ON THE EDGE DEGREES OF TREES

Damir Vukičević
University of Split, Croatia

Abstract

Let $m_{i j}(G)$ be the number of edges of graph G, connecting vertices of degrees i and j. Necessary and sufficient conditions are established on a symmetric matrix M of type $\Delta \times \Delta$ such that there is a tree T for which $M_{i j}=m_{i j}(T)$ holds for all i, j.

1. Introduction

In this paper we are concerned with simple graphs. Let G be such a graph, let $v_{1}, v_{2}, \ldots, v_{n}$ be its vertices, and let $d(v)=d_{G}(v)$ be the degree (=number of first neighbors) of its vertex v. Let $n_{i}(G)$ be the number of vertices of G having degree equal to $i, i=0,1,2, \ldots$

A sequence of numbers $k_{0}, k_{1}, k_{2}, \ldots$ is said to be "graphic" if there exists a graph G such that $k_{i}=n_{i}(G)$ holds for all $i \geq 0$. Necessary and sufficient conditions for graphic sequences were established long time ago [1] and belong nowadays among standard textbook facts of graph theory $[4,8]$. In this paper, we consider an analogous problem, pertaining to the degrees of the edges.

An edge e of a graph G is said to have degree (i, j) or (j, i) if e connects vertices of u and v, and $d(u)=i, d(v)=j$. The number of edges of G having degree equal to (i, j) will be denoted by $m_{i j}=m_{i j}(G)$. Of course, $m_{i j}=m_{j i}$. Note that for a given graph the numbers $m_{i j}$ are defined for all $i, j \in \mathbb{N}$. The greatest value of j for which $m_{i j}(G)$ differs from 0 will be denoted by Δ. Evidently, Δ is equal to the maximal degree of a vertex of G.

Let M be a symmetric $\Delta \times \Delta$ matrix, we say that graph G of maximal degree Δ realizes M if and only if $M_{i j}=m_{i j}(G)$ for every $i, j \in 1, \ldots, \Delta$. In this case, we say that matrix is edge-graphic. In what follows we establish conditions needed that a matrix M is edge-graphic and to pertain to a tree.

[^0]Key words and phrases. Realizability, edge-connectivities, tree.

Let us note that these numbers $m_{i j}$ have important applications in chemistry. Namely, several molecular descriptors can be expressed in the terms of $m_{i j}$'s. The most famous ones are:

- Randić index [7]

$$
\chi(G)=\sum_{1 \leq i \leq j \leq \Delta} \frac{m_{i j}(G)}{\sqrt{i \cdot j}}
$$

- Zagreb index [2]

$$
M_{2}(G)=\sum_{1 \leq i \leq j \leq \Delta} i \cdot j \cdot m_{i j}(G)
$$

- modified Zagreb index [6]

$$
{ }^{m} M_{2}(G)=\sum_{1 \leq i \leq j \leq \Delta} \frac{m_{i j}(G)}{i \cdot j}
$$

- variable Zagreb index [5] (generalization of these concepts)

$$
{ }^{\lambda} M_{2}(G)=\sum_{1 \leq i \leq j \leq \Delta}(i \cdot j)^{\lambda} \cdot m_{i j}(G), \quad \lambda \in R
$$

The exhaustive search of mathematical properties of these Randić-type molecular structure descriptors can be found in [3]. All these imply that study of valence-connectivities is interesting and applicable in chemistry. This paper furthers the results already achieved in study of these numbers. First, in paper [10], they have been studied for the graphs with maximal degree at most 4. Then in papers $[9,11]$ for acyclic graphs with maximal degree at most 4 (these graphs cover the family of kenographs of acyclic hydrocarbons), in paper [12] monocyclic graphs have been studied and finally in [13] thorny monocyclic graphs with prescribed number of thorns have been studied. Here, this research is extended to acyclic graphs of arbitrary degree.

2. BASIC DEFINITIONS AND MAIN RESULTS

Let G be an arbitrary graph. By $N(G)$ we denote set of vertices in G, by $N_{i}(G)$ set of vertices of degree i and by $E(G)$ set of edges of G. Cardinalities of $N(G), N_{i}(G)$ and $E(G)$ are denoted by $n(G), n_{i}(G)$ and $e(G)$. If G is unconnected graph, then we say that some component of G is cyclic if it contains at least one cycle.

Our main result is given by:
Theorem 2.1. Let $\Delta \in \mathbb{N}$ and let M be a symmetric $\Delta \times \Delta$ matrix with entries in \mathbb{N}_{0} and at least one non-zero entry in the last row. Then, there exists a tree G that corresponds to M if and only if:

1) $n_{i}=\frac{1}{i} \cdot\left(M_{i i}+\sum_{j=1}^{\Delta} M_{i j}\right)$ is a non-negative integer for each $i=$ $1, \ldots, \Delta ;$
2) $\sum_{\substack{i, j \in S \\ i \leq j}} M_{i j} \leq \max \left\{0, \sum_{i \in S} n_{i}-1\right\}$ for each $S \subseteq\{1, \ldots \Delta\}$;
3) $\sum_{\substack{i, j \in\{1, \ldots, \Delta\} \\ i \leq j}} M_{i j}=\sum_{i \in\{1, \ldots, \Delta\}} n_{i}-1$.

Proof. We first prove necessity. Note that n_{i} is the number of vertices of degree i in G, hence indeed it is a non-negative integer and 1) holds. Statement 3) just states that the number of edges is one less then number of vertices, so it is true. Let S be any subset of $\{1, \ldots, \Delta\}$ and let G^{\prime} be a subgraph of G induced by vertices that have degree (in G) contained in set S. It can be easily seen that $e\left(G^{\prime}\right)=\sum_{\substack{i, j \in S \\ i \leq j}} M_{i j}(G)$ and that $n\left(G^{\prime}\right)=\sum_{i \in S} n_{i}$, hence 2) holds.

Now, let us prove sufficiency. First, let us prove that there is a graph (not necessarily acyclic, simple or connected) G_{1} with $m_{i j}\left(G_{1}\right)=M_{i j}$ for each $1 \leq i \leq j \leq \Delta$. Let Γ_{1} be a class of graphs H_{1} with its vertices partitioned in classes $S_{1}, \ldots, S_{\Delta}$ such that:

1) $\left|S_{i}\right|=n_{i}$ for each $i=1, \ldots, \Delta$;
2) $d_{H_{1}}(v) \leq i$ for each $v \in S_{i}$;
3) number of edges connecting vertices in S_{i} and S_{j} is at most $M_{i j}$ for each $1 \leq i \leq j \leq \Delta$.

Denote by $s_{i j}\left(H_{1}\right)$ number of edges that have one end-vertex in S_{i} and other in S_{j} (edges connecting vertices in the same set are counted twice). Note that Γ_{1} is non-empty, because at least graph with no edges is in Γ_{1}. Let G_{1}^{\prime} be a graph in Γ_{1} with maximal number of edges. Distinguish three cases:

CASE 1: $s_{i j}\left(G_{1}^{\prime}\right)=M_{i j}$ for each $1 \leq i \leq j \leq \Delta$.
In this case, vertices in S_{i} are incident to

$$
s_{i i}\left(G_{1}^{\prime}\right)+\sum_{k=1}^{\Delta} s_{i k}\left(G_{1}^{\prime}\right)=M_{i i}+\sum_{k=1}^{\Delta} M_{i k}=i \cdot n_{i}
$$

edges. Since, each vertex is incident to at most i edges, it follows that every vertex is in fact incident to exactly i edges. Hence, each vertex in S_{i} is of degree i. Therefore, $m_{i j}\left(G_{1}^{\prime}\right)=s_{i j}\left(G_{1}^{\prime}\right)=M_{i j}$ and it is sufficient to take $G_{1}=G_{1}^{\prime}$.

CASE 2: $s_{i j}\left(G_{1}^{\prime}\right)<M_{i j}$ for some $1 \leq i<j \leq \Delta$.

In this case vertices in S_{i} are incident to

$$
\begin{aligned}
& s_{i j}\left(G_{1}^{\prime}\right)+s_{i i}\left(G_{1}^{\prime}\right)+\sum_{\substack{1 \leq k \leq \Delta \\
k \neq j}} s_{i k}\left(G_{1}^{\prime}\right) \leq \\
& \leq M_{i j}-1+M_{i i}+\sum_{\substack{1 \leq k \leq \Delta \\
k \neq j}} M_{i k}=M_{i i}+\sum_{1 \leq k \leq \Delta} M_{i k}-1
\end{aligned}
$$

edges. Hence, there is some vertex u in S_{i} such that $d_{G_{1}^{\prime}}(u) \leq i-1$. It can be analogously shown that there is some vertex v in S_{j} such that $d_{G_{1}^{\prime}}(v) \leq j-1$, but then $G_{1}^{\prime}+u v \in \Gamma_{1}$ which is in contradiction with maximality of G_{1}^{\prime}.

CASE 3: $s_{i i}\left(G_{1}^{\prime}\right)<M_{i i}$ for some $1 \leq i \leq \Delta$.
In this case vertices in S_{i} are incident to
$2 s_{i i}\left(G_{1}^{\prime}\right)+\sum_{\substack{1 \leq k \leq \Delta \\ k \neq i}} s_{i k}\left(G_{1}^{\prime}\right) \leq 2\left(M_{i i}-1\right)+\sum_{\substack{1 \leq k \leq \Delta \\ k \neq i}} M_{i k}=M_{i i}+\sum_{1 \leq k \leq \Delta} M_{i k}-2$ edges. Hence, there are two possible subcases: there are vertices $u, v \in S_{i}$ such that $d_{G_{1}^{\prime}}(u), d_{G_{1}^{\prime}}(v) \leq i-1$ or there is a vertex $u \in S_{i}$ such that $d_{G_{1}^{\prime}}(u) \leq i-2$. In the first subcase graph $G_{1}^{\prime}+u v$ is in Γ_{1} and in the second subcase graph $G_{1}^{\prime}+u u$ is in Γ_{1}. In both subcases contradiction on maximality of Γ_{1} is obtained, hence case 3 can not occur.

Now, let us prove that there is a loopless graph G_{2} such that $m_{i j}(G)=$ $M_{i j}$. Let Γ_{2} be a class of graphs H_{2} such that $m_{i j}\left(H_{2}\right)=M_{i j}$. Note that Γ_{2} is non-empty, because $G_{1} \in \Gamma_{2}$. Let G_{2}^{\prime} be a graph with the smallest number of loops in Γ_{2}. If there is no loop in G_{2}^{\prime}, then it is sufficient to take $G_{2}=G_{2}^{\prime}$ and the claim is proved, hence we should suppose that G_{2}^{\prime} contains at least one loop. Let vertex $v \in N_{i}$ be incident to that loop l_{v}. Since $M_{i i} \leq n_{i}-1$, there is at least one more vertex w of degree i in G_{2}^{\prime}. If there is a loop l_{w} at w then graph $G_{2}^{\prime}-l_{v}-l_{w}+2 v w \in \Gamma_{2}$ has less loops than G_{2}^{\prime} which is contradiction. Hence, suppose that w has no loop. Since w and v are of the same degree and v has a loop, it follows that there is a vertex $z \neq v$ such that $w z \in E\left(G_{2}^{\prime}\right)$, but then $G_{2}^{\prime}-l_{v}-w z+v w+v z$ has smaller number of loops then G_{2}^{\prime} which is contradiction.

Now, let us prove that there is a simple graph G_{3} such that $m_{i j}\left(G_{3}\right)=$ $M_{i j}$. Let Γ_{3} be a class of loopless graphs H_{3} such that $m_{i j}\left(H_{3}\right)=M_{i j}$. Note that Γ_{3} is non-empty, because $G_{2} \in \Gamma_{3}$. Let G_{3}^{\prime} be a graph with the smallest number of multiple edge (double edge is counted as 1 , triple as $2, \ldots$) in Γ_{3}. If there are no multiple edges in G_{3}^{\prime}, then it is sufficient to take $G_{3}=G_{3}^{\prime}$ and the claim is proved, hence it is sufficient to show that the assumption that G_{3}^{\prime} contains at least one multiple edge leads to contradiction. Distinguish two cases:

CASE 1: G_{3}^{\prime} contains a multiple edge connecting vertices of the same degree.

Let vertices $u, v \in N_{i}$ be connected by two parallel edges. Since, $m_{i i} \leq$ $n_{i}\left(G_{3}^{\prime}\right)-1$, it follows that there is a vertex w in N_{i} not adjacent to any of vertices u and v. Distinguish two subcases:

Subcase 1.1: Vertex w is incident to a double edge.
Let w^{\prime} be another end-vertex of this double edge. Let us observe graph $G_{3}^{\prime}-1 \cdot u v-1 \cdot w w^{\prime}+u w+v w^{\prime} \in \Gamma_{3}$. We have deleted two multiple edges (uv and $v w$) and added at most one. This is in contradiction with the fact that G_{3}^{\prime} has minimal number of multiple edges.

Subcase 1.2: Vertex w is not incident to any double edge.
It follows that w has more neighbors then v, hence there is a vertex w^{\prime} that is adjacent to w, but not to v. Then graph $G_{3}-w w^{\prime}-1 \cdot u v+v w^{\prime}+u w \in \Gamma_{3}$ contradicts the fact that G_{3}^{\prime} has minimal number of multiple edges.

Hence, case 1 is not possible.
Case 2: G_{3}^{\prime} contains a multiple edge connecting vertices of different degrees.

Let vertices $u \in N_{i}$ and $v \in N_{j}$ be connected by two parallel edges. Since $m_{i j}\left(G_{3}\right) \leq n_{i}+n_{j}-1$, it follows that there is a vertex $w \in N_{j}$ not adjacent to u or vertex $w^{\prime} \in N_{i}$ not adjacent to v. Without loss of generality, we may assume that there is a vertex $w \in N_{j}$ not adjacent to u. Similarly as in previous case, we distinguish two subcases:

Subcase 2.1: Vertex w is incident to a double edge.
This case is proved by the complete analogy with the Subcase 1.1.
Subcase 2.1: Vertex w is not incident to any double edge.
This case is proved by the complete analogy with the Subcase 1.2 .
This proves that both cases are impossible, hence indeed there is a simple graph $G_{3} \in \Gamma_{3}$.

Now, let us prove that there is a tree G such that $m_{i j}(G)=M_{i j}$. Let Γ be a class of simple graphs H such that $m_{i j}(H)=M_{i j}$. Note that Γ is nonempty, because $G_{3} \in \Gamma$. If there is a graph H in Γ with only one component. Then, $G=H$ is tree with the required properties. Hence, assume that all graphs H in Γ are cyclic.

Denote components of H by K_{1}, \ldots, K_{a}. We say that these are the components on the first level. Let $K_{i_{1}}$ be one of these components. If $K_{i_{1}}$ is not cyclic, stop with its analysis. Otherwise, denote by $N C\left(K_{i_{1}}\right)$ the set of all vertices contained in at least one cycle of $K_{i_{1}}$; by $N D\left(K_{i_{1}}\right)$ set of vertices which degree exclusively appears in $K_{i_{1}}$, i.e., set of vertices u such that $d(u)=d(v) \Rightarrow v \in K_{i_{1}}$; and denote $N N\left(K_{i_{1}}\right)=N\left(K_{i_{1}}\right) \backslash N D\left(K_{i_{1}}\right)$. Note that we have always one of the following two possibilities:

1) $N C\left(K_{i_{1}}\right) \backslash N D\left(K_{i_{1}}\right) \neq \emptyset$;
2) $N C\left(K_{i_{1}}\right) \subseteq N D\left(K_{i_{1}}\right)$ and $N N\left(K_{i_{1}}\right) \neq \emptyset$.

Suppose to the contrary that $N C\left(K_{i_{1}}\right) \backslash N D\left(K_{i_{1}}\right)=\emptyset$ and $N N\left(K_{i_{1}}\right)=\emptyset$. Denote by $S D\left(K_{i_{1}}\right)$ set of all vertex degrees appearing in $K_{i_{1}}$. Note that $K_{i_{1}}$
is connected graph that contains at least one cycle. Hence,

$$
\begin{aligned}
\sum_{i \in S D\left(K_{i_{1}}\right)} n_{i} & =n\left(K_{i_{1}}\right) \leq e\left(K_{i_{1}}\right)=\sum_{\substack{i, j \in S D\left(K_{i_{1}}\right) \\
i \leq j}} M_{i j} \\
& \leq \max \left\{0, \sum_{i \in S D\left(K_{i_{1}}\right)} n_{i}-1\right\}=\sum_{i \in S D\left(K_{i_{1}}\right)} n_{i}-1,
\end{aligned}
$$

which is a contradiction. If 1) is true, stop with the analysis of $K_{i_{1}}$. If 2) is true note that each vertex in $N N\left(K_{i_{1}}\right)$ is cut vertex (in $\left.K_{i_{1}}\right)$. Observe the graph $K_{i_{1}} \backslash N N\left(K_{i_{1}}\right)$. Note that it has at least one cyclic component. Denote by $K_{i_{1}, 1}, K_{i_{1}, 2}, \ldots, K_{i_{1}, b}$ all its components. We say that these components are components on the second level having $K_{i_{1}}$ as a father (we say that these components are its sons). Let $K_{i_{1}, i_{2}}$ be one of these components. Note that, from construction, it follows that vertex degrees (in G) that appear in $K_{i_{1}, i_{2}}$ do not appear in any of the components K_{1}, \ldots, K_{a} except $K_{i_{1}}$. If $K_{i_{1}, i_{2}}$ is not cyclic, stop with its analysis. Otherwise, denote $N C\left(K_{i_{1}, i_{2}}\right), N D\left(K_{i_{1}, i_{2}}\right)$ and $N N\left(K_{i_{1}, i_{2}}\right)$ analogously as above. Similar analysis as above shows that we have one of the following two possibilities:

1) $N C\left(K_{i_{1}, i_{2}}\right) \backslash N D\left(K_{i_{1}, i_{2}}\right) \neq \emptyset$;
2) $N C\left(K_{i_{1}, i_{2}}\right) \subseteq N D\left(K_{i_{1}, i_{2}}\right)$ and $N N\left(K_{i_{1}, i_{2}}\right) \neq \emptyset$.

Again, if 1) is true stop; and if 2) is true observe the graph $K_{i_{1}} \backslash N N\left(K_{i_{1}}\right)$. It has at least one cyclic component. Denote by $K_{i_{1}, i_{2}, 1}, K_{i_{1}, i_{2}, 2}, \ldots, K_{i_{1}, i_{2}, c}$ all its components. These are components on the third level having $K_{i_{1}, i_{2}}$ as a father (of course there may be more components on the third level having different fathers and different grandfathers). We proceed with the analysis of all these components. Since each component on the lower level has smaller number of vertices than its parenting component, the number of components constructed in this way is finite.

Denote by $\alpha_{i}(H)$ the number of components on the i-th level and denote $\alpha(H)=\left(\alpha_{1}(H), \alpha_{2}(H), \ldots\right)$. Let G^{\prime} be a graph with the smallest value of $\alpha(H)$ according to the lexicographical order. Let $K_{j_{1} \ldots, j_{t}}$ be a component such that $N C\left(K_{j_{1}, \ldots, j_{t}}\right) \backslash N D\left(K_{j_{1}, \ldots, j_{t}}\right) \neq \emptyset$. Then, there is a vertex u_{1} contained in some cycle C of $K_{j_{1}, \ldots, j_{t}}$ and there is vertex $u_{2} \in N\left(K_{j_{1}, \ldots, j_{t-1}}\right) \backslash N\left(K_{j_{1}, \ldots, j_{t}}\right)$ (if $t=1$, then $K_{j_{1}, \ldots, j_{t-1}}$ is in fact G^{\prime}) such that $d_{G^{\prime}}\left(u_{1}\right)=d_{G^{\prime}}\left(u_{2}\right)$. Let us show that there is a vertex u_{2}^{\prime} such that $u_{2} u_{2}^{\prime} \in E\left(G^{\prime}\right)$ and $u_{1} u_{2}^{\prime} \notin E\left(G^{\prime}\right)$. If $t=1$, the claim is obvious, since u_{1} and u_{2} are in different components. If $t>1$, let $u_{1} v_{1} v_{2} \ldots v_{k} u_{2}$ be a path from u_{1} to u_{2} in $K_{j_{1}, \ldots, j_{t-1}}$. Then, there is a vertex $v_{i} \in N N\left(K_{j_{1}, \ldots, j_{t-1}}\right)$ on this path. Since, $N C\left(K_{j_{1}, \ldots, j_{t-1}}\right) \subseteq$ $N D\left(K_{j_{1}, \ldots, j_{t-1}}\right)$, it follows that vertex v_{i} is not contained in any cycle in $K_{j_{1}, \ldots, j_{t-1}}$ (and therefore, it is not contained in any cycle in G^{\prime}, because in each step only cut-vertices have been removed). Hence, there is a neighbor u_{2}^{\prime}
of u_{2} in G^{\prime} such that $u_{1} u_{2}^{\prime} \notin G^{\prime}$. Denote by u_{1}^{\prime} neighbor of u_{1} that is on the cycle in $K_{j_{1}, \ldots, j_{t}}$. Obviously, $u_{1}^{\prime} u_{2} \notin G^{\prime}$. Hence, graph $G^{\prime \prime}=G^{\prime}-u_{1} u_{1}^{\prime}-u_{2} u_{2}^{\prime}+$ $u_{1} u_{2}^{\prime}+u_{2} u_{1}^{\prime}$ is element of Γ. Let us compare the components of $G^{\prime \prime}$ and G^{\prime}. Either they induce the same partition of vertices or $G^{\prime \prime}$ has one component less. In the second case $\alpha\left(G^{\prime \prime}\right)<\alpha\left(G^{\prime}\right)$, which is a contradiction. In the first case all components of G^{\prime} and $G^{\prime \prime}$ are the same, but $K_{j_{1}}$ and its counterpart in $G^{\prime \prime}$ (let us denote it $K_{j_{1}}^{*}$). If $K_{j_{1}}^{*}$ is not cyclic in $G^{\prime \prime}$, then $\alpha\left(G^{\prime \prime}\right)<\alpha\left(G^{\prime}\right)$, which is a contradiction. Hence, assume that $K_{j_{1}}^{*}$ is cyclic.

Let us observe the decompositions of $K_{j_{1}} \backslash N N\left(K_{j_{1}}\right)$ and $K_{j_{1}} \backslash N N\left(K_{j_{1}}^{*}\right)$. Note that $N N\left(K_{j_{1}}\right)=N N\left(K_{j_{1}}^{*}\right)$, hence either they induce the same components or $K_{j_{1}}^{*}$ has one component less. In the second case $\alpha\left(G^{\prime \prime}\right)<$ $\alpha\left(G^{\prime}\right)$, which is a contradiction. In the first case all components of are the same, but $K_{j_{1}, j_{2}}$ and its counterpart in $G^{\prime \prime}$ (let us denote it $\left.K_{j_{1}, j_{2}}^{*}\right)$. Proceeding in the same way we obtain the contradiction in all cases, but in the case in which all components on levels from 1 to t coincide, but $K_{j_{1}}, K_{j_{1}, j_{2}}, \ldots, K_{j_{1}, j_{2}, \ldots, j_{t-1}}$ whose decomposition coincide with the decomposition of its counterparts. Let us observe $K_{j_{1}, \ldots, j_{t-1}}$ and its counterpart $K_{j_{1}, \ldots, j_{t-1}}^{*}$. Note that $N N\left(K_{j_{1}, \ldots, j_{t}}\right)=N N\left(K_{j_{1}, \ldots, j_{t}}^{*}\right)$ and that

$$
K_{j_{1}, \ldots, j_{t-1}}^{*} \backslash N N\left(K_{j_{1}, \ldots, j_{t}}\right)
$$

has one component less than

$$
K_{j_{1}, \ldots, j_{t-1}} \backslash N N\left(K_{j_{1}, \ldots, j_{t}}\right)
$$

Therefore, $\alpha\left(G^{\prime \prime}\right)<\alpha\left(G^{\prime}\right)$, which is a contradiction. Thus, assumption that all graphs in Γ are cyclic is not true, i.e., there is a tree G in Γ.

Acknowledgements.

Partial support of Croatian Ministry of Science, Education and Sport is gratefully acknowledged (Grant no. 177-0000000-0884 and 037-00000002779). Author gratefully acknowledges useful discussions and help of professor Ivan Gutman and professor Pierre Hansen. Also, author gratefully acknowledges help of anonymous referees.

References

[1] P. Erdős and T. Gallai, Graphs with prescribed degrees of vertices, Mat. Lapok 11 (1960), 264-274 (in Hungarian).
[2] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chemical Physics Letters 17 (1972), 535-538.
[3] X. Li and I. Gutman, Mathematical Aspects of Randic-Type Molecular Structure Descriptors, MCM, Kragujevac 2006.
[4] R. Merris, Graph Theory, Wiley, New York, 2001.
[5] A. Miličević and S. Nikolić, On variable Zagreb indices, Croat. Chem. Acta 77 (2004), 97-101.
[6] S. Nikolić, G. Kovačević, A. Miličević and N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003), 113-124.
[7] M. Randić, Characterization of molecular branching, J. Am. Chem. Soc. 97 (1975), 6609-6615.
[8] D. Veljan, Kombinatorna i diskretna matematika, Algoritam, Zagreb, 2001 (in Croatian).
[9] D. Veljan and D. Vukičević, On acyclic molecular graphs with prescribed numbers of edges that connect vertices with given degrees, J. Math. Chem. 40 (2006), 155-178.
[10] D. Vukičević and A. Graovac, On molecular graphs with valencies 1, 2 and 4 with prescribed number of bonds, Croat. Chem. Acta 77 (2004), 313-319.
[11] D. Vukičević and A. Graovac, Valence connectivity versus Randić, Zagreb and Modified Zagreb index: a linear algorithm to check discriminative properties of indices in acyclic molecular graphs, Croat. Chem. Acta 77 (2004), 501-508.
[12] D. Vukičević and A. Graovac, Which valence connectivities are realizing monocyclic molecules: generating algorithm and its application to test discriminative properties of Zagreb and Modified Zagreb index, Croat. Chem. Acta 77 (2004), 481-490.
[13] D. Vukičević, D. Veljan and N. Trinajstić, Thorny graphs. I. Valence connectivities, MATCH-Commun. Math. Comput. Chem. 55 (2006), 73-82.
D. Vukičević

Department of Mathematics
University of Split
Nikole Tesle 12
HR-21000 Split
Croatia
E-mail: vukicevi@pmfst.hr
Received: 11.3.2008.
Revised: 7.7.2008. \& 2.11.2008.

[^0]: 2000 Mathematics Subject Classification. 05C05, 05C07, 05C90.

