A class of superordination-preserving convex integral operator

Saibah Siregar ${ }^{1}$, Maslina Darus ${ }^{1}$ and Teodor Bulboaca ${ }^{3, *}$
${ }^{1}$ School of Mathematical Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
${ }^{3}$ Faculty of Mathematics and Computer Science, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania

Received April 6, 2009; accepted October 5, 2009

Abstract. If $H(\mathrm{U})$ denotes the space of analytic functions in the unit disk U , for the integral operator $A_{\alpha, \beta, \gamma, \delta}^{h}: \mathcal{K} \rightarrow H(\mathrm{U})$, with $\mathcal{K} \subset H(\mathrm{U})$, defined by

$$
A_{\alpha, \beta, \gamma, \delta}^{h}[f](z)=\left[\frac{\beta+\gamma}{z^{\gamma}} \int_{0}^{z} f^{\alpha}(t) h(t) t^{\delta-1} \mathrm{~d} t\right]^{1 / \beta},(\alpha, \beta, \gamma, \delta \in \mathbb{C} \text { and } h \in H(\mathrm{U}))
$$

we will determine sufficient conditions on $g_{1}, g_{2}, \alpha, \beta$ and γ such that

$$
z h(z)\left[\frac{g_{1}(z)}{z}\right]^{\alpha} \prec z h(z)\left[\frac{f(z)}{z}\right]^{\alpha} \prec z h(z)\left[\frac{g_{2}(z)}{z}\right]^{\alpha}
$$

implies

$$
z\left[\frac{A_{\alpha, \beta, \gamma, \delta}^{h}\left[g_{1}\right](z)}{z}\right]^{\beta} \prec z\left[\frac{A_{\alpha, \beta, \gamma, \delta}^{h}[f](z)}{z}\right]^{\beta} \prec z\left[\frac{A_{\alpha, \beta, \gamma, \delta}^{h}\left[g_{2}\right](z)}{z}\right]^{\beta} .
$$

In addition, both of the subordinations are sharp, since the left-hand side will be the largest function, and the right-hand side will be the smallest function so that the above implication has been held for all f functions satisfying the double differential subordination of the assumption.
The results generalize those of the last author from [3], obtained for the special case $\alpha=\beta$ and $h \equiv 1$.
AMS subject classifications: 30C80, 30C45
Key words: analytic function, starlike and convex function, differential operator, differential subordination

1. Introduction

Let $H(\mathrm{U})$ be the space of all analytical functions in the unit disk $\mathrm{U}=\{z \in \mathbb{C}$: $|z|<1\}$. If $f, F \in H(\mathrm{U})$ and F is univalent in U , we say that the function f is subordinate to F, or F is superordinate to f, written $f(z) \prec F(z)$, if $f(0)=F(0)$ and $f(\mathrm{U}) \subseteq F(\mathrm{U})$.

* Corresponding author. Email addresses: saibahmath@yahoo.com (S. Siregar),
maslina@pkrisc.cc.ukm.my (M. Darus), bulboaca@math.ubbcluj.ro(T. Bulboacă)
http://www.mathos.hr/mc
(c)2009 Department of Mathematics, University of Osijek

For $a \in \mathbb{C}$ and $n \in \mathbb{N}^{*}$, where \mathbb{N}^{*} is the set of all positive integers, we denote

$$
H[a, n]=\left\{f \in H(\mathrm{U}): f(z)=a+a_{n} z^{n}+\cdots\right\}
$$

Letting $\varphi: \mathbb{C}^{3} \times \overline{\mathrm{U}} \rightarrow \mathbb{C}, h \in H(\mathrm{U})$ and $q \in H[a, n]$, in [10] Miller and Mocanu determined conditions on φ such that

$$
h(z) \prec \varphi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right) \quad \text { implies } \quad q(z) \prec p(z),
$$

for all p functions that satisfy the above superordination. Moreover, they found sufficient conditions so that the q function is the largest function with this property called the best subordinant of this superordination.

For the integral operator $A_{\beta, \gamma}: \mathcal{K}_{\beta, \gamma} \rightarrow H(\mathrm{U}), \mathcal{K}_{\beta, \gamma} \subset H(\mathrm{U})$, defined by

$$
\begin{equation*}
A_{\beta, \gamma}[f](z)=\left[\frac{\beta+\gamma}{z^{\gamma}} \int_{0}^{z} f^{\beta}(t) t^{\gamma-1} \mathrm{~d} t\right]^{1 / \beta}, \quad \beta, \gamma \in \mathbb{C} \tag{1}
\end{equation*}
$$

the third author determined in [3], in conjunction with [1] and [2], conditions on g_{1}, g_{2}, β and γ so that

$$
z\left[\frac{g_{1}(z)}{z}\right]^{\beta} \prec z\left[\frac{f(z)}{z}\right]^{\beta} \prec z\left[\frac{g_{2}(z)}{z}\right]^{\beta}
$$

implies

$$
z\left[\frac{A_{\beta, \gamma}\left[g_{1}\right](z)}{z}\right]^{\beta} \prec z\left[\frac{A_{\beta, \gamma}[f](z)}{z}\right]^{\beta} \prec z\left[\frac{A_{\beta, \gamma}\left[g_{2}\right](z)}{z}\right]^{\beta}
$$

and that all the results are sharp.
In this paper we will consider the integral operator $A_{\alpha, \beta, \gamma, \delta}^{h}: \mathcal{K} \rightarrow H(\mathrm{U})$ with $\mathcal{K} \subset H(\mathrm{U})$ defined by

$$
\begin{equation*}
A_{\alpha, \beta, \gamma, \delta}^{h}[f](z)=\left[\frac{\beta+\gamma}{z^{\gamma}} \int_{0}^{z} f^{\alpha}(t) h(t) t^{\delta-1} \mathrm{~d} t\right]^{1 / \beta} \tag{2}
\end{equation*}
$$

where $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ and $h \in H(\mathrm{U})$ (all powers are principal ones).
We will generalize all these previous results in order to give sufficient conditions on the g_{1} and g_{2} functions and on the α, β, γ and δ parameters, such that the next sandwich-type result holds:

$$
z h(z)\left[\frac{g_{1}(z)}{z}\right]^{\alpha} \prec z h(z)\left[\frac{f(z)}{z}\right]^{\alpha} \prec z h(z)\left[\frac{g_{2}(z)}{z}\right]^{\alpha}
$$

implies

$$
z\left[\frac{A_{\alpha, \beta, \gamma, \delta}^{h}\left[g_{1}\right](z)}{z}\right]^{\beta} \prec z\left[\frac{A_{\alpha, \beta, \gamma, \delta}^{h}[f](z)}{z}\right]^{\beta} \prec z\left[\frac{A_{\alpha, \beta, \gamma, \delta}^{h}\left[g_{2}\right](z)}{z}\right]^{\beta}
$$

Moreover, the functions from the left-hand side and the right-hand side are the best subordinant and the best dominant, respectively.

2. Preliminaries

Let $c \in \mathbb{C}$ with $\operatorname{Re} c>0$, let $n \in \mathbb{N}^{*}$ and let

$$
C_{n}=C_{n}(c)=\frac{n}{\operatorname{Re} c}\left[|c| \sqrt{1+2 \operatorname{Re}\left(\frac{c}{n}\right)}+\operatorname{Im} c\right]
$$

If R is the univalent function $R(z)=\frac{2 C_{n} z}{1-z^{2}}$, then the open door function $R_{c, n}$ is defined by

$$
R_{c, n}(z)=R\left(\frac{z+b}{1+\bar{b} z}\right), z \in \mathrm{U}
$$

where $b=R^{-1}(c)$.
Remark that $R_{c, n}$ is univalent in $\mathrm{U}, R_{c, n}(0)=c$ and $R_{c, n}(\mathrm{U})=R(\mathrm{U})$ is the complex plane slit along the half-lines $|\operatorname{Im} w| \geq C_{n}$ and $\operatorname{Re} w=0$.

Moreover, if $c>0$, then $C_{n+1}>C_{n}$ and $\lim _{n \rightarrow \infty} C_{n}=\infty$, hence $R_{c, n} \prec R_{c, n+1}$ and $\lim _{n \rightarrow \infty} R_{c, n}(\mathrm{U})=\mathbb{C}$. We will use the notation $R_{c} \equiv R_{c, 1}$.

Let denote the class of functions

$$
A_{n}=\left\{f \in H(\mathrm{U}): f(z)=z+a_{n+1} z^{n+1}+\cdots\right\}
$$

and let $A \equiv A_{1}$.
Lemma 1 (Integral Existence Theorem, see [7, 8]). Let $\phi, \Phi \in H[1, n]$ with $\phi(z) \neq 0$, $\Phi(z) \neq 0$ for $z \in \mathrm{U}$. Let $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ with $\beta \neq 0, \alpha+\delta=\beta+\gamma$ and $\operatorname{Re}(\alpha+\delta)>0$. If the function $f(z)=z+a_{n+1} z^{n+1}+\cdots \in A_{n}$ and if it satisfies

$$
\alpha \frac{z f^{\prime}(z)}{f(z)}+\frac{z \phi^{\prime}(z)}{\phi(z)}+\delta \prec R_{\alpha+\delta, n}(z)
$$

then

$$
\begin{aligned}
F(z) & =\left[\frac{\beta+\gamma}{z^{\gamma} \Phi(z)} \int_{0}^{z} f^{\alpha}(t) \phi(t) t^{\gamma-1} \mathrm{~d} t\right]^{1 / \beta}=z+b_{n+1} z^{n+1}+\cdots \in A_{n} \\
\frac{F(z)}{z} & \neq 0, z \in \mathrm{U}
\end{aligned}
$$

and

$$
\operatorname{Re}\left[\beta \frac{z F^{\prime}(z)}{F(z)}+\frac{z \Phi^{\prime}(z)}{\Phi(z)}+\gamma\right]>0, z \in \mathrm{U}
$$

(All powers are principal ones).
A function $L(z ; t): \mathrm{U} \times[0,+\infty) \rightarrow \mathbb{C}$ is called a subordination (or a Loewner) chain if $L(\cdot ; t)$ is analytic and univalent in U for all $t \geq 0, L(z ; \cdot)$ is continuously differentiable on $[0,+\infty)$ for all $z \in \mathrm{U}$ and $L(z ; s) \prec L(z ; t)$ when $0 \leq s \leq t$.
Lemma 2 (see [12], p. 159). The function $L(z ; t)=a_{1}(t) z+a_{2}(t) z^{2}+\ldots$, with $a_{1}(t) \neq 0$ for all $t \geq 0$ and $\lim _{t \rightarrow+\infty}\left|a_{1}(t)\right|=+\infty$, is a subordination chain if and only if

$$
\operatorname{Re}\left[z \frac{\partial L / \partial z}{\partial L / \partial t}\right]>0, z \in \mathrm{U}, t \geq 0
$$

The well-known class of convex functions of order α in $\mathrm{U}, \alpha<1$ will be denoted by $K(\alpha)$, and $K \equiv K(0)$ is the class of convex (and univalent) functions in U . Also, the class of starlike functions of order α in $\mathrm{U}, \alpha<1$, will be denoted by $S^{*}(\alpha)$, and $S^{*} \equiv S^{*}(0)$ is the class of starlike (and univalent) functions in U .

If $\beta>0$ and $\beta+\gamma>0$, for a given $\alpha \in\left[-\frac{\gamma}{\beta}, 1\right)$ we define the order of starlikeness of the class $A_{\beta, \gamma}$ by the largest number $\delta=\delta(\alpha ; \beta, \gamma)$ such that $A_{\beta, \gamma}\left(S^{*}(\alpha)\right) \subset S^{*}(\delta)$, where $A_{\beta, \gamma}$ is given by (1).

Lemma 3 (see [11]). Let $\beta>0, \beta+\gamma>0$. If $\alpha \in\left[\alpha_{0}, 1\right)$, where

$$
\alpha_{0}=\max \left\{\frac{\beta-\gamma-1}{2 \beta} ;-\frac{\gamma}{\beta}\right\}
$$

then the order of starlikeness of the class $A_{\alpha, \beta, \gamma, \delta}^{h}\left(S^{*}(\alpha)\right)$ is given by

$$
\delta(\alpha ; \beta, \gamma)=\frac{1}{\beta}\left[\frac{\beta+\gamma}{{ }_{2} F_{1}(1,2 \beta(1-\alpha), \beta+\gamma+1 ; 1 / 2)}-\gamma\right]
$$

where ${ }_{2} F_{1}$ represents the (Gaussian) hypergeometric function.
Lemma 4 (see [6], Theorem 1). Let $\beta, \gamma \in \mathbb{C}$ with $\beta \neq 0$ and let $h \in H(\mathrm{U})$, with $h(0)=c$. If $\operatorname{Re}[\beta h(z)+\gamma]>0, z \in \mathrm{U}$, then the solution of the differential equation

$$
\begin{equation*}
q(z)+\frac{z q^{\prime}(z)}{\beta q(z)+\gamma}=h(z) \tag{3}
\end{equation*}
$$

with $q(0)=c$, is analytic in U and satisfies $\operatorname{Re}[\beta q(z)+\gamma]>0, z \in \mathrm{U}$.
Let Q be the set of functions f that are analytic and injective on $\overline{\mathrm{U}} \backslash E(f)$, where

$$
E(f)=\left\{\zeta \in \partial \mathrm{U}: \lim _{z \rightarrow \zeta} f(z)=\infty\right\}
$$

and such that $f^{\prime}(\zeta) \neq 0$ for $\zeta \in \partial \mathrm{U} \backslash E(f)$ (see [10]).
Lemma 5 (see [10], Theorem 7). Let $q \in H[a, 1]$, let $\chi: \mathbb{C}^{2} \rightarrow \mathbb{C}$ and set $\chi(q(z)$, $\left.z q^{\prime}(z)\right) \equiv h(z)$. If $L(z, t)=\chi\left(q(z), t z q^{\prime}(z)\right)$ is a subordination chain and $p \in H[a, 1] \cap$ Q, then

$$
h(z) \prec \chi\left(p(z), z p^{\prime}(z)\right) \quad \text { implies } \quad q(z) \prec p(z) .
$$

Furthermore, if $\chi\left(q(z), z q^{\prime}(z)\right)=h(z)$ has a univalent solution $q \in Q$, then q is the best subordinant.

Like in [5] and [9], let $\Omega \subset \mathbb{C}, q \in Q$ and n be a positive integer. The class of admissible functions $\Psi_{n}[\Omega, q]$ is the class of those functions $\psi: \mathbb{C}^{3} \times \mathrm{U} \rightarrow \mathbb{C}$ that satisfy the admissibility condition

$$
\psi(r, s, t ; z) \notin \Omega
$$

whenever $r=q(\zeta), s=m \zeta q^{\prime}(\zeta), \operatorname{Re} \frac{t}{s}+1 \geq m \operatorname{Re}\left[\frac{\zeta q^{\prime \prime}(\zeta)}{q^{\prime}(\zeta)}+1\right], z \in \mathrm{U}, \zeta \in \partial \mathrm{U} \backslash E(q)$ and $m \geq n$. This class will be denoted by $\Psi_{n}[\Omega, q]$.

We write $\Psi[\Omega, q] \equiv \Psi_{1}[\Omega, q]$. For the special case when $\Omega \neq \mathbb{C}$ is a simply connected domain and h is a conformal mapping of U onto Ω, we use the notation $\Psi_{n}[h, q] \equiv \Psi_{n}[\Omega, q]$.

Remark 1. If $\psi: \mathbb{C}^{2} \times \mathrm{U} \rightarrow \mathbb{C}$, then the above defined admissibility condition reduces to

$$
\psi\left(q(\zeta), m \zeta q^{\prime}(\zeta) ; z\right) \notin \Omega
$$

when $z \in \mathrm{U}, \zeta \in \partial \mathrm{U} \backslash E(q)$ and $m \geq n$.
Lemma 6 (see $[5,9]$). Let h be univalent in U and $\psi: \mathbb{C}^{3} \times \mathrm{U} \rightarrow \mathbb{C}$. Suppose that the differential equation

$$
\psi\left(q(z), z q^{\prime}(z), z^{2} q^{\prime \prime}(z) ; z\right)=h(z)
$$

has a solution q, with $q(0)=a$, and one of the following conditions is satisfied:
(i) $q \in Q$ and $\psi \in \Psi[h, q]$,
(ii) q is univalent in U and $\psi \in \Psi\left[h, q_{\rho}\right]$, for some $\rho \in(0,1)$, where $q_{\rho}(z)=q(\rho z)$, or
(iii) q is univalent in U and there exists $\rho_{0} \in(0,1)$ such that $\psi \in \Psi\left[h_{\rho}, q_{\rho}\right]$
for all $\rho \in\left(\rho_{0}, 1\right)$, where $h_{\rho}(z)=h(\rho z)$ and $q_{\rho}(z)=q(\rho z)$.
If $p(z)=a+a_{1} z+\ldots \in H(\mathrm{U})$ and $\psi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right) \in H(\mathrm{U})$, then

$$
\psi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right) \prec h(z) \quad \text { implies } \quad p(z) \prec q(z)
$$

and q is the best dominant.

3. Main results

First we need to determine the subset $\mathcal{K} \subset H(\mathrm{U})$ such that the integral operator $A_{\alpha, \beta, \gamma, \delta}^{h}$ given by (2) in Section 1 will be well-defined. If we choose in Lemma 1 the correspondent functions $\Phi \equiv 1$ and $\phi \equiv h \in H[1,1]$, with $h(z) \neq 0$ for all $z \in \mathrm{U}$, then we obtain the next Lemma:

Lemma 7. Let $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ with $\beta \neq 0, \alpha+\delta=\beta+\gamma$ and $\operatorname{Re}(\beta+\gamma)>0$. For the function $h \in H[1,1]$, with $h(z) \neq 0$ for all $z \in \mathrm{U}$, we define the set $\mathcal{K} \subset H(\mathrm{U})$ by

$$
\mathcal{K}=\mathcal{K}_{\alpha, \delta}^{h}=\left\{f \in A: \alpha \frac{z f^{\prime}(z)}{f(z)}+\frac{z h^{\prime}(z)}{h(z)}+\delta \prec R_{\alpha+\delta}(z)\right\} .
$$

Then $f \in \mathcal{K}_{\alpha, \delta}^{h}$ implies $F \in A, \frac{F(z)}{z} \neq 0, z \in \mathrm{U}$ and $\operatorname{Re}\left[\beta \frac{z F^{\prime}(z)}{F(z)}+\gamma\right]>0, z \in \mathrm{U}$, where $F(z)=A_{\alpha, \beta, \gamma, \delta}^{h}[f](z)$.

Theorem 1. Let $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ with $\beta \neq 0,1<\beta+\gamma \leq 2$, $\alpha+\delta=\beta+\gamma$. Let $g \in \mathcal{K}_{\alpha, \delta}^{h}$, and for $\alpha \neq 1$ suppose in addition that $g(z) / z \neq 0$ for $z \in \mathrm{U}$. Suppose that

$$
\begin{equation*}
\operatorname{Re}\left[1+\frac{z \varphi^{\prime \prime}(z)}{\varphi^{\prime}(z)}\right]>\frac{1-(\beta+\gamma)}{2}, z \in \mathrm{U} \tag{4}
\end{equation*}
$$

where $\varphi(z)=z h(z)\left[\frac{g(z)}{z}\right]^{\alpha}$.
Let $f \in \mathcal{K}_{\alpha, \delta}^{h}$ such that $z h(z)\left[\frac{f(z)}{z}\right]^{\alpha}$ is univalent in U and $z\left[\frac{A_{\alpha, \beta, \gamma, \delta}^{h}[f](z)}{z}\right]^{\beta} \in Q$. Then
$z h(z)\left[\frac{g(z)}{z}\right]^{\alpha} \prec z h(z)\left[\frac{f(z)}{z}\right]^{\alpha}$ implies $z\left[\frac{A_{\alpha, \beta, \gamma, \delta}^{h}[g](z)}{z}\right]^{\beta} \prec z\left[\frac{A_{\alpha, \beta, \gamma, \delta}^{h}[f](z)}{z}\right]^{\beta}$, and the function $z\left[\frac{A_{\alpha, \beta, \gamma, \delta}^{h}[g](z)}{z}\right]^{\beta}$ is the best subordinant.
Proof. Denoting $G=A_{\alpha, \beta, \gamma, \delta}^{h}[g], F=A_{\alpha, \beta, \gamma, \delta}^{h}[f], \varphi(z)=z h(z)[g(z) / z]^{\alpha}, \psi(z)$ $=z h(z)[f(z) / z]^{\alpha}, \Phi(z)=z[G(z) / z]^{\beta}$ and $\Psi(z)=z[F(z) / z]^{\beta}$, we need to prove that $\varphi(z) \prec \psi(z)$ implies $\Phi(z) \prec \Psi(z)$.

Because $g, f \in \mathcal{K}_{\alpha, \delta}^{h}$, then $\psi, \varphi \in A$ and by Lemma 1 we have $G(z) / z \neq 0$ and $F(z) / z \neq 0, z \in \mathrm{U}$, hence $\Phi, \Psi \in H(\mathrm{U})$ and moreover $\Phi, \Psi \in A$.

If we differentiate the relations $G(z)=A_{\alpha, \beta, \gamma, \delta}^{h}[g](z)$ and $\Phi(z)=z\left[\frac{G(z)}{z}\right]^{\beta}$ we have respectively

$$
\begin{align*}
z^{\gamma}\left[\frac{G(z)}{z}\right]^{\beta}\left[\beta \frac{z G^{\prime}(z)}{G(z)}+\gamma\right] & =(\beta+\gamma) g^{\alpha}(z) h(z) z^{\delta-\beta} \tag{5}\\
\beta \frac{z G^{\prime}(z)}{G(z)} & =\beta-1+\frac{z \Phi^{\prime}(z)}{\Phi(z)} \tag{6}
\end{align*}
$$

and replacing (6) in (5), together with the fact that $\alpha+\delta=\beta+\gamma$, we get

$$
\begin{equation*}
\varphi(z)=\left(1-\frac{1}{\beta+\gamma}\right) \Phi(z)+\frac{1}{\beta+\gamma} z \Phi^{\prime}(z)=\chi\left(\Phi(z), z \Phi^{\prime}(z)\right) \tag{7}
\end{equation*}
$$

Letting

$$
\begin{equation*}
L(z ; t)=\left(1-\frac{1}{\beta+\gamma}\right) \Phi(z)+\frac{t}{\beta+\gamma} z \Phi^{\prime}(z) \tag{8}
\end{equation*}
$$

then $L(z ; 1)=\varphi(z)$. If we denote $L(z ; t)=a_{1}(t) z+\ldots$, then

$$
a_{1}(t)=\frac{\partial L(0 ; t)}{\partial z}=\left(1+\frac{t-1}{\beta+\gamma}\right) \Phi^{\prime}(0)=1+\frac{t-1}{\beta+\gamma}
$$

hence $\lim _{t \rightarrow+\infty}\left|a_{1}(t)\right|=+\infty$, and from $\beta+\gamma>1$ we obtain $a_{1}(t) \neq 0, \forall t \geq 0$.

From definition (8), a simple computation shows the equality

$$
\operatorname{Re}\left[z \frac{\partial L / \partial z}{\partial L / \partial t}\right]=\beta+\gamma-1+t \operatorname{Re}\left[1+\frac{z \Phi^{\prime \prime}(z)}{\Phi^{\prime}(z)}\right]
$$

Using the above relation together with the assumption $\beta+\gamma-1>0$, and according to Lemma 2 , in order to prove that $L(z ; t)$ is a subordination chain we need to prove that the next inequality holds:

$$
\begin{equation*}
\operatorname{Re}\left[1+\frac{z \Phi^{\prime \prime}(z)}{\Phi^{\prime}(z)}\right]>0, z \in \mathrm{U} \tag{9}
\end{equation*}
$$

If we let $q(z)=1+\frac{z \Phi^{\prime \prime}(z)}{\Phi^{\prime}(z)}$, by differentiating (7) we have

$$
\varphi^{\prime}(z)=\left(1-\frac{1}{\beta+\gamma}\right) \Phi^{\prime}(z)+\frac{1}{\beta+\gamma}\left[\Phi^{\prime}(z)+z \Phi^{\prime \prime}(z)\right]
$$

and by computing the logarithmical derivative of the above equality we deduce that

$$
\begin{equation*}
q(z)+\frac{z q^{\prime}(z)}{q(z)+\beta+\gamma-1}=1+\frac{z \varphi^{\prime \prime}(z)}{\varphi^{\prime}(z)} \equiv H(z) \tag{10}
\end{equation*}
$$

From (4) we have

$$
\operatorname{Re}[H(z)+\beta+\gamma-1]>\frac{\beta+\gamma-1}{2}>0, z \in \mathrm{U}
$$

and by using Lemma 4 we conclude that differential equation (10) has a solution $q \in H(\mathrm{U})$, with $q(0)=H(0)=1$.

Next, using Lemma 3 we will prove that under our assumption inequality (9) holds. If in Lemma 3 we replace the parameters $\underset{\sim}{\beta}$ and γ by $\widetilde{\beta}=1$ and $\widetilde{\gamma}=\beta+\gamma-1$ respectively, then the conditions $\widetilde{\beta}=1>0$ and $\widetilde{\beta}+\widetilde{\gamma}=\beta+\gamma>0$ are satisfied.

The assumption $\beta+\gamma>1$ implies $\alpha_{0}=\max \left\{\frac{\widetilde{\beta}-\widetilde{\gamma}-1}{2 \widetilde{\beta}} ;-\frac{\widetilde{\gamma}}{\widetilde{\beta}}\right\}=\frac{1-(\beta+\gamma)}{2}$. Using Lemma 3 for the case $\alpha=\alpha_{0}=\frac{1-(\beta+\gamma)}{2}$, we obtain that the solution q of differential equation (10) satisfies

$$
\begin{aligned}
\operatorname{Re} q(z) & >\frac{\beta+\gamma}{{ }_{2} F_{2}(1, \beta+\gamma+1, \beta+\gamma+1 ; 1 / 2)}+1-(\beta+\gamma)= \\
& =\frac{\beta+\gamma}{2}+1-(\beta+\gamma)=1-\frac{\beta+\gamma}{2} \geq 0, z \in \mathrm{U}
\end{aligned}
$$

whenever $\beta+\gamma \leq 2$. It follows that inequality (9) is satisfied, and according to Lemma 2 the function $L(z ; t)$ is a subordination chain.

Using (9) and the fact that $\Phi \in A$, we have that Φ is convex (univalent) in U , i.e. the differential equation $\chi\left(\Phi(z), z \Phi^{\prime}(z)\right)=\varphi(z)$ has the univalent solution Φ.

From Lemma 5, we conclude that $\varphi(z) \prec \psi(z)$ implies $\Phi(z) \prec \Psi(z)$, and furthermore, since Φ is a univalent solution of the differential equation $\chi\left(\Phi(z), z \Phi^{\prime}(z)\right)$ $=\varphi(z)$, hence it is the best subordinant of the given differential superordination.

Theorem 2. Let $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ with $\beta \neq 0,0<\beta+\gamma \leq 2, \alpha+\delta=\beta+\gamma$. Let $f, g \in \mathcal{K}_{\alpha, \delta}^{h}$, and for $\alpha \neq 1$ suppose in addition that $f(z) / z \neq 0, g(z) / z \neq 0$ for $z \in \mathrm{U}$. If

$$
\begin{equation*}
\operatorname{Re}\left[1+\frac{z \varphi^{\prime \prime}(z)}{\varphi^{\prime}(z)}\right]>\alpha_{0}=\max \left\{\frac{1-(\beta+\gamma)}{2} ; 1-(\beta+\gamma)\right\}, z \in \mathrm{U} \tag{11}
\end{equation*}
$$

where $\varphi(z)=z h(z)\left[\frac{g(z)}{z}\right]^{\alpha}$, then $z h(z)\left[\frac{f(z)}{z}\right]^{\alpha} \prec z h(z)\left[\frac{g(z)}{z}\right]^{\alpha}$ implies

$$
z\left[\frac{A_{\alpha, \beta, \gamma, \delta}^{h}[f](z)}{z}\right]^{\beta} \prec z\left[\frac{A_{\alpha, \beta, \gamma, \delta}^{h}[g](z)}{z}\right]^{\beta}
$$

and the function $z\left[\frac{A_{\alpha, \beta, \gamma, \delta}^{h}[g](z)}{z}\right]^{\beta}$ is the best dominant of the given subordination.
Proof. Like in the proof of Theorem 1, if we denote $F=A_{\alpha, \beta, \gamma, \delta}^{h}[f], G=A_{\alpha, \beta, \gamma, \delta}^{h}[g]$, $\psi(z)=z h(z)[f(z) / z]^{\alpha}, \varphi(z)=z h(z)[g(z) / z]^{\alpha}, \Psi(z)=z[F(z) / z]^{\beta}$ and $\Phi(z)$ $=z[G(z) / z]^{\beta}$, then we need to prove that $\psi(z) \prec \varphi(z)$ implies $\Psi(z) \prec \Phi(z)$.

Since $f, g \in \mathcal{K}_{\alpha, \delta}^{h}$, it follows that $\psi, \varphi \in A$ and by Lemma 1 we have $F(z) / z \neq 0$ and $G(z) / z \neq 0, z \in \mathrm{U}$, hence $\Psi, \Phi \in H(\mathrm{U})$ and moreover $\Psi, \Phi \in A$.

Differentiating the relations $G(z)=A_{\alpha, \beta, \gamma, \delta}^{h}[g](z)$ and $\Phi(z)=z\left[\frac{G(z)}{z}\right]^{\beta}$, we obtain respectively

$$
\begin{align*}
z^{\gamma}\left[\frac{G(z)}{z}\right]^{\beta}\left[\beta \frac{z G^{\prime}(z)}{G(z)}+\gamma\right] & =(\beta+\gamma) g^{\alpha}(z) h(z) z^{\delta-\beta} \tag{12}\\
\beta \frac{z G^{\prime}(z)}{G(z)}+\gamma & =\beta+\gamma-1+\frac{z \Phi^{\prime}(z)}{\Phi(z)} \tag{13}
\end{align*}
$$

and replacing in (13) in (12), together with the assumption $\alpha+\delta=\beta+\gamma$, we deduce that

$$
\begin{equation*}
\varphi(z)=\left(1-\frac{1}{\beta+\gamma}\right) \Phi(z)+\frac{1}{\beta+\gamma} z \Phi^{\prime}(z) \tag{14}
\end{equation*}
$$

If we let

$$
\begin{equation*}
L(z ; t)=\left(1-\frac{1}{\beta+\gamma}\right) \Phi(z)+\frac{1+t}{\beta+\gamma} z \Phi^{\prime}(z) \tag{15}
\end{equation*}
$$

then $L(z ; 0)=\varphi(z)$. Denoting $L(z ; t)=a_{1}(t) z+\ldots$, then

$$
a_{1}(t)=\frac{\partial L(0 ; t)}{\partial z}=\left(1+\frac{t}{\beta+\gamma}\right) \Phi^{\prime}(0)=1+\frac{t}{\beta+\gamma}
$$

hence $\lim _{t \rightarrow+\infty}\left|a_{1}(t)\right|=+\infty$, and because $\beta+\gamma>0$ we obtain $a_{1}(t) \neq 0, \forall t \geq 0$.
From (15) we may easily deduce the equality

$$
\operatorname{Re}\left[z \frac{\partial L / \partial z}{\partial L / \partial t}\right]=\operatorname{Re}\left[\beta+\gamma+\frac{z \Phi^{\prime \prime}(z)}{\Phi^{\prime}(z)}\right]+t \operatorname{Re}\left[1+\frac{z \Phi^{\prime \prime}(z)}{\Phi^{\prime}(z)}\right]
$$

Using the above relation and according to Lemma 2, in order to prove that $L(z ; t)$ is a subordination chain we need to show that the next two inequalities hold:

$$
\begin{equation*}
\operatorname{Re}\left[1+\frac{z \Phi^{\prime \prime}(z)}{\Phi^{\prime}(z)}\right]>0, z \in \mathrm{U} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left[\beta+\gamma+\frac{z \Phi^{\prime \prime}(z)}{\Phi^{\prime}(z)}\right]>0, z \in \mathrm{U} \tag{17}
\end{equation*}
$$

If we let $q(z)=1+\frac{z \Phi^{\prime \prime}(z)}{\Phi^{\prime}(z)}$, by differentiating (14) we have

$$
\varphi^{\prime}(z)=\left(1-\frac{1}{\beta+\gamma}\right) \Phi^{\prime}(z)+\frac{1}{\beta+\gamma}\left[\Phi^{\prime}(z)+z \Phi^{\prime \prime}(z)\right]
$$

and from the logarithmical derivative of the above equality we deduce

$$
\begin{equation*}
q(z)+\frac{z q^{\prime}(z)}{q(z)+\beta+\gamma-1}=1+\frac{z \varphi^{\prime \prime}(z)}{\varphi^{\prime}(z)} \equiv H(z) \tag{18}
\end{equation*}
$$

From (11) we have

$$
\operatorname{Re}[H(z)+\beta+\gamma-1]>\alpha_{0}+\beta+\gamma-1 \geq 0, z \in \mathrm{U}
$$

and by using Lemma 4 we conclude that differential equation (18) has a solution $q \in H(\mathrm{U})$, with $q(0)=H(0)=1$.

Now we will use Lemma 3 to prove that under our assumption the inequalities (16) and (17) hold. If we replace parameters β by $\widetilde{\beta}=1$ and γ by $\widetilde{\gamma}=\beta+\gamma-1$ in Lemma 3 , the conditions $\widetilde{\beta}=1>0$ and $\widetilde{\beta}+\widetilde{\gamma}=\beta+\gamma>0$ are satisfied.

Because

$$
\alpha_{0}=\max \left\{\frac{1-(\beta+\gamma)}{2} ; 1-(\beta+\gamma)\right\}=\left\{\begin{array}{l}
1-(\beta+\gamma), \text { if } \beta+\gamma \leq 1 \\
\frac{1-(\beta+\gamma)}{2}, \text { if } \beta+\gamma \geq 1
\end{array}\right.
$$

we need to discuss the following two cases.
In the first case, if $\beta+\gamma \leq 1$, by using Lemma 3 for $\alpha=\alpha_{0}=1-(\beta+\gamma)$ we obtain that the solution q of differential equation (18) satisfies

$$
\begin{aligned}
\operatorname{Re} q(z) & >\frac{\beta+\gamma}{{ }_{2} F_{1}(1,2(\beta+\gamma), \beta+\gamma+1 ; 1 / 2)}+1-(\beta+\gamma) \\
& =\frac{1}{\sqrt{\pi}} \frac{\Gamma(\beta+\gamma+1 / 2)}{\Gamma(\beta+\gamma)}+1-(\beta+\gamma)>0, z \in \mathrm{U}
\end{aligned}
$$

hence (16) holds. From this inequality we also deduce that

$$
\operatorname{Re}\left[\beta+\gamma+\frac{z \Phi^{\prime \prime}(z)}{\Phi^{\prime}(z)}\right]=\operatorname{Re} q(z)+\beta+\gamma-1>\frac{1}{\sqrt{\pi}} \frac{\Gamma(\beta+\gamma+1 / 2)}{\Gamma(\beta+\gamma)}>0, z \in \mathrm{U}
$$

hence (17) holds.
In the second case, if $\beta+\gamma \geq 1$, by using Lemma 3 for $\alpha=\alpha_{0}=\frac{1-(\beta+\gamma)}{2}$ we obtain that the solution q of differential equation (18) satisfies

$$
\begin{aligned}
\operatorname{Re} q(z) & >\frac{\beta+\gamma}{{ }_{2} F_{2}(1, \beta+\gamma+1, \beta+\gamma+1 ; 1 / 2)}+1-(\beta+\gamma) \\
& =\frac{\beta+\gamma}{2}+1-(\beta+\gamma)=1-\frac{\beta+\gamma}{2} \geq 0, z \in \mathrm{U}
\end{aligned}
$$

if $\beta+\gamma \leq 2$, hence (16) holds. From this inequality we also deduce that

$$
\operatorname{Re}\left[\beta+\gamma+\frac{z \Phi^{\prime \prime}(z)}{\Phi^{\prime}(z)}\right]=\operatorname{Re} q(z)+\beta+\gamma-1>\frac{\beta+\gamma}{2} \geq \frac{1}{2}>0, z \in \mathrm{U}
$$

hence (17) holds.
Hence we conclude that, if $0<\beta+\gamma \leq 2$, inequalities (16) and (17) are satisfied, then according to Lemma 2 the function $L(z ; t)$ is a subordination chain. Moreover, inequality (16) and the fact that $\Phi \in A$ show that Φ is convex (univalent) in U .

Next we will show that $\Psi(z) \prec \Phi(z)$. Without loss of generality, we can assume that φ and Φ are analytic and univalent in $\overline{\mathrm{U}}$ and $\Phi^{\prime}(\zeta) \neq 0$ for $|\zeta|=1$. If not, then we could replace φ with $\varphi_{\rho}(z)=\varphi(\rho z)$ and Φ with $\Phi_{\rho}(z)=\Phi(\rho z)$, where $\rho \in(0,1)$. These new functions will have the desired properties and we would prove our result using part (iii) of Lemma 6.

With our assumption, we will use part (i) of Lemma 6. If we denote by $\chi(\Phi(z)$, $\left.z \Phi^{\prime}(z)\right)=\varphi(z)$, we need to show that $\chi \in \Psi[\varphi, \Phi]$, i.e. χ is an admissible function. Because

$$
\chi\left(\Phi(\zeta), m \zeta \Phi^{\prime}(\zeta)\right)=\left(1-\frac{1}{\beta+\gamma}\right) \Phi(\zeta)+\frac{1+t}{\beta+\gamma} \zeta \Phi^{\prime}(\zeta)=L(\zeta ; t)
$$

where $m=1+t, t \geq 0$, since $L(z ; t)$ is a subordination chain and $\varphi(z)=L(z ; 0)$, it follows that

$$
\chi\left(\Phi(\zeta), m \zeta \Phi^{\prime}(\zeta)\right) \notin \varphi(\mathrm{U})
$$

Then, according to Remark 1, we have $\chi \in \Psi[\varphi, \Phi]$, and using Lemma 6 we obtain that $\Psi(z) \prec \Phi(z)$ and, moreover, Φ is the best dominant.

If we combine this result together with Theorem 1, then we obtain the following differential sandwich-type theorem.
Theorem 3. Let $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ with $\beta \neq 0,1<\beta+\gamma \leq 2$, $\alpha+\delta=\beta+\gamma$. Let $g_{1}, g_{2} \in \mathcal{K}_{\alpha, \delta}^{h}$, and for $\alpha \neq 1$ suppose in addition that $g_{k}(z) / z \neq 0$ for $z \in \mathrm{U}$ and $k=1,2$. Suppose that the next two conditions are satisfied

$$
\begin{equation*}
\operatorname{Re}\left[1+\frac{z \varphi_{k}^{\prime \prime}(z)}{\varphi_{k}^{\prime}(z)}\right]>\frac{1-(\beta+\gamma)}{2}, z \in \mathrm{U}, \text { for } k=1,2 \tag{19}
\end{equation*}
$$

where $\varphi_{k}(z)=z h(z)\left[\frac{g_{k}(z)}{z}\right]^{\alpha}$ and $k=1,2$.

Let $f \in \mathcal{K}_{\alpha, \delta}^{h}$ such that $z h(z)\left[\frac{f(z)}{z}\right]^{\alpha}$ is univalent in U and $z\left[\frac{A_{\alpha, \beta, \gamma, \delta}^{h}[f](z)}{z}\right]^{\beta} \in Q$.
Then
Then

$$
z h(z)\left[\frac{g_{1}(z)}{z}\right]^{\alpha} \prec z h(z)\left[\frac{f(z)}{z}\right]^{\alpha} \prec z h(z)\left[\frac{g_{2}(z)}{z}\right]^{\alpha}
$$

implies

$$
z\left[\frac{A_{\alpha, \beta, \gamma, \delta}^{h}\left[g_{1}\right](z)}{z}\right]^{\beta} \prec z\left[\frac{A_{\alpha, \beta, \gamma, \delta}^{h}[f](z)}{z}\right]^{\beta} \prec z\left[\frac{A_{\alpha, \beta, \gamma, \delta}^{h}\left[g_{2}\right](z)}{z}\right]^{\beta}
$$

Moreover, the functions $z\left[\frac{A_{\alpha, \beta, \gamma, \delta}^{h}\left[g_{1}\right](z)}{z}\right]^{\beta}$ and $z\left[\frac{A_{\alpha, \beta, \gamma, \delta}^{h}\left[g_{2}\right](z)}{z}\right]^{\beta}$ are the best subordinant and the best dominant, respectively.

Remark 2. Note that this theorem generalizes the previous one [3, Theorem 3.2], that may be obtained for the case $\alpha=\beta$ and $h \equiv 1$.

For the case $\alpha=\beta=1$ and $h \equiv 1$, the result was obtained in [10, Corollary 6.1], where the authors assumed that $\operatorname{Re} \gamma \geq 0$ and g_{1}, g_{2} are convex functions.

Since the conditions that the functions $z h(z)\left[\frac{f(z)}{z}\right]^{\alpha}$ and $z\left[\frac{A_{\alpha, \beta, \gamma, \delta}^{h}[f](z)}{z}\right]^{\beta}$ need to be univalent in U are difficult to be checked, we will replace these assumptions by other simple sufficient conditions on f, g_{1} and g_{2} which implies the univalence of the above functions.

Corollary 1. Let $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ with $\beta \neq 0,1<\beta+\gamma \leq 2, \alpha+\delta=\beta+\gamma$. Let $f, g_{1}, g_{2} \in \mathcal{K}_{\alpha, \delta}^{h}$, and for $\alpha \neq 1$ suppose in addition that $f(z) / z \neq 0, g_{k}(z) / z \neq 0$ for $z \in \mathrm{U}$ and $k=1,2$. Suppose that the next three conditions are satisfied

$$
\begin{equation*}
\operatorname{Re}\left[1+\frac{z \varphi_{k}^{\prime \prime}(z)}{\varphi_{k}^{\prime}(z)}\right]>\frac{1-(\beta+\gamma)}{2}, z \in \mathrm{U}, \text { for } k=1,2,3 \tag{20}
\end{equation*}
$$

where $\varphi_{k}(z)=z h(z)\left[\frac{g_{k}(z)}{z}\right]^{\alpha}, k=1,2$ and $\varphi_{3}(z)=z h(z)\left[\frac{f(z)}{z}\right]^{\alpha}$.
Then

$$
z h(z)\left[\frac{g_{1}(z)}{z}\right]^{\alpha} \prec z h(z)\left[\frac{f(z)}{z}\right]^{\alpha} \prec z h(z)\left[\frac{g_{2}(z)}{z}\right]^{\alpha}
$$

implies

$$
z\left[\frac{A_{\alpha, \beta, \gamma, \delta}^{h}\left[g_{1}\right](z)}{z}\right]^{\beta} \prec z\left[\frac{A_{\alpha, \beta, \gamma, \delta}^{h}[f](z)}{z}\right]^{\beta} \prec z\left[\frac{A_{\alpha, \beta, \gamma, \delta}^{h}\left[g_{2}\right](z)}{z}\right]^{\beta}
$$

Moreover, the functions $z\left[\frac{A_{\alpha, \beta, \gamma, \delta}^{h}\left[g_{1}\right](z)}{z}\right]^{\beta}$ and $z\left[\frac{A_{\alpha, \beta, \gamma, \delta}^{h}\left[g_{2}\right](z)}{z}\right]^{\beta}$ are the best subordinant and the best dominant, respectively.

Proof. In order to use straight Theorem 3, we need to show that inequality (20) for $k=3$ implies the univalence of the functions

$$
\varphi_{3}(z)=z h(z)\left[\frac{f(z)}{z}\right]^{\alpha} \text { and } \Phi(z)=z\left[\frac{A_{\alpha, \beta, \gamma, \delta}^{\phi, \varphi}[f](z)}{z}\right]^{\beta}
$$

The condition (20) for $k=3$ means that

$$
\varphi_{3} \in K\left(\frac{1-(\beta+\gamma)}{2}\right) \subseteq K\left(-\frac{1}{2}\right)
$$

and from [4] it follows that φ_{3} is a close-to-convex function, hence it is univalent. If we denote by $F=A_{\alpha, \beta, \gamma, \delta}^{h}[f]$ and $\psi(z)=z h(z)[f(z) / z]^{\alpha}$, then $\Psi(z)=z[F(z) / z]^{\beta}$, and using a proof similar to that of Theorem 1 and Theorem 2 we conclude that Ψ is a convex function, hence it is univalent in U .

Acknowledgment

The first author is under postdoctoral programme at UKM and the second is fully supported by university research grant.

References

[1] T. Bulboacă, Integral operators that preserve the subordination, Bull. Korean Math. Soc. 34(1997), 627-636.
[2] T. Bulboacă, On a class of integral operators that preserve the subordination, Pure Math. Appl. 13(2002), 87-96.
[3] T. Bulboacă, A class of superordinations-preserving integral operators, Indag. Math. N. S. 13(2002), 301-311.
[4] W. Kaplan, Close to convex schlicht functions, Michig. Math. J. 1(1952), 169-185.
[5] S. S. Miller, P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. 28(1981), 157-171.
[6] S. S. Miller, P. T. Mocanu, Univalent solutions of Briot-Bouquet differential equations, J. Differential Equations 56(1985), 297-309.
[7] S. S. Miller, P. T. Mocanu, Integral operators on certain classes of analytic functions, in: Univalent functions, fractional calculus and their applications, (H. M. Srivastava and S. Owa, Eds.), Halstead Press, 1989, 153-166.
[8] S. S. Miller, P. T. Mocanu, Classes of univalent integral operators, J. Math. Anal. Appl. 157(1991), 147-165.
[9] S. S. Miller, P. T. Mocanu, Differential Subordinations. Theory and Applications, Marcel Dekker, New York, 1999.
[10] S. S. Miller, P. T. Mocanu, Subordinants of differential superordinations, Complex Variables 48(2003), 815-826.
[11] P. T. Mocanu, D. Ripeanu, I. Şerb, The order of starlikeness of certain integral operators, Mathematica (Cluj) 23(1981), 225-230.
[12] Ch. Pommerenke, Univalent Functions, Vanderhoeck and Ruprecht, Göttingen, 1975.

