i≤2

{|ai|} ≥ 3,

then we have

max
0≤i≤2

{∣∣∣√1 +
ai
N
− pi
q

∣∣∣} > (130Nγ)−1q−λ

where

λ = 1 +
log(32.04Nγ)

log
(

1.68N2
∏

0≤i<j≤2(ai − aj)−2
)

and

γ =

{
(a2−a0)

2(a2−a1)
2

2a2−a0−a1
, if a2 − a1 ≥ a1 − a0,

(a2−a0)
2(a1−a0)

2

a1+a2−2a0
, if a2 − a1 < a1 − a0.

We will apply Theorem 5 with a0 = −2, a1 = 0, a2 = 4, N = c, M = 4, q = U ,
p0 = V , p1 = U , p2 = Z. If c ≥ 262 145, then the condition N > M9 is satisfied and
we obtain

(130 · c · 288
5

)−1U−λ <
4√

c (c+ 4)
· U−2 . (40)

If c ≥ 281220, then 2− λ > 0 and (40) imply

logU <
10.082
2− λ

. (41)

Furthermore,
1

2− λ
=

1

1− log(32.04·c 288
5 )

log(1.68c2 1
256 )

<
log
(
0.00657c2

)
log(0.00000355c)

.

On the other hand, from (36) we find that

vn > 0.88
(c+ 2 +

√
c (c+ 4)

2

)n
> (0.88c+ 0.88)n,

and Proposition 8 implies that if (m,n) 6= (0, 0), then

U > (0.88c+ 0.88)
√

0.703c−0.5 .

Therefore,

logU > (
√

0.703c− 0.5) log(0.88c+ 0.88). (42)
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Combining (41) and (42) we obtain

√
0.703c− 0.5 <

10.082 log
(
0.00657c2

)
log(0.88c+ 0.88) log(0.00000355c)

(43)

and (43) yields a contradiction if c ≥ 292023. Therefore we proved

Proposition 9. If c is an integer such that c ≥ 292023, then the only solution of
the equation um = vn is (m,n) = (0, 0).

4.2.3. The Baker-Davenport method

In this section we will apply the so called Baker-Davenport reduction method in
order to prove Theorem 4 for 7 ≤ c ≤ 292022.

Lemma 6. If um = vn and m 6= 0, then

0 < m log
(
c− 1 +

√
c(c− 2)

)
− n log

(c+ 2 +
√
c (c+ 4)

2

)
+ log

√
c+ 4(

√
c+
√
c− 2)√

c− 2(
√
c+
√
c+ 4)

< 0.23912

(
c+ 2 +

√
c (c+ 4)

2

)−2n

.

Proof. In standard way (for e.g. see [7, Lemma 5]).

Now we will apply the following theorem of Baker and Wüstholz [3]:

Theorem 6. For a linear form Λ 6= 0 in logarithms of l algebraic numbers α1, . . . , αl
with rational integer coefficients b1, . . . , bl we have

log Λ ≥ −18(l + 1)! ll+1(32d)l+2h′(α1) · · ·h′(αl) log(2ld) logB ,

where B = max{|b1|, . . . , |bl|}, and where d is the degree of the number field generated
by α1, . . . , αl.

Here
h′(α) =

1
d

max {h(α), | log α|, 1} ,

and h(α) denotes the standard logarithmic Weil height of α. We will apply Theo-
rem 6 to the form from Lemma 6. We have l = 3, d = 4, B = n,

α1 = c− 1 +
√
c(c− 2),

α2 =
c+ 2 +

√
c (c+ 4)

2
,

α3 =
√
c+ 4(

√
c+
√
c− 2)√

c− 2(
√
c+
√
c+ 4)

.
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Under the assumption that 7 ≤ c ≤ 292022 we find that

h′(α1) =
1
2

logα1 <
1
2

log 2c, h′(α2) =
1
2

logα2 < 6. 2924.

Furthermore, α3 < 1. 2145, and the conjugates of α3 satisfy

|α′3| =
√
c+ 4(

√
c−
√
c− 2)√

c− 2(
√
c+
√
c+ 4)

< 1,

|α′′3 | =
√
c+ 4(

√
c+
√
c− 2)√

c− 2(
√
c+ 4−

√
c)
< 292025.51

|α′′′3 | =
√
c+ 4(

√
c−
√
c− 2)√

c− 2(
√
c+ 4−

√
c)
< 1.

Therefore,

h′(α3) <
1
4

log
[
16 (c− 2)2 · 1. 2145 · 292025.51

]
< 10.181.

Finally,

log
[
0.239 12

(
c+ 2 +

√
c (c+ 4)

2

)−2n ]
< −2n log(2c) .

Hence, Theorem 6 implies

2n log(2c) < 3.822 · 1015 · 1
2
· log(2c) · 6. 2924. · 10.181 log n

and

n

log n
< 6.12122 · 1016. (44)

which implies n < 2.59542× 1018.

We may reduce this large upper bound using a variant of the Baker-Davenport re-
duction procedure [2]. The following lemma is a slight modification of [9, Lemma 5 a)]:

Lemma 7. Assume that M is a positive integer. Let p/q be a convergent of the
continued fraction expansion of κ such that q > 10M and let ε = ‖µq‖ −M · ‖κq‖,
where ‖ · ‖ denotes the distance from the nearest integer. If ε > 0, then there is no
solution of the inequality

0 < m− nκ+ µ < AB−n

in integers m and n with
log(Aq/ε)

logB
≤ n ≤M .
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We apply Lemma 7 with κ = logα2
logα1

, µ = logα3
logα1

, A = 0.239 12
logα1

, B =
(
c+2+
√
c(c+4)

2

)2

and M = 2.59542× 1018. If the first convergent such that q > 10M does not satisfy
the condition ε > 0, then we use the next convergent.

We performed the reduction from Lemma 7 for 7 ≤ c ≤ 292022. The use of
the second convergent was necessary in 3686 cases (≈ 3.63%), the third convergent
was used in 209 cases (≈ 0.07%), the fourth in 37 cases, the fifth convergent is used
in only one case: c = 169901. In all cases we obtained n ≤ 7. More precisely, we
obtained n ≤ 7 for c ≥ 7; n ≤ 6 for c ≥ 9; n ≤ 5 for c ≥ 14; n ≤ 4 for c ≥ 57; n ≤ 3
for c ≥ 144; n ≤ 2 for c ≥ 1442. The next step of the reduction in all cases gives
n ≤ 1, which completes the proof.

Therefore, we proved

Proposition 10. If c is an integer such that 7 ≤ c ≤ 292022, then the only solution
of the equation um = vn is (m,n) = (0, 0).

Proof of Theorem 4: The statement follows directly from Propositions 9 and 10.
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[9] A. Dujella, A. Pethő, Generalization of a theorem of Baker and Davenport, Quart.

J. Math. Oxford Ser. 49(1998), 291–306.
[10] P. Erdös, Arithmetical properties of polynomials, J. London Math. Soc. 28(1953),

416–425.
[11] I. Gaál, Diophantine equations and power integral bases, Birkhäuser, Boston, 2002.
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