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1 Faculty of Organization and Informatics, University of Zagreb, Pavlinska 2, HR-42 000
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Abstract. In this paper geodesics and geodesic spheres in ˜SL(2,R) geometry are consid-
ered. Exact solutions of ODE system that describes geodesics are obtained and discussed,

geodesic spheres are determined and visualization of ˜SL(2,R) geometry is given as well.
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1. Introduction

˜SL(2,R) geometry is one of the eight homogeneous Thurston 3-geometries

E3, S3,H3, S2 × R,H2 × R, ˜SL(2,R), Nil, Sol.

˜SL(2,R) is a universal covering group of SL(2,R) that is a 3-dimensional Lie group

of all 2 × 2 real matrices with determinant one. ˜SL(2,R) is also a Lie group and
it admits a Riemann metric invariant under right multiplication. The geometry of
˜SL(2,R) arises naturally as geometry of a fibre line bundle over a hyperbolic base

plane H2. This is similar to Nil geometry in a sense that Nil is a nontrivial fibre
line bundle over the Euclidean plane and ˜SL(2,R) is a twisted bundle over H2.

In ˜SL(2,R), we can define the infinitesimal arc length square using the method
of Lie algebras. However, by means of a projective spherical model of homogeneous
Riemann 3-manifolds proposed by E. Molnar, the definition can be formulated in a
more straightforward way. The advantage of this approach lies in the fact that we
get a unified, geometrical model of these sorts of spaces.

Our aim is to calculate explicitly the geodesic curves in ˜SL(2,R) and discuss
their properties. The calculation is based upon the metric tensor, calculated by E.
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Molnar using his projective model (see [3]). It is not easy to calculate the geodesics
because in the process of solving the problem we face a nonlinear system of ordinary
differential equations of the second order with certain limits at the origin. We will
also explain and determine the geodesic spheres of ˜SL(2,R) geometry.

The paper is organized as follows. In Section 2 we give a description of the
hyperboloid model of ˜SL(2,R) geometry. Further, in Section 3, the geodesics of
˜SL(2,R) space are explicitly calculated and discussed. Finally, in Section 4 the

geodesic half-spheres in SL(2,R) are given and illustrated for radii R < π
2 small

enough.

2. Hyperboloid model of ˜SL(2,R) geometry

In this section we describe in detail the hyperboloid model of ˜SL(2,R) geometry,
introduced by E. Molnar in [3].

The idea is to start with the collineation group which acts on projective 3-space
P3(R) and preserves a polarity i.e. a scalar product of signature (−−++). Let us
imagine the one-sheeted hyperboloid solid

H : −x0x0 − x1x1 + x2x2 + x3x3 < 0

in the usual Euclidean coordinate simplex with the origin E0 = (1; 0; 0; 0) and the
ideal points of the axes E∞

1 (0; 1; 0; 0), E∞
2 (0; 0; 1; 0), E∞

3 (0; 0; 0; 1). With an appro-
priate choice of a subgroup of the collineation group of H as an isometry group, the
universal covering space H̃ of our hyperboloid H will give us the so-called hyper-
boloid model of ˜SL(2,R) geometry.

We start with the one parameter group of matrices



cos ϕ sin ϕ 0 0
− sin ϕ cos ϕ 0 0

0 0 cos ϕ − sin ϕ
0 0 sin ϕ cos ϕ


 , (1)

which acts on P3(R) and leaves the polarity of signature (−−++) and the hyper-
boloid solid H invariant. By a right action of this group on the point (x0; x1;x2; x3)
we obtain its orbit

(x0 cos ϕ− x1 sin ϕ; x0 sin ϕ + x1 cos ϕ; x2 cos ϕ + x3 sin ϕ;−x2 sin ϕ + x3 cosϕ), (2)

which is the unique line (fibre) through the given point. We have pairwise skew
fibre lines. Fibre (2) intersects base plane E0E2E3 (z1 = 0) at the point

Z = (x0x0 + x1x1; 0; x0x2 − x1x3; x0x3 + x1x2). (3)

This action is called a fibre translation and ϕ is called a fibre coordinate (see Fig-
ure 1).
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By usual inhomogeneous E3 coordinates x = x1

x0 , y = x2

x0 , z = x3

x0 , x0 6= 0 fibre
(2) is given by

(1, x, y, z) 7→
(

1,
x + tan ϕ

1− x · tan ϕ
,
y + z · tanϕ

1− x · tanϕ
,
z − y · tan ϕ

1− x · tan ϕ

)
,

where ϕ 6= π
2 + kπ. Particularly, the fibre through the base plane point (0, y, z) is

given by (tan ϕ, y + z · tan ϕ, z − y · tan ϕ) and through the origin by (tanϕ, 0, 0).

E
²

∞

E
1

∞

E
0

E
3

∞

Z

X(x, x, x, x )
0 1 2 3

θ

Figure 1. Hyperboloid model of ˜SL(2,R)

The subgroup of collineations that acts transitively on the points of H̃ and maps
the origin E0(1; 0; 0; 0) onto X(x0; x1; x2; x3) is represented by the matrix

T : (tji ) :=




x0 x1 x2 x3

−x1 x0 x3 −x2

x2 x3 x0 x1

x3 −x2 −x1 x0


 , (4)

whose inverse up to a positive determinant factor Q is

T−1 : (tji )
−1 =

1
Q
·




x0 −x1 −x2 −x3

x1 x0 −x3 x2

−x2 −x3 x0 −x1

−x3 x2 x1 x0


 . (5)

Remark 1. A bijection between H and SL(2,R), which maps point (x0; x1;x2; x3)

to matrix
(

d b
c a

)
is provided by the following coordinate transformations

a = x0 + x3, b = x1 + x2, c = −x1 + x2, d = x0 − x3.
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This will be an isomorphism between translations (4) and
(

d b
c a

)
with the usual

multiplication operations, respectively. Moreover, the request bc − ad < 0, by using
the mentioned coordinate transformations, corresponds to our hyperboloid solid

−x0x0 − x1x1 + x2x2 + x3x3 < 0.

Similarly to fibre (2) that we obtained by acting of group (1) on the point (x0;x1; x2; x3)

in H̃, a fibre in ˜SL(2,R) is obtained by acting of group
(

cosϕ sin ϕ
− sin ϕ cos ϕ

)
, on the

”point”
(

d b
c a

)
∈ SL(2,R) (see [3] also for other respects).

Let us introduce new coordinates

x0 = cosh r cosϕ

x1 = cosh r sin ϕ (6)
x2 = sinh r cos(ϑ− ϕ)
x3 = sinh r sin(ϑ− ϕ))

as hyperboloid coordinates for H̃, where (r, ϑ) are polar coordinates of the hyperbolic
base plane and ϕ is just the fibre coordinate (by (2) and (3)). Notice that

−x0x0 − x1x1 + x2x2 + x3x3 = − cosh2 r + sinh2 r = −1 < 0.

Now, we can assign an invariant infinitesimal arc length square by the standard
method called pull back into the origin. Under action of (5) on the differentials
(dx0; dx1; dx2; dx3), by using (6) we obtain the following result

(ds)2 = (dr)2 + cosh2 r sinh2 r(dϑ)2 +
(
(dϕ) + sinh2 r(dϑ)

)2
. (7)

Therefore, the symmetric metric tensor field g is given by

gij =




1 0 0
0 sinh2 r(cosh2 r + sinh2 r) sinh2 r

0 sinh2 r 1


 . (8)

Remark 2. Note that inhomogeneous coordinates corresponding to (6), that are
important for a later visualization of geodesics and geodesic spheres in E3, are given
by

x =
x1

x0
= tanϕ,

y =
x2

x0
= tanh r · cos(ϑ− ϕ)

cos ϕ
, (9)

z =
x3

x0
= tanh r · sin(ϑ− ϕ)

cosϕ
.
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3. Geodesics in ˜SL(2,R)

The local existence, uniqueness and smoothness of a geodesics through any point
p ∈ M with initial velocity vector v ∈ TpM follow from the classical ODE theory on
a smooth Riemann manifold. Given any two points in a complete Riemann manifold,
standard limiting arguments show that there is a smooth curve of minimal length
between these points. Any such curve is a geodesic.

Geodesics in Sol and Nil geometry are considered in [2], [5] and [6].

In local coordinates (u1, u2, u3) around an arbitrary point p ∈ ˜SL(2,R) one has
a natural local basis {∂1, ∂2, ∂3}, where ∂i = ∂

∂ui . The Levi-Civita connection ∇ is
defined by ∇∂i

∂j := Γk
ij∂k, and the Cristoffel symbols Γk

ij are given by

Γk
ij =

1
2
gkm

(
∂igmj + ∂jgim − ∂mgij

)
, (10)

where the Einstein-Schouten index convention is used and (gij) denotes the inverse
matrix of (gij).

Let us write u1 = r, u2 = ϑ, u3 = ϕ. Now by formula (10) we obtain Cristoffel
symbols Γk

ij , as follows

Γ1
ij =




0 0 0
0 1

2 (1− 2 cosh 2r) sinh 2r − cosh r sinh r
0 − cosh r sinh r 0


 ,

Γ2
ij =




0 coth r + 2 tanh r 1
cosh r sinh r

coth r + 2 tanh r 0 0
1

cosh r sinh r 0 0


 , (11)

Γ3
ij =




0 −2 sinh2 r tanh r − tanh r

−2 sinh2 r tanh r 0 0
− tanh r 0 0


 .

Further, geodesics are given by the well-known system of differential equations

ük + u̇iu̇jΓk
ij = 0. (12)

After having substituted coefficients of Levi-Civita connection given by (11) into
equation (12) and by assuming first r > 0, we obtain the following nonlinear system
of the second order ordinary differential equations

r̈ = sinh(2r) ϑ̇ ϕ̇ +
1
2
(
sinh(4r)− sinh(2r)

)
ϑ̇ϑ̇, (13)

ϑ̈ = − 2ṙ

sinh(2r)
[
(3 cosh(2r)− 1)ϑ̇ + 2ϕ̇

]
, (14)

ϕ̈ = 2ṙ tanh r
(
2 sinh2 r ϑ̇ + ϕ̇

)
. (15)

By homogeneity of ˜SL(2,R), we can extend the solution to limit r → 0, due to the
given assumption, as follows later on.
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From (14) we get

ϕ̇ = − ϑ̈ sinh(2r)
4ṙ

− 1
2
(
3 cosh(2r)− 1

)
ϑ̇, (16)

and after inserting (16) into (13) we have

2r̈

sinh(2r)
= − ϑ̇ϑ̈ sinh(2r)

2ṙ
− cosh(2r)ϑ̇ϑ̇. (17)

Multiplying (17) by 2 sinh(2r)ṙ we get a differential

1
2

d

dt

(
4ṙṙ + sinh2(2r)ϑ̇ϑ̇

)
= 0 (18)

and hence
4(ṙ)2 + sinh2(2r)(ϑ̇)2 = 4C2, (19)

where C is the constant of integration, depending on initial conditions to be discussed
later on.

Therefore we obtain

ϑ̇ = ±2
√

C2 − (ṙ)2

sinh(2r)
. (20)

As a consequence of (13) and (14), the sign will be (−) due to the geometric
interpretation of a fibre translation, but we will discuss this later.

From derivative of (20) we get

ϑ̈ = − 2ṙr̈

sinh(2r)
(
±

√
C2 − (ṙ)2

) ∓ 2
√

C2 − (ṙ)2
2ṙ cosh(2r)
sinh2(2r)

. (21)

Further, by inserting (20) and (21), equation (16) has the following form

ϕ̇ =
r̈

2
(
±

√
C2 − (ṙ)2

) − (2 cosh(2r)− 1)
±

√
C2 − (ṙ)2

sinh(2r)
. (22)

Now we put (20) and (22) in (15) and get

ϕ̈− tanh(r)
ṙr̈(

±
√

C2 − (ṙ)2
) +

±
√

C2 − (ṙ)2

cosh2(r)
ṙ = 0. (23)

From this equation it follows

ϕ̇ + tanh(r)
(
±

√
C2 − (ṙ)2

)
= D, (24)

where D is a new constant of integration.
By equalizing ϕ̇ from (22) and (24) we have

r̈

2
(
±

√
C2 − (ṙ)2

) − (2 cosh(2r)− 1)
±

√
C2 − (ṙ)2

sinh(2r)
= D − tanh(r)

(
±

√
C2 − (ṙ)2

)
.
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By reordering and multiplying by −2ṙ sinh(2r) we get

ṙr̈

±
√

C2 − (ṙ)2
sinh(2r) + 2ṙD sinh(2r) + 2ṙ cosh(2r)

(
±

√
C2 − (ṙ)2

)
= 0,

which is again a differential and implies

±
√

C2 − (ṙ)2 sinh(2r) + D cosh(2r) = E. (25)

In consistence with homogeneity we may consider lim
t→0

r(t) = 0. This implies D = E,

and relation (25) then obtains the following form

±
√

C2 − (ṙ)2 = −D tanh r. (26)

Now from (26), (20) and (24) we have respectively

ṙ = ±
√

C2 −D2 tanh2 r, (27)

ϑ̇ =
−D

cosh2 r
, (28)

ϕ̇ = D(1 + tanh2 r) = 2D + ϑ̇. (29)

Here we see the consistence with r → 0

ṙ(0) = C, ϑ̇(0) = −D, ϕ̇(0) = D. (30)

At the same time we can assume r(0) = 0, ϑ(0) = 0, ϕ(0) = 0, as initial conditions.
Further we consider the arc length

s =
∫ t

0

dτ

√
(ṙ)2 + cosh2(r) sinh2(r)(ϑ̇)2 + (ϕ̇ + sinh2(r)ϑ̇)2, (31)

that by (27), (28) and (29) gives

s =
∫ t

0

dτ
√

C2 + D2, (32)

normalized with C2 + D2 = 1 i.e. C = ṙ(0) = cos α, D = ϕ̇(0) = sin α and
ϑ̇(0) = −D = − sin α can be assumed.

Now, we have to consider three different cases: D = C > 0,
D > C ≥ 0 and C > D ≥ 0, with respect to the former equations as well.
(i) Case D = C > 0, or equivalently α = π

4 .

In this case we obtain Dt =
∫ r(t)

0
cosh ρ dρ = sinh r(t), and hence

r(t) = arsinh(Dt). (33)

From (28) and (29), with initial conditions ϕ(0) = 0 and ϑ(0) = 0, we obtain

ϑ(t) = − arctan(Dt), (34)
ϕ(t) = 2Dt− arctan(Dt).
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Particularly, C = D implies α = π
4 and hence D =

√
2

2 .
(ii) Case C > D ≥ 0, or equivalently tan α < 1.

From (27) we have

t =
∫ r(t)

r(0)

dρ√
C2 −D2 tanh2 ρ

=
∫ r(t)

0

cosh ρ dρ√
(C2 −D2) sinh2 ρ + C2

, (35)

and by substitution u =
√

C2 −D2 sinh ρ, after integration, we obtain

t =
1√

C2 −D2
arsinh

u

C

and hence

r(t) = arsinh
(

C√
C2 −D2

sinh(
√

C2 −D2 t)
)

(36)

According to (28), we have

ϑ̇ =
−D(C2 −D2)

C2 cosh2(
√

C2 −D2 t)−D2
=

−D(C2−D2)

cosh2(
√

C2−D2 t)

(C2 −D2) + D2 tanh2(
√

C2 −D2 t)
,

and hence by using substitution u = D tanh(
√

C2 −D2 t), after integration, we get

ϑ(t) = − arctan
(

D√
C2 −D2

tanh
(√

C2 −D2 t
))

. (37)

Finally, from (29) we have ϕ(t) = 2D t + ϑ(t) and hence

ϕ(t) = 2D t− arctan
(

D√
C2 −D2

tanh
(√

C2 −D2 t
))

. (38)
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Figure 2. Geodesics in ˜SL(2,R) - Case α = π
6 and α = π

4
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Figure 2 shows geodesics through the origin for C =
√

3
2 , D = 1

2 and C = D =
√

2
2 ,

and parameter t ∈ [−1, 1], respectively.
(iii) Case D > C ≥ 0, or equivalently tan α > 1.

Similarly to the previous case, we start with equation

t =
∫ r(τ)

r(0)

dρ√
C2 −D2 tanh2 ρ

=
∫ r(τ)

r(0)

cosh ρ dρ√
C2 − (D2 − C2) sinh2 ρ

,

and by using substitution u =
√

D2 − C2 sinh ρ, after integration, we obtain

t =
1√

D2 − C2
arcsin

u

C

and hence

r(t) = arsinh
(

C√
D2 − C2

sin(
√

D2 − C2 t)
)

. (39)

From (28) we get

ϑ̇ =
−D(D2 − C2)

D2 − C2 cos2(
√

D2 − C2 t)
=

−D(D2−C2)

cos2(
√

D2−C2 t)

(D2 − C2) + D2 tan2(
√

D2 − C2 t)
,

and hence, by using substitution u = D tan(
√

D2 − C2 t), after integration, we
obtain

ϑ(t) = − arctan
(

D√
D2 − C2

tan
(√

D2 − C2 t
))

. (40)

Similarly to the former case ϕ(t) = 2D t + ϑ(t) and hence

ϕ(t) = 2D t− arctan
(

D√
D2 − C2

tan
(√

D2 − C2 t
))

. (41)

Figure 3 shows geodesic through the origin for C = 1
2 , D =

√
3

2 and parameter
t ∈ [−1, 1].

Remark 3. One can easily observe special cases α = 0,

r(s) = s, x(s) = 0
ϑ(s) = 0, y(s) = tanh s
ϕ(s) = 0, z(s) = 0,

and α = π
2 ,

r(s) = 0, x(s) = tan s
ϑ(s) = −s, y(s) = 0
ϕ(s) = s, z(s) = 0.
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Figure 3. Geodesic in ˜SL(2,R) - Case α = π
3

Case Geodesic line (hyperboloid coordinates)

0 ≤ D = sin α < C = cos α

0 ≤ α < π
4

t = s

(H2-like direction)

rα(s) = arsinh
(

cos α√
cos 2α

sinh(
√

cos 2α s)
)

ϑα(s) =− arctan
(

sin α√
cos 2α

tanh(
√

cos 2α s)
)

ϕα(s) = 2 sin α s + ϑα(s)

D = C =
√

2
2

α = π
4

t = s

(separating light direction)

r(s) = arsinh
(√

2
2 s

)

ϑ(s) =− arctan
(√

2
2 s

)

ϕ(s) =
√

2 s + ϑ(s)

0 ≤ C = cos α < D = sin α

π
4 < α ≤ π

2

t = s

(fibre-like direction)

rα(s) = arsinh
(

cos α√− cos 2α
sin(

√− cos 2α s)
)

ϑα(s) =− arctan
(

sin α√− cos 2α
tan(

√− cos 2α s)
)

ϕα(s) = 2 sin α s + ϑα(s)

Table 1. Table of geodesics restricted to SL(2,R), s ∈ (−π
2 , π

2

)

4. Geodesic spheres in ˜SL(2,R) geometry

After having investigated geodesic curves, we can consider geodesic spheres. Geodesic
spheres in Sol model geometry are visualized in [1]. For Nil geodesics, problems
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with geodesic Nil spheres and balls, and for analogous translation spheres and balls,
we refer to [4], [5], [7] and [8], respectively.

In ˜SL(2,R) geometry geodesic spheres of radius R are given by following equa-
tions

X(R, φ, α) = x (s = R, α),
Y (R, φ, α) = y (s = R, α) cos φ− z (s = R, α) sin φ, (42)
Z(R, φ, α) = y (s = R, α) sin φ + z (s = R, α) cos φ,

where x, y, z are Euclidean coordinates of geodesics given in Table 1, that are trans-
formed according to formulas (9). Here φ ∈ (−π, π] denotes the longitude and
α ∈ (−π

2 , π
2

]
the altitude coordinate.

For R ≥ π
2 we consider the projective extension and the universal covering space

˜SL(2,R) = H̃ by (1) (see [3]) for the fibre coordinate ϕ ∈ R by extra conventions.
That is not visual any more!

In Figure 4 geodesic half-spheres in SL(2,R) are shown. Dark parts correspond
to geodesics determined by 0 ≤ α < π

4 , light parts correspond to geodesics deter-
mined by π

4 < α ≤ π
2 and black curves between these parts correspond to α = π

4 .
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Figure 4. Geodesic half-spheres in SL(2,R) of radius 0.5, 1 and 1.5, respectively
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