Geodesics and geodesic spheres in $\mathrm{SL}(2, \mathbb{R})$ geometry*

Blaženka Divjak ${ }^{1, \dagger}$, Zlatko Erjavec ${ }^{1}$, Barnabás Szabolcs 2 and Brigitta Szilágyi ${ }^{2}$
${ }^{1}$ Faculty of Organization and Informatics, University of Zagreb, Pavlinska 2, HR-42 000 Varaždin, Croatia
${ }^{2}$ Department of Geometry, Budapest University of Technology and Economics, H-1 521 Budapest, Hungary

Received May 20, 2009; accepted October 21, 2009

Abstract

In this paper geodesics and geodesic spheres in $S \widetilde{S(2, \mathbb{R})}$ geometry are considered. Exact solutions of ODE system that describes geodesics are obtained and discussed, geodesic spheres are determined and visualization of $S \widetilde{S(2, \mathbb{R})}$ geometry is given as well.

AMS subject classifications: 53A35, 53C30
Key words: $S \widetilde{S(2, \mathbb{R})}$ geometry, geodesics, geodesic sphere

1. Introduction

$S \widetilde{S(2, \mathbb{R})}$ geometry is one of the eight homogeneous Thurston 3-geometries

$$
E^{3}, S^{3}, H^{3}, S^{2} \times \mathbb{R}, H^{2} \times \mathbb{R}, S \widetilde{L(2, \mathbb{R})}, \text { Nil, Sol. }
$$

$S \widetilde{L(2, \mathbb{R})}$ is a universal covering group of $S L(2, \mathbb{R})$ that is a 3-dimensional Lie group of all 2×2 real matrices with determinant one. $S \widetilde{S(2, \mathbb{R})}$ is also a Lie group and it admits a Riemann metric invariant under right multiplication. The geometry of $S \widetilde{L(2, \mathbb{R})}$ arises naturally as geometry of a fibre line bundle over a hyperbolic base plane \mathbb{H}^{2}. This is similar to Nil geometry in a sense that Nil is a nontrivial fibre line bundle over the Euclidean plane and $S \widetilde{S(2, \mathbb{R})}$ is a twisted bundle over \mathbb{H}^{2}.

In $S \widetilde{L(2, \mathbb{R})}$, we can define the infinitesimal arc length square using the method of Lie algebras. However, by means of a projective spherical model of homogeneous Riemann 3-manifolds proposed by E. Molnar, the definition can be formulated in a more straightforward way. The advantage of this approach lies in the fact that we get a unified, geometrical model of these sorts of spaces.

Our aim is to calculate explicitly the geodesic curves in $S \widetilde{L(2, \mathbb{R})}$ and discuss their properties. The calculation is based upon the metric tensor, calculated by E.

[^0]Molnar using his projective model (see [3]). It is not easy to calculate the geodesics because in the process of solving the problem we face a nonlinear system of ordinary differential equations of the second order with certain limits at the origin. We will also explain and determine the geodesic spheres of $S \widetilde{L(2, \mathbb{R})}$ geometry.

The paper is organized as follows. In Section 2 we give a description of the hyperboloid model of $S \widetilde{S(2, \mathbb{R})}$ geometry. Further, in Section 3, the geodesics of $S \widetilde{S(2, \mathbb{R})}$ space are explicitly calculated and discussed. Finally, in Section 4 the geodesic half-spheres in $S L(2, \mathbb{R})$ are given and illustrated for radii $R<\frac{\pi}{2}$ small enough.

2. Hyperboloid model of $S \widetilde{S L(2, \mathbb{R})}$ geometry

In this section we describe in detail the hyperboloid model of $S \widetilde{S(2, \mathbb{R})}$ geometry, introduced by E. Molnar in [3].

The idea is to start with the collineation group which acts on projective 3 -space $\mathcal{P}^{3}(R)$ and preserves a polarity i.e. a scalar product of signature $(--++)$. Let us imagine the one-sheeted hyperboloid solid

$$
\mathcal{H}:-x^{0} x^{0}-x^{1} x^{1}+x^{2} x^{2}+x^{3} x^{3}<0
$$

in the usual Euclidean coordinate simplex with the origin $E_{0}=(1 ; 0 ; 0 ; 0)$ and the ideal points of the axes $E_{1}^{\infty}(0 ; 1 ; 0 ; 0), E_{2}^{\infty}(0 ; 0 ; 1 ; 0), E_{3}^{\infty}(0 ; 0 ; 0 ; 1)$. With an appropriate choice of a subgroup of the collineation group of \mathcal{H} as an isometry group, the universal covering space $\tilde{\mathcal{H}}$ of our hyperboloid \mathcal{H} will give us the so-called hyperboloid model of $S \widetilde{S(2, \mathbb{R})}$ geometry.

We start with the one parameter group of matrices

$$
\left(\begin{array}{cccc}
\cos \varphi & \sin \varphi & 0 & 0 \tag{1}\\
-\sin \varphi & \cos \varphi & 0 & 0 \\
0 & 0 & \cos \varphi & -\sin \varphi \\
0 & 0 & \sin \varphi & \cos \varphi
\end{array}\right)
$$

which acts on $\mathcal{P}^{3}(R)$ and leaves the polarity of signature $(--++)$ and the hyperboloid solid \mathcal{H} invariant. By a right action of this group on the point $\left(x^{0} ; x^{1} ; x^{2} ; x^{3}\right)$ we obtain its orbit

$$
\begin{equation*}
\left(x^{0} \cos \varphi-x^{1} \sin \varphi ; x^{0} \sin \varphi+x^{1} \cos \varphi ; x^{2} \cos \varphi+x^{3} \sin \varphi ;-x^{2} \sin \varphi+x^{3} \cos \varphi\right), \tag{2}
\end{equation*}
$$

which is the unique line (fibre) through the given point. We have pairwise skew fibre lines. Fibre (2) intersects base plane $E_{0} E_{2} E_{3}\left(z^{1}=0\right)$ at the point

$$
\begin{equation*}
Z=\left(x^{0} x^{0}+x^{1} x^{1} ; 0 ; x^{0} x^{2}-x^{1} x^{3} ; x^{0} x^{3}+x^{1} x^{2}\right) \tag{3}
\end{equation*}
$$

This action is called a fibre translation and φ is called a fibre coordinate (see Figure 1).

By usual inhomogeneous E^{3} coordinates $x=\frac{x^{1}}{x^{0}}, y=\frac{x^{2}}{x^{0}}, z=\frac{x^{3}}{x^{0}}, \quad x^{0} \neq 0$ fibre (2) is given by

$$
(1, x, y, z) \mapsto\left(1, \frac{x+\tan \varphi}{1-x \cdot \tan \varphi}, \frac{y+z \cdot \tan \varphi}{1-x \cdot \tan \varphi}, \frac{z-y \cdot \tan \varphi}{1-x \cdot \tan \varphi}\right)
$$

where $\varphi \neq \frac{\pi}{2}+k \pi$. Particularly, the fibre through the base plane point $(0, y, z)$ is given by $(\tan \varphi, y+z \cdot \tan \varphi, z-y \cdot \tan \varphi)$ and through the origin by $(\tan \varphi, 0,0)$.

Figure 1. Hyperboloid model of $S \widetilde{L(2, \mathbb{R})}$
The subgroup of collineations that acts transitively on the points of $\tilde{\mathcal{H}}$ and maps the origin $E_{0}(1 ; 0 ; 0 ; 0)$ onto $X\left(x^{0} ; x^{1} ; x^{2} ; x^{3}\right)$ is represented by the matrix

$$
\mathbf{T}:\left(t_{i}^{j}\right):=\left(\begin{array}{cccc}
x^{0} & x^{1} & x^{2} & x^{3} \tag{4}\\
-x^{1} & x^{0} & x^{3} & -x^{2} \\
x^{2} & x^{3} & x^{0} & x^{1} \\
x^{3} & -x^{2} & -x^{1} & x^{0}
\end{array}\right)
$$

whose inverse up to a positive determinant factor Q is

$$
\mathbf{T}^{-\mathbf{1}}:\left(t_{i}^{j}\right)^{-1}=\frac{1}{Q} \cdot\left(\begin{array}{cccc}
x^{0} & -x^{1} & -x^{2} & -x^{3} \tag{5}\\
x^{1} & x^{0} & -x^{3} & x^{2} \\
-x^{2} & -x^{3} & x^{0} & -x^{1} \\
-x^{3} & x^{2} & x^{1} & x^{0}
\end{array}\right)
$$

Remark 1. A bijection between \mathcal{H} and $S L(2, \mathbb{R})$, which maps point $\left(x^{0} ; x^{1} ; x^{2} ; x^{3}\right)$ to matrix $\left(\begin{array}{ll}d & b \\ c & a\end{array}\right)$ is provided by the following coordinate transformations

$$
a=x^{0}+x^{3}, \quad b=x^{1}+x^{2}, \quad c=-x^{1}+x^{2}, \quad d=x^{0}-x^{3} .
$$

This will be an isomorphism between translations (4) and $\left(\begin{array}{ll}d & b \\ c & a\end{array}\right)$ with the usual multiplication operations, respectively. Moreover, the request bc $-a d<0$, by using the mentioned coordinate transformations, corresponds to our hyperboloid solid

$$
-x^{0} x^{0}-x^{1} x^{1}+x^{2} x^{2}+x^{3} x^{3}<0
$$

Similarly to fibre (2) that we obtained by acting of group (1) on the point ($\left.x^{0} ; x^{1} ; x^{2} ; x^{3}\right)$ in $\tilde{\mathcal{H}}$, a fibre in $\widetilde{S(2, \mathbb{R})}$ is obtained by acting of group $\binom{\cos \varphi \sin \varphi}{-\sin \varphi \cos \varphi}$, on the "point" $\left(\begin{array}{ll}d & b \\ c & a\end{array}\right) \in S L(2, \mathbb{R})$ (see [3] also for other respects).

Let us introduce new coordinates

$$
\begin{align*}
x^{0} & =\cosh r \cos \varphi \\
x^{1} & =\cosh r \sin \varphi \tag{6}\\
x^{2} & =\sinh r \cos (\vartheta-\varphi) \\
x^{3} & =\sinh r \sin (\vartheta-\varphi))
\end{align*}
$$

as hyperboloid coordinates for $\tilde{\mathcal{H}}$, where (r, ϑ) are polar coordinates of the hyperbolic base plane and φ is just the fibre coordinate (by (2) and (3)). Notice that

$$
-x^{0} x^{0}-x^{1} x^{1}+x^{2} x^{2}+x^{3} x^{3}=-\cosh ^{2} r+\sinh ^{2} r=-1<0
$$

Now, we can assign an invariant infinitesimal arc length square by the standard method called pull back into the origin. Under action of (5) on the differentials ($d x^{0} ; d x^{1} ; d x^{2} ; d x^{3}$), by using (6) we obtain the following result

$$
\begin{equation*}
(d s)^{2}=(d r)^{2}+\cosh ^{2} r \sinh ^{2} r(d \vartheta)^{2}+\left((d \varphi)+\sinh ^{2} r(d \vartheta)\right)^{2} \tag{7}
\end{equation*}
$$

Therefore, the symmetric metric tensor field g is given by

$$
g_{i j}=\left(\begin{array}{lcc}
1 & 0 & 0 \tag{8}\\
0 \sinh ^{2} r\left(\cosh ^{2} r+\sinh ^{2} r\right) & \sinh ^{2} r \\
0 & \sinh ^{2} r & 1
\end{array}\right)
$$

Remark 2. Note that inhomogeneous coordinates corresponding to (6), that are important for a later visualization of geodesics and geodesic spheres in E^{3}, are given by

$$
\begin{align*}
& x=\frac{x^{1}}{x^{0}}=\tan \varphi \\
& y=\frac{x^{2}}{x^{0}}=\tanh r \cdot \frac{\cos (\vartheta-\varphi)}{\cos \varphi} \tag{9}\\
& z=\frac{x^{3}}{x^{0}}=\tanh r \cdot \frac{\sin (\vartheta-\varphi)}{\cos \varphi}
\end{align*}
$$

3. Geodesics in $\widehat{S L(2, \mathbb{R})}$

The local existence, uniqueness and smoothness of a geodesics through any point $p \in M$ with initial velocity vector $v \in T_{p} M$ follow from the classical ODE theory on a smooth Riemann manifold. Given any two points in a complete Riemann manifold, standard limiting arguments show that there is a smooth curve of minimal length between these points. Any such curve is a geodesic.

Geodesics in Sol and Nil geometry are considered in [2], [5] and [6].
In local coordinates $\left(u^{1}, u^{2}, u^{3}\right)$ around an arbitrary point $p \in S L(2, \mathbb{R})$ one has a natural local basis $\left\{\partial_{1}, \partial_{2}, \partial_{3}\right\}$, where $\partial_{i}=\frac{\partial}{\partial u^{i}}$. The Levi-Civita connection ∇ is defined by $\nabla_{\partial_{i}} \partial_{j}:=\Gamma_{i j}^{k} \partial_{k}$, and the Cristoffel symbols $\Gamma_{i j}^{k}$ are given by

$$
\begin{equation*}
\Gamma_{i j}^{k}=\frac{1}{2} g^{k m}\left(\partial_{i} g_{m j}+\partial_{j} g_{i m}-\partial_{m} g_{i j}\right) \tag{10}
\end{equation*}
$$

where the Einstein-Schouten index convention is used and $\left(g^{i j}\right)$ denotes the inverse matrix of $\left(g_{i j}\right)$.

Let us write $u^{1}=r, u^{2}=\vartheta, u^{3}=\varphi$. Now by formula (10) we obtain Cristoffel symbols $\Gamma_{i j}^{k}$, as follows

$$
\begin{align*}
\Gamma_{i j}^{1} & =\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \frac{1}{2}(1-2 \cosh 2 r) \sinh 2 r & -\cosh r \sinh r \\
0 & -\cosh r \sinh r & 0
\end{array}\right), \\
\Gamma_{i j}^{2} & =\left(\begin{array}{ccc}
0 & \operatorname{coth} r+2 \tanh r & \frac{1}{\cosh r \sinh r} \\
\operatorname{coth} r+2 \tanh r & 0 & 0 \\
\frac{1}{\cosh r \sinh r} & 0 & 0
\end{array}\right), \tag{11}\\
\Gamma_{i j}^{3} & =\left(\begin{array}{ccc}
-2 \sinh ^{2} r \tanh r-\tanh r \\
-2 \sinh ^{2} r \tanh r & 0 & 0 \\
-\tanh r & 0 & 0
\end{array}\right)
\end{align*}
$$

Further, geodesics are given by the well-known system of differential equations

$$
\begin{equation*}
\ddot{u}^{k}+\dot{u}^{i} \dot{u}^{j} \Gamma_{i j}^{k}=0 . \tag{12}
\end{equation*}
$$

After having substituted coefficients of Levi-Civita connection given by (11) into equation (12) and by assuming first $r>0$, we obtain the following nonlinear system of the second order ordinary differential equations

$$
\begin{align*}
& \ddot{r}=\sinh (2 r) \dot{\vartheta} \dot{\varphi}+\frac{1}{2}(\sinh (4 r)-\sinh (2 r)) \dot{\vartheta} \dot{\vartheta} \tag{13}\\
& \ddot{\vartheta}=-\frac{2 \dot{r}}{\sinh (2 r)}[(3 \cosh (2 r)-1) \dot{\vartheta}+2 \dot{\varphi}] \tag{14}\\
& \ddot{\varphi}=2 \dot{r} \tanh r\left(2 \sinh ^{2} r \dot{\vartheta}+\dot{\varphi}\right) \tag{15}
\end{align*}
$$

By homogeneity of $\widetilde{S(2, \mathbb{R})}$, we can extend the solution to limit $r \rightarrow 0$, due to the given assumption, as follows later on.

From (14) we get

$$
\begin{equation*}
\dot{\varphi}=-\frac{\ddot{\vartheta} \sinh (2 r)}{4 \dot{r}}-\frac{1}{2}(3 \cosh (2 r)-1) \dot{\vartheta}, \tag{16}
\end{equation*}
$$

and after inserting (16) into (13) we have

$$
\begin{equation*}
\frac{2 \ddot{r}}{\sinh (2 r)}=-\frac{\dot{\vartheta} \ddot{\vartheta} \sinh (2 r)}{2 \dot{r}}-\cosh (2 r) \dot{\vartheta} \dot{\vartheta} \tag{17}
\end{equation*}
$$

Multiplying (17) by $2 \sinh (2 r) \dot{r}$ we get a differential

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left(4 \dot{r} \dot{r}+\sinh ^{2}(2 r) \dot{\vartheta} \dot{\vartheta}\right)=0 \tag{18}
\end{equation*}
$$

and hence

$$
\begin{equation*}
4(\dot{r})^{2}+\sinh ^{2}(2 r)(\dot{\vartheta})^{2}=4 C^{2} \tag{19}
\end{equation*}
$$

where C is the constant of integration, depending on initial conditions to be discussed later on.

Therefore we obtain

$$
\begin{equation*}
\dot{\vartheta}= \pm \frac{2 \sqrt{C^{2}-(\dot{r})^{2}}}{\sinh (2 r)} . \tag{20}
\end{equation*}
$$

As a consequence of (13) and (14), the sign will be (-) due to the geometric interpretation of a fibre translation, but we will discuss this later.

From derivative of (20) we get

$$
\begin{equation*}
\ddot{\vartheta}=-\frac{2 \dot{r} \ddot{r}}{\sinh (2 r)\left(\pm \sqrt{C^{2}-(\dot{r})^{2}}\right)} \mp 2 \sqrt{C^{2}-(\dot{r})^{2}} \frac{2 \dot{r} \cosh (2 r)}{\sinh ^{2}(2 r)} . \tag{21}
\end{equation*}
$$

Further, by inserting (20) and (21), equation (16) has the following form

$$
\begin{equation*}
\dot{\varphi}=\frac{\ddot{r}}{2\left(\pm \sqrt{C^{2}-(\dot{r})^{2}}\right)}-(2 \cosh (2 r)-1) \frac{ \pm \sqrt{C^{2}-(\dot{r})^{2}}}{\sinh (2 r)} \tag{22}
\end{equation*}
$$

Now we put (20) and (22) in (15) and get

$$
\begin{equation*}
\ddot{\varphi}-\tanh (r) \frac{\dot{r} \ddot{r}}{\left(\pm \sqrt{C^{2}-(\dot{r})^{2}}\right)}+\frac{ \pm \sqrt{C^{2}-(\dot{r})^{2}}}{\cosh ^{2}(r)} \dot{r}=0 \tag{23}
\end{equation*}
$$

From this equation it follows

$$
\begin{equation*}
\dot{\varphi}+\tanh (r)\left(\pm \sqrt{C^{2}-(\dot{r})^{2}}\right)=D \tag{24}
\end{equation*}
$$

where D is a new constant of integration.
By equalizing $\dot{\varphi}$ from (22) and (24) we have

$$
\frac{\ddot{r}}{2\left(\pm \sqrt{C^{2}-(\dot{r})^{2}}\right)}-(2 \cosh (2 r)-1) \frac{ \pm \sqrt{C^{2}-(\dot{r})^{2}}}{\sinh (2 r)}=D-\tanh (r)\left(\pm \sqrt{C^{2}-(\dot{r})^{2}}\right)
$$

By reordering and multiplying by $-2 \dot{r} \sinh (2 r)$ we get

$$
\frac{\dot{r} \ddot{r}}{ \pm \sqrt{C^{2}-(\dot{r})^{2}}} \sinh (2 r)+2 \dot{r} D \sinh (2 r)+2 \dot{r} \cosh (2 r)\left(\pm \sqrt{C^{2}-(\dot{r})^{2}}\right)=0
$$

which is again a differential and implies

$$
\begin{equation*}
\pm \sqrt{C^{2}-(\dot{r})^{2}} \sinh (2 r)+D \cosh (2 r)=E \tag{25}
\end{equation*}
$$

In consistence with homogeneity we may consider $\lim _{t \rightarrow 0} r(t)=0$. This implies $D=E$, and relation (25) then obtains the following form

$$
\begin{equation*}
\pm \sqrt{C^{2}-(\dot{r})^{2}}=-D \tanh r \tag{26}
\end{equation*}
$$

Now from (26), (20) and (24) we have respectively

$$
\begin{align*}
\dot{r} & = \pm \sqrt{C^{2}-D^{2} \tanh ^{2} r} \tag{27}\\
\dot{\vartheta} & =\frac{-D}{\cosh ^{2} r} \tag{28}\\
\dot{\varphi} & =D\left(1+\tanh ^{2} r\right)=2 D+\dot{\vartheta} \tag{29}
\end{align*}
$$

Here we see the consistence with $r \rightarrow 0$

$$
\begin{equation*}
\dot{r}(0)=C, \quad \dot{\vartheta}(0)=-D, \quad \dot{\varphi}(0)=D \tag{30}
\end{equation*}
$$

At the same time we can assume $r(0)=0, \vartheta(0)=0, \varphi(0)=0$, as initial conditions.
Further we consider the arc length

$$
\begin{equation*}
s=\int_{0}^{t} d \tau \sqrt{(\dot{r})^{2}+\cosh ^{2}(r) \sinh ^{2}(r)(\dot{\vartheta})^{2}+\left(\dot{\varphi}+\sinh ^{2}(r) \dot{\vartheta}\right)^{2}} \tag{31}
\end{equation*}
$$

that by $(27),(28)$ and (29) gives

$$
\begin{equation*}
s=\int_{0}^{t} d \tau \sqrt{C^{2}+D^{2}} \tag{32}
\end{equation*}
$$

normalized with $C^{2}+D^{2}=1$ i.e. $C=\dot{r}(0)=\cos \alpha, D=\dot{\varphi}(0)=\sin \alpha$ and $\dot{\vartheta}(0)=-D=-\sin \alpha$ can be assumed.

Now, we have to consider three different cases: $D=C>0$,
$D>C \geq 0$ and $C>D \geq 0$, with respect to the former equations as well.
(i) Case $D=C>0$, or equivalently $\alpha=\frac{\pi}{4}$.

In this case we obtain $D t=\int_{0}^{r(t)} \cosh \rho d \rho=\sinh r(t)$, and hence

$$
\begin{equation*}
r(t)=\operatorname{arsinh}(D t) \tag{33}
\end{equation*}
$$

From (28) and (29), with initial conditions $\varphi(0)=0$ and $\vartheta(0)=0$, we obtain

$$
\begin{align*}
\vartheta(t) & =-\arctan (D t) \tag{34}\\
\varphi(t) & =2 D t-\arctan (D t)
\end{align*}
$$

Particularly, $C=D$ implies $\alpha=\frac{\pi}{4}$ and hence $D=\frac{\sqrt{2}}{2}$.
(ii) Case $C>D \geq 0$, or equivalently $\tan \alpha<1$.

From (27) we have

$$
\begin{equation*}
t=\int_{r(0)}^{r(t)} \frac{d \rho}{\sqrt{C^{2}-D^{2} \tanh ^{2} \rho}}=\int_{0}^{r(t)} \frac{\cosh \rho d \rho}{\sqrt{\left(C^{2}-D^{2}\right) \sinh ^{2} \rho+C^{2}}} \tag{35}
\end{equation*}
$$

and by substitution $u=\sqrt{C^{2}-D^{2}} \sinh \rho$, after integration, we obtain

$$
t=\frac{1}{\sqrt{C^{2}-D^{2}}} \operatorname{arsinh} \frac{u}{C}
$$

and hence

$$
\begin{equation*}
r(t)=\operatorname{arsinh}\left(\frac{C}{\sqrt{C^{2}-D^{2}}} \sinh \left(\sqrt{C^{2}-D^{2}} t\right)\right) \tag{36}
\end{equation*}
$$

According to (28), we have

$$
\dot{\vartheta}=\frac{-D\left(C^{2}-D^{2}\right)}{C^{2} \cosh ^{2}\left(\sqrt{C^{2}-D^{2}} t\right)-D^{2}}=\frac{\frac{-D\left(C^{2}-D^{2}\right)}{\cosh ^{2}\left(\sqrt{C^{2}-D^{2}} t\right)}}{\left(C^{2}-D^{2}\right)+D^{2} \tanh ^{2}\left(\sqrt{C^{2}-D^{2}} t\right)},
$$

and hence by using substitution $u=D \tanh \left(\sqrt{C^{2}-D^{2}} t\right)$, after integration, we get

$$
\begin{equation*}
\vartheta(t)=-\arctan \left(\frac{D}{\sqrt{C^{2}-D^{2}}} \tanh \left(\sqrt{C^{2}-D^{2}} t\right)\right) \tag{37}
\end{equation*}
$$

Finally, from (29) we have $\varphi(t)=2 D t+\vartheta(t)$ and hence

$$
\begin{equation*}
\varphi(t)=2 D t-\arctan \left(\frac{D}{\sqrt{C^{2}-D^{2}}} \tanh \left(\sqrt{C^{2}-D^{2}} t\right)\right) \tag{38}
\end{equation*}
$$

Figure 2. Geodesics in $\widetilde{S(2, \mathbb{R})}$ - Case $\alpha=\frac{\pi}{6}$ and $\alpha=\frac{\pi}{4}$

Figure 2 shows geodesics through the origin for $C=\frac{\sqrt{3}}{2}, D=\frac{1}{2}$ and $C=D=\frac{\sqrt{2}}{2}$, and parameter $t \in[-1,1]$, respectively.
(iii) Case $D>C \geq 0$, or equivalently $\tan \alpha>1$.

Similarly to the previous case, we start with equation

$$
t=\int_{r(0)}^{r(\tau)} \frac{d \rho}{\sqrt{C^{2}-D^{2} \tanh ^{2} \rho}}=\int_{r(0)}^{r(\tau)} \frac{\cosh \rho d \rho}{\sqrt{C^{2}-\left(D^{2}-C^{2}\right) \sinh ^{2} \rho}}
$$

and by using substitution $u=\sqrt{D^{2}-C^{2}} \sinh \rho$, after integration, we obtain

$$
t=\frac{1}{\sqrt{D^{2}-C^{2}}} \arcsin \frac{u}{C}
$$

and hence

$$
\begin{equation*}
r(t)=\operatorname{arsinh}\left(\frac{C}{\sqrt{D^{2}-C^{2}}} \sin \left(\sqrt{D^{2}-C^{2}} t\right)\right) \tag{39}
\end{equation*}
$$

From (28) we get

$$
\dot{\vartheta}=\frac{-D\left(D^{2}-C^{2}\right)}{D^{2}-C^{2} \cos ^{2}\left(\sqrt{D^{2}-C^{2}} t\right)}=\frac{\frac{-D\left(D^{2}-C^{2}\right)}{\cos ^{2}\left(\sqrt{D^{2}-C^{2}} t\right)}}{\left(D^{2}-C^{2}\right)+D^{2} \tan ^{2}\left(\sqrt{D^{2}-C^{2}} t\right)}
$$

and hence, by using substitution $u=D \tan \left(\sqrt{D^{2}-C^{2}} t\right)$, after integration, we obtain

$$
\begin{equation*}
\vartheta(t)=-\arctan \left(\frac{D}{\sqrt{D^{2}-C^{2}}} \tan \left(\sqrt{D^{2}-C^{2}} t\right)\right) \tag{40}
\end{equation*}
$$

Similarly to the former case $\varphi(t)=2 D t+\vartheta(t)$ and hence

$$
\begin{equation*}
\varphi(t)=2 D t-\arctan \left(\frac{D}{\sqrt{D^{2}-C^{2}}} \tan \left(\sqrt{D^{2}-C^{2}} t\right)\right) \tag{41}
\end{equation*}
$$

Figure 3 shows geodesic through the origin for $C=\frac{1}{2}, D=\frac{\sqrt{3}}{2}$ and parameter $t \in[-1,1]$.

Remark 3. One can easily observe special cases $\alpha=0$,

$$
\begin{array}{ll}
r(s)=s, & x(s)=0 \\
\vartheta(s)=0, & y(s)=\tanh s \\
\varphi(s)=0, & z(s)=0,
\end{array}
$$

and $\alpha=\frac{\pi}{2}$,

$$
\begin{array}{ll}
r(s)=0, & x(s)=\tan s \\
\vartheta(s)=-s, & y(s)=0 \\
\varphi(s)=s, & z(s)=0 .
\end{array}
$$

Figure 3. Geodesic in $\widetilde{S(2, \mathbb{R})}$ - Case $\alpha=\frac{\pi}{3}$

Case	Geodesic line (hyperboloid coordinates)
$0 \leq D=\sin \alpha<C=\cos \alpha$	$r_{\alpha}(s)=\operatorname{arsinh}\left(\frac{\cos \alpha}{\sqrt{\cos 2 \alpha}} \sinh (\sqrt{\cos 2 \alpha} s)\right)$
$0 \leq \alpha<\frac{\pi}{4}$	$\vartheta_{\alpha}(s)=-\arctan \left(\frac{\sin \alpha}{\sqrt{\cos 2 \alpha}} \tanh (\sqrt{\cos 2 \alpha} s)\right)$
$t=s$	$\varphi_{\alpha}(s)=2 \sin \alpha s+\vartheta_{\alpha}(s)$
$\left(H^{2}\right.$-like direction)	$r(s)=\operatorname{arsinh}\left(\frac{\sqrt{2}}{2} s\right)$
$D=C=\frac{\sqrt{2}}{2}$	$\vartheta(s)=-\arctan \left(\frac{\sqrt{2}}{2} s\right)$
$\alpha=\frac{\pi}{4}$	$\varphi(s)=\sqrt{2} s+\vartheta(s)$
$t=s$	
$($ separating light direction $)$	$\varphi_{\alpha}(s)=\operatorname{arsinh}\left(\frac{\cos \alpha}{\sqrt{-\cos 2 \alpha}} \sin (\sqrt{-\cos 2 \alpha} s)\right)$
$0 \leq C=\cos \alpha<D=\sin \alpha$	$\vartheta_{\alpha}(s)=-\arctan \left(\frac{\sin \alpha}{\sqrt{-\cos 2 \alpha}} \tan (\sqrt{-\cos 2 \alpha} s)\right)$
$\frac{\pi}{4}<\alpha \leq \frac{\pi}{2}$	$\varphi_{\alpha}(s)=2 \sin \alpha s+\vartheta_{\alpha}(s)$
$t=s$	
$($ fibre-like direction $)$	

Table 1. Table of geodesics restricted to $S L(2, \mathbb{R}), s \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

4. Geodesic spheres in $S \widetilde{S(2, \mathbb{R})}$ geometry

After having investigated geodesic curves, we can consider geodesic spheres. Geodesic spheres in Sol model geometry are visualized in [1]. For Nil geodesics, problems
with geodesic Nil spheres and balls, and for analogous translation spheres and balls, we refer to [4], [5], [7] and [8], respectively.
 tions

$$
\begin{align*}
& X(R, \phi, \alpha)=x(s=R, \alpha) \\
& Y(R, \phi, \alpha)=y(s=R, \alpha) \cos \phi-z(s=R, \alpha) \sin \phi \tag{42}\\
& Z(R, \phi, \alpha)=y(s=R, \alpha) \sin \phi+z(s=R, \alpha) \cos \phi
\end{align*}
$$

where x, y, z are Euclidean coordinates of geodesics given in Table 1, that are transformed according to formulas (9). Here $\phi \in(-\pi, \pi]$ denotes the longitude and $\alpha \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right]$ the altitude coordinate.

For $R \geq \frac{\pi}{2}$ we consider the projective extension and the universal covering space $\widehat{S L(2, \mathbb{R})}=\tilde{\mathcal{H}}$ by (1) (see [3]) for the fibre coordinate $\varphi \in \mathbb{R}$ by extra conventions. That is not visual any more!

In Figure 4 geodesic half-spheres in $S L(2, \mathbb{R})$ are shown. Dark parts correspond to geodesics determined by $0 \leq \alpha<\frac{\pi}{4}$, light parts correspond to geodesics determined by $\frac{\pi}{4}<\alpha \leq \frac{\pi}{2}$ and black curves between these parts correspond to $\alpha=\frac{\pi}{4}$.

Figure 4. Geodesic half-spheres in $S L(2, \mathbb{R})$ of radius $0.5,1$ and 1.5 , respectively

References

[1] A. Bölcskei, B. SziláGyi, Visualization of curves and spheres in Sol geometry, Croat. Soc. Geo. Graph. 10(2006), 27-32.
[2] A. Bölcskei, B. Szilágyi, Frenet formulas and geodesics in Sol geometry, Beiträge Algebra Geom. 48(2007), 411-421.
[3] E. Molnár, The projective interpretation of the eight 3-dimensional homogeneous geometries, Beiträge Algebra Geom. 38(1997), 261-288.
[4] E. MolnÁr, On Nil geometry, Periodica Polytehnica Ser. Mech. Eng. 47(2003), 41-49.
[5] E. Molnár, J. Szirmai, Symmetries in the 8 homogeneous 3-geometries, Symmetry: Culture and Science, to appear.
[6] P. Scott, The Geometries of 3-Manifolds, Bull. London Math. Soc. 15(1983), 401487.
[7] J. Szirmai, The densest geodesic ball packing by a type of Nil lattices, Beiträge Algebra Geom. 46(2007), 383-397.
[8] J. Szirmai, The densest translation ball packing by fundamental lattices in Sol space, Beiträge zur Algebra und Geometrie, to appear.

[^0]: *This paper is partially supported by Croatian MSF project 016-0372785-0892
 ${ }^{\dagger}$ Corresponding author. Email addresses: blazenka.divjak@foi.hr (B. Divjak), zlatko.erjavec@foi.hr (Z. Erjavec), szabolcs@math.bme.hu (B. Szabolcs), szilagyi@math.bme.hu (B. Szilágyi)

