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ABSTRACT. We compute upper and lower bounds for the approxi-
mation of certain values & of hyperbolic and trigonometric functions by
rationals x/y such that z,y satisfy Diophantine equations. We show that
there are infinitely many coprime integers x,y such that
loglogy

logy
and a Diophantine equation holds simultaneously relating x,y and some

integer z. Conversely, all positive integers z,y with y > ¢ solving the
Diophantine equation satisfy

ly€ — z| <

loglogy

logy
Moreover, we approximate sin(ma) and cos(wa) by rationals in connection
with solutions of a quadratic Diophantine equation when tan(wa/2) is a
Liouville number.

ly€ — x| >

1. INTRODUCTION AND STATEMENT OF THE RESULTS IN THE CASE OF
HYPERBOLIC FUNCTIONS

Let pn,/¢n denote the nth convergent of the number

e=exp(1) = [2,1,2k,1],_,.
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Put P, = pakt1, Qk = @3k+1 (k=0,1,2,...), B =3, P.1 =1, P 2=1,Q¢ =
1, Q—l =1, Q—Q = -1, Py = Pk—37 and Q—k = _Qk—3 (k = 354755 .. ) By
[5, Theorem 1.1], we know that the following identities hold.

(1.1)

Poio=22n+5)Pyi1+ P, and Qni2 =220 +5)Qni1 +Qn (n € Z).

A similar result can be proven for the leaping convergents of the number

1 oo
61/5:exp <—) =[1,s(2k—-1)—-1,1,1],_, (s >2).
S

Put Bop=1,Pi=p3=2s+1, Py =p3p (k=2,3,...), Q=1,Q1 = g3 =
2s — 1, and Qr = g3k (k=2,3,...). Then by [11, Theorem 1], we have

(1.2)

Poi2=282n4+3)Ppi1+ P, and Qpio =28(2n+3)Qni1+Qn (n>0).

The preceding recurrence relations, (1.1) and (1.2), imply P,Q, =1 (mod 2)
for all n and for all s > 1. Let h(z) be a function with

he OV +46,3] — R, min |1/ (t)| > 0,
14+6<t<3

where 0 is an arbitrary small positive number. In particular, h'(z) takes its
minimum and maximum for 146 < 2 < 3. In our applications we choose h(x)
as rational functions such that at rational points p/q the functions h take the

form
n(5) =5

where g1, g2 € Z[p, q]. Then we had the following.

LEMMA 1.1 ([7, Theorem 3]). Let s > 1 be an integer and let P,, Q,, and
h be as above. Then the inequalities

loglog @, 1/s P, loglog @,
C1——220 < ip(et/s)y —h [ 2 )| < Cp—22n >3
2hoeQn =M M0 )| S P Qziose, Y

hold, where Cy and Cy are effectively computable positive constants depending
only on s and the function h.

In [7] the application of this Lemma to various functions h leads to the
following approximation results. The basic idea is initiated in [6]. In what
follows, all the constants Cs, Cy,...,C1g appearing in the rest of this section
depend only on s.

PROPOSITION 1.2. Let s be a positive integer and x and y(> 3) relatively
prime integers with y = 0 (mod 2) such that x> + y* is a square. Then

1 log 1
‘ysinh <—> — :c‘ > C3M.
S logy
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On the other hand, there are infinitely
isfying

1
‘ysinh (g) — x‘ < Cy

269

many pairs T,y as just described sat-

loglogy
logy

PROPOSITION 1.3. Let s > 1 be an integer and x and y(> 3) relatively
prime integers with y =0 (mod 2) such that 2% — y? is a square. Then

On the other hand, there are infinitely
isfying

1
1y cosh (g) —x| > C

1
1y cosh (g) —x| < C

loglogy
logy

many pairs x,y as just described sat-

loglogy
logy

PROPOSITION 1.4. Let s > 1 be an integer and x and y(> 3) relatively
prime integers with x = 1 (mod 2) such that y*> — 22 is a square. Then

On the other hand, there are infinitely

1
y tanh (—) —zx| > Cr
s

loglogy
logy

many pairs x,y as just described sat-

isfying
1 logl
ytanh <_) o] < ¢ loslogy.
5 logy
Theorem Dlophar}tlne ‘.
equation
1 1 1
Theorem 1.5 2 +1y? = 24 §(sinh <_) _ cosech (_) )
S S
inh (1) — 1
Theorem 1.6 z2 4+ y? = 222 S?n (i)
sinh (;) +1
: 4 4 .
Theorem 1.7| x® + 4y = 22 sinh (2) + cosh (1) + 4sinh (1) 4+ 4 cosh (1)
1 — 2sinh (%) — 2cosh (%)
2sinh (1
Theorem 1.8|z2 + zy + y? = 27 Slrll (5) i
2 4+ cosh (g) — sinh (g)
1 2
Theorem 1.9|z? + 3% = u* — 02 5 sinh (_)
s

TABLE 1. Theorems dealing with hyperbolic functions
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One goal of this paper is to treat more Diophantine equations and the cor-
responding hyperbolic functions. A similar paper [1] appeared without giving
bounds. Our emphasis here is to give computable bounds, too. We organize
this paper as follows: first, we give more examples of values of hyperbolic
functions, which can be approximated by rationals satisfying Diophantine
equations (Theorems 1.5 - 1.9). Then, in the final section 6, we generalize
our results to the approximation of values of trigonometric functions at spe-
cific rational points (Theorem 6.1). Finally, we treat the approximations of
sin(ma) and cos(wa) by rationals with numerators and denominators solving
the Pythagorean equation 22 + y? = 22, when additionally tan(ma/2) is as-
sumed to be a Liouville number (Theorems 6.4, 6.5). The Table 1 gives an
overview on the subsequent theorems dealing with hyperbolic functions. For
any rational function h let h~! be the inverse function, always defined in an
interval centered around some [ with 2'(3) # 0.

THEOREM 1.5. Let s > 1 be an integer and let

& = 1 (sinh (l) — cosech (l)) .
2 s s

Then there are infinitely many triplets (x,y, z) of integers satisfying simulta-
neously

Vyloglogy
logy

Conversely, for any integer s > 1 and for given integers z,y(> 3),z with
22 4+ y? = 2%, we have the inequality

4

ly&s — x| < Cy and 2 +y? =2t

Vyloglogy
s — x| > Cp——==.
ly§s — x| > C1o oz y

THEOREM 1.6. Let s > 1 be an integer and let

sinh(1/s) — 1 t2—2t—1

s = ———+—, h(t) = ——7—.
¢ sinh(1/s) + 1 =5

Then there are infinitely many triplets (x,y, z) of integers satisfying simulta-

neously

loglogy
logy

Conversely, for any integer s > 1 and for given positive integers x,y(> 3), 2z

with y >z, h™Y(x/y) > /2 — 1, and 2% + y* = 222, we have the inequality

lyés — x| < C1a and 2+ y2 =222

loglogy

|y&s — x| > Cr2 ]
ogy
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THEOREM 1.7. Let s > 1 be an integer and let
__ sinh(4/s) + cosh(4/s) + 4sinh(1/s) + 4 cosh(1/s)
e 1 —2sinh(3/s) — 2 cosh(3/s) '
Then there are infinitely many triplets (x,y, z) of integers satisfying simulta-
neously

Vlylloglogy|
log |y|

Conwersely, for s > 1 and for given integers x.,y, z with —y > 3 and x> +4y> =
22, we assume that

(z,y,2) € {(p(p3 +4¢*),q(¢® — 2p%),p° — 10p°¢* — 2¢°) : p.q € Z,

a(q® —2p*) < —3}

2

ly€s — x| < Ch3 and 3 4 4y = 22

and that

(V5 +3v3)(3 +V3)

X
< :
y - 3+2V3

]—;>\3/5+3\/§ (s =1), 6/1/_2<§<\3/5+3\/§ (s > 1).

Then we additionally have the inequality

Vlylloglog |y|
log |y

|y£s - :L'| > C’14

THEOREM 1.8. Let s > 1 be an integer and let
£ = 2sinh(1/s)
® " 2+ cosh(1/s) —sinh(1/s)
Then there are infinitely many triplets (x,y,z) of integers satisfying simulta-
neously

loglogy
logy
Conversely, for any integer s > 1 and for given positive integers x,y(> 3), 2z
with 2 + zy + y2 = 22, we have the inequality
loglogy
logy

2

lyés — x| < Cis and 22+ ay +y? = 22

ly&s — x| > Cie

THEOREM 1.9. Let s > 1 be an integer and let

1. 2
&= §smh <g) .
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Then there are infinitely many quadruplets (x,y,u,v) of integers satisfying
simultaneously

Vyloglogy
logy

Conversely, for any integer s > 1 and for given positive integers x,y(> 3),u, v
with 2 + % = u* — v?, we assume that

4 2

lyés — x| < Ci7 and 22 +y? = ut — v

(z,y,u,v) € {(p4 — ¢ 4P 0" + ¢, 2p9(0° — ) i pg € ZYp > q}-
Then we additionally have the inequality

Vyloglogy

|y€s - :L'| > C’18 1
ogy

As can be seen from these results and their proofs, |g€s — x| tends to zero
when the parametric representation of the solutions x,y of the corresponding
Diophantine equations are given by homogeneous forms of degree two. In
Theorems 1.7, 1.9, and 6.1, it is hard to say whether all solutions of the
Diophantine equations are given by the above mentioned parameterizations.
Therefore, we preferred to deal with stronger conditions for the lower bounds
of |y&s — zl.

2. AN AUXILIARY LEMMA

First, we mention that for every rational function

gt + gat T 4+ go

R(a) = By + hy_ 101 4 - + By

we have

R(el/s) _ >y v sinh(v/s) + 3o gv cosh(v/s)
> =1 hysinh(p/s) + ZZ:O hy cosh(p/s)’

which follows immediately from the identity e!/* = sinh(1/s)+cosh(1/s). We
shall apply (2.1) with integral coefficients, and ¢, u not exceeding 4.

(2.1)

LEMMA 2.1. Let s > 1 be an integer and let h(t) € Q(t) \ Q. Then there
exists a closed interval I, = [e'/* — 6, e'/* 4 8] centered around e'/* such that
for any positive coprime integers p,q with ¢ > 3 the following holds.

P 1/s loglog q
2.2 — el h —h C—=—
(2.2) = |h(e'*) — h(p/q)| > Flosq’

where 6 and C are positive constants depending possibly on s and the function
h.
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PROOF. Since h(t) is a non-constant rational function with algebraic coef-
ficients, we know by Lindemann’s theorem that h(e'/*) # 0 and h/(e'/*) # 0.
Hence there is a closed interval I, = [61/5 —8,el/s + 5] with § > 0 such that

(2.3) h(t) e CV(I,) and K (t)#0 (te ).

Then, by the mean-value theorem, we have

(2.4) Cosle'/® —t| < |h(e!®) — h(t)] < Cosle* —t|  (te L)
with

— min |1 — /
Ca3 1= min [P (t)] >0 and Ca:= max |h'(t)] > 0.

Let p, ¢ be integers with ¢ > 3 and p/q € I5. We can assume without loss
of generality that

X loglogq
2. sy — <
(2.5) |h(e'®) = h(p/q)| < Flosq’

since otherwise for such rationals p/q the inequality in (2.2) is already satisfied
with C' < 1. Thus, by (2.4) and (2.5), there exists a constant Ca5 such that

1
<55 (g=Cys).

2.6 o od
26) Caszq?logq ~ 3¢?

€

1/3_2_)‘ 1Og10gq
q

Then from the well-known properties of the convergents of simple continued
fractions, we find p/q = pi/qi for some k > 0, where py /gy is the kth conver-
gent of e'/*. If the (k + 1)th partial quotient ay1 of the continued fraction
expansion of e/* is 1, we have for ¢ > g, that

1 1

(2+arr1)a; 347
which contradicts (2.6). Hence, by the definition of P, and Q,, i.e.,

— lel/s _ Pk
qk

“no_ Denid (if s=1) or Pan

2.7 n _
@7) Qn  @ny1 Qn  Bn

(if s > 2),
we have p/q = P,,/Q,, for some n, and so p = P,, and ¢ = Q,, since ged(p, q) =

1. Therefore, by the left-hand inequality in Lemma 1.1, we get

P, loglog @ loglog q
hel/5h<3>‘ ‘hel/5h<—>‘>0 -C
‘ (€ q () Qn "Q210gQ, ! Plogq

for ¢ > Ca5. Hence, for some 0 < C' < min{1, C;}, the lemma is proven. 0O

REMARK 2.2. Lemma 2.1 also holds without the condition ged(p, ¢) = 1,
since then we have to deal with @,, < gq.
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3. PARAMETER SOLUTIONS OF DIOPHANTINE EQUATIONS

The lemmata in this section can be proven by straightforward computa-
tions. Therefore, the details are left to the reader.

LEMMA 3.1 ([3, p.466], [4, p.256]). All positive integral solutions of

(3.1) a4 y? =2t
are given by
2
v o= (0" —q") - (2p0)* =p* - 6p°¢" + ¢,
= dpg(p® - ¢*),
2 = pPPag?
(up to exchange of x and y), where p,q € Z. Moreover, if we put
12— 1) — 442
h(t) := —( ) ,
At(t2 — 1)

we have x/y = h (p/q) for any solution x,y(# 0) of the above equation (3.1).
The function h(t) is monotonously increasing for t > 1, and h € CV (1, 00).

LEMMA 3.2 (]2, p. 353, Corollary 6.3.14], [12, p. 13]). All positive integral
solutions of

(3.2) 2?4 y? = 227
are given by
z = p’—q*—2pqg,
y = p’—q¢ +2pg,
2 = PP
(up to exchange of x and y), where p,q € Z. Moreover, if we put
t2—2t—1
h(t) = ————
®) 2+2t—1’

we have xz/y = h(p/q) for any solution x,y(# 0) of the above equation
(3.2). The function h(t) is monotonously increasing for t > /2 — 1, and
he W (Va—1,00).

LEMMA 3.3 ([9]). A set of integral solutions of

(3.3) 2?4 4y = 22,

where x,y, z are relatively prime in pairs, is given by
z = pp’+4¢°),
y = a(@®—2p%),

z = p®—10p°¢* — 24°,
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where p,q € Z. Moreover, if we put

4413
1—2t3’

h(t) :

we have x/y = h (p/q) for any solution x,y(# 0) of the above equation (3.3).
The function h(t) is monotonously increasing for 0.7937... = {/1/2 < t <

V5 +3v3 = 2.1684..., monotonously decreasing for t > \/5+ 3v/3, and
h e CM(Y1/2,00).

LEMMA 3.4 ([4, p. 406]). All positive integral solutions of
(3.4) 22+ ay 4yt =22
are given by
= P-4,
= 2pq+¢°,
z = pHpg+d

(up to exchange of x and y), where p,q € Z with p > q. Moreover, if we put
2 -1
h(t) == ——
®) 2t +1°

we have xz/y = h(p/q) for any solution x,y(# 0) of the above equation
(8.4). The function h(t) is monotonously increasing for t > —1/2, and
h e CM(=1/2,00).

LEMMA 3.5 ([4, p. 260]). A set of positive integral solutions of

(3.5) w2 +y? =t —0?
is given by

z = p'—q,

y = 4°¢,

u = PP+

v o= 2pq(p® —¢°)

(up to exchange of x andy), where p,q € Z with p > q. Moreover, if we put

21
h(t) = — - —
®) =7~
we have x/y = h(p/q) for any solution x,y(# 0) of the above equation (3.5).
The function h(t) is monotonously increasing for t > 0, and h € C1(0, 00).
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4. PROOF OF THEOREM 1.5

By the function h(t) defined in Lemma 3.1, we have

VR ot VMl A Gl i Mt
gs T (6 ) - 461/3(62/5 _ 1) B 4(@1/5 — e_l/s)

sinh®(1/s) -1 1

= QSlT(l/s) =3 (sinh(l/s) — cosech(l/s)).

Let P,,Q, (n > 3) be convergents of e'/* given by (2.7), and let

r, = P}-6P?Q>+Q2,
Yn = 4PnQn(P3 - Q%)7
z, = P24+Q2.

Then it follows from Lemma 3.1 and P,Q,, = 1 mod 2 that
:433I erfI = zf” T >0, yp >0, 2, >0, 4|z, 4|lyn, 2|zn, and
T [Yn = W(Pn/Qn).
Applying Lemma 1.1, we have

£ - Tn P, loglog Q.

= |n(el/* —h(—)‘ < Cy——2 20
Yn ‘ () Qn Q2 10g Qn
Since 1 < P, /Q, < 3 for all integers n > 1,

(4.1)

(42) Q< PuQu < PaQu(P2 - Q%) = Lt < PIQ, < 27Q}.
Particularly, for @, > 3, we get
3
7 Qny’ﬂ Yn 1Og(yn/4)
> In log Q, > —=>2n/ )
@n>Tos =10 18@n>—7
and so
2 VYn V yn/4
> = loglo < loglo 4).
Qn 6v3 33 glog Qn < loglog(yn/4)

Hence, from (4.1) we conclude that

Y PN loglog(yn/4) S 7).
Tl * Y2108 (yn /4) =1

Setting
Cy :=21V3Cs, z:= T4y = yn/d, 2 1= 2, /2,
we get the upper bound in Theorem 1.5.
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Conversely, we apply Lemma 2.1 to the function h defined in Lemma 3.1.
There exists a nontrivial closed interval I, C (1, 00) centered around e!/* such
that for any positive integers p, q(> 3), p/q € Is the inequality

loglogq
q*logq
holds. Let positive integers x, y(> 3), z be given such that x2 +y? = z*. Since

h((1,00)) = R, /y may take every rational number. By Lemma 3.1 there are
integral parameters p, ¢ with

(4.3) h(e'*) — h(p/q)| > C

z = p*—6p’¢ +¢*,
y = 4pq(p® — ¢*),
z = PP+,

and z/y = h(p/q). By h'(t) > 0 (t € I), the inverse function h~! exists on
h(Iy), i.e. h=Y(xz/y) = p/q. Now assuming p/q = h~*(z/y) € I, we obtain
the inequality (4.3), namely

T

£ - 5 Clog loggq

q*logq

The interval I, has the form I, = [e'/* — o, e!/* + a], where 0 < o < €'/* — 1.
Hence, if p/q € I, then p > g(e'/* — a), so that we get p? — ¢ > [¢* with
B = (el/s — a)2 — 1. Thus we have y = 4pq(p? — ¢*) > 4¢*Bv/1+ B > 483¢*
or ¢? < V/ (24/f). Then, for some positive constant Cas depending at most
on s, we get

T loglogy
§s——| > Cwp—=— > 3).
Y Vylogy ( )
Since h is monotonously increasing on (0, 00), there exists a constant Co7 such
that the inequality |&s — 2 /y| > Ca7 > 0 holds for p/q = h=!(z/y) & L. O

5. REMARKS ON THE PROOFS OF THEOREMS 1.6 - 1.9

In this section we sketch the proofs of Theorems 1.6 - 1.9. The argu-
ments are always the same as in the proof of Theorem 1.5 given in section 4.
Therefore we only mention the main formulas of the proofs.

PRrROOF OF THEOREM 1.6. This Theorem is based on Lemma 3.2.
Upper bound: We have

r, = P2-Q%-2P,Q,,
Yn = Ps_Qi‘i‘QPnQn: (Pn+Qn)2_2Q72m
Zn = Pf +Qi.
By Qn < P, <3Q, (n>1) we get 2Q2 < y, < 14Q2, and so
n 1 n/ 14
Q% > Y log Q. > M > Caglogy,, loglog@, < loglogy,.

14’ 2
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Lower bound: We have

inh(1/s) — 1
= h(el/s _ smitl/s) — 1
& () sinh(1/s) +1
and
r = p°—q° —2pq,
y = p*—q*+2pg>3,
z = p2+q2.

The assumption z/y < 1 of the theorem implies that :/y belongs to the range
of h. In addition, we have I, C [1,00). Thus, I, = [e!/* — o, e'/* + a], where
0<a<e/s—1.Ifp/q € I,, then p > q(e'/*—a), and y = (p+¢)*—2¢°> > B¢?,
where 3 = (e!/* —a+1)2—~2 > 2. For p/q = h~'(z/y) € I and p/q > V21,
the inequality |y&s — x| > C' > 0 holds, since h is monotonously increasing on

(v/2 — 1,00). In particular, h~! exists for every e > 0 on [v/2 — 1 +¢, 00).

PrROOF OF THEOREM 1.7. This Theorem is based on Lemma 3.3.

Upper bound: We have

Tn = Pn(P7§+4Q?z)a
Yn = Qn(QfL*QPS) <07
s = PS—10P3Q3 205

By Qn < P, <3Qn (n>1) we get QF < |y,| < 53Q%, and so

O

lo 53
Q?L >4/ %, log Q, > M > Cag log|yn|, loglog @, < loglog|ynl.

4
Lower bound: Let p = v/5 + 3v/3. By the condition of the theorem
e (V5+3V3)B+VE) _ ho)
y 3+2V3 ’
so that x/y(> 0) belongs to the range of h. We have

] ,4+€3/s
_ 1/sy _ _1/s
€S - h(e )—6 17263/5

_ sinh(4/s) 4 cosh(4/s) + 4sinh(1/s) + 4 cosh(1/s) <0
1 —2sinh(3/s) — 2 cosh(3/s) ’

and
z = p(p®+4¢°),
= (q —2p3)<0,
z = p®—10p3¢® —245.

In addition, I, C [p,00) (s = 1), I, Cc [1,p] (s > 1). Thus, I, =

[et/s —a,e'/* +a], where 0 < a < e—pifs = 1,0 < a < e/ —1

if
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s> 1. If p/q € I, then p > g(e'/* — @), and |y| = q(2p® — ¢*) > B¢*, where
B=2(e/*—a)*—1>1.1f p/q & I,, we again distinguish the cases s = 1 and
s> 1. If s = 1, we have the additional condition of the theorem that p/q > p.
Since h is monotonously decreasing on (p, 00), there exists a constant C’ such
that |&; —a/y| > C" > 0. If s > 1, we have ¢/1/2 < p/q < p. Since h is
monotonously increasing on ({/1/2, p), there exists a constant C” such that
|&s —x/y| > C" > 0. O

PrROOF OF THEOREM 1.8. This Theorem is based on Lemma 3.4.
Upper bound: We have

Yn = 2P, Qn+ Qia
Zn = P3+PnQn+Q%
Since Q,, < P, < 3Q,, (n > 1), we have 3Q% < y, < 7Q?, and so
n 1 n/ 7
Q> y7 log @n > % > Csplogyn, loglog @, < loglogy,.
Lower bound: We have
€2 = h(el/") = 2sinh(1/s?
2 + cosh(1/s) — sinh(1/s)
and
r = p’-q,
= 2pq+ ¢
z = pP4pe+dt

In addition, I, C [0,00). Hence, I, = [e!/* — a,e'/* + a], where 0 < a <
el/s. If p/q € I, then p > q(el/s — oz), and y = 2pq + ¢> > Bq¢?, where
B =2(e'/* —a)+1 > 1. Since h is monotonously increasing on [0, o), there
exists a constant C%, such that the inequality |{; — z/y| > C%, > 0 holds for
p/q=h"Y(x/y) & Is. In particular, h~! exists on [0, c0). O

PROOF OF THEOREM 1.9. This Theorem is based on Lemma 3.5.
Upper bound: We have

In = Pé - ;lm
Yn = 4P3Q$”
Up = Ps + in
v, = 2(P?—Q%P,Q,.
Since Q,, < P, < 3Q, (n > 1), we have 4Q* < y, < 36Q%, and so
Qi > Vn log Q. > M > (31 logy,, loglog@, < loglogy,.

6 4



280 C. ELSNER, T. KOMATSU AND I. SHIOKAWA

Lower bound: We have
) 1 2
é-s = h(el/é) = 5 sinh (g)
and
= p'—q",
= 4p°,
= PP+
= 200 — ¢)paq.

SRS

In addition, I, C (0,00), and so I, = [e!/* — a,e'/* + a], where 0 < a <
et/s. If p/q € I, then p > q(e'/* — a), and y = 4p*¢> > Bq*, where § :=
4(et/s — a)2 > 0. Since h is monotonously increasing on (0, c0), there exists
a constant C%; such that the inequality |{s — 2/y| > C4; > 0 holds for p/q =
h=1(x/y) & I,. In particular, h~! exists for every € > 0 on [g, o0). O

6. GENERALIZATION TO TRIGONOMETRIC FUNCTIONS

Let s be a positive integer. Then, the following continued fraction expan-
sions are known:

oo

tan(l) = [1;2k—1,1],_;,
tan(l/s) = [0;571,1,572+2ks]20=1 (s >1).

Let p,/qn be the n-th convergent of tan(1/s). Then, we have for P, := pa,
and @, := g9, that

P, 1
e e )
tan 1 ,& < 1 (s>1,v>1)
)7 a GCv 1) -2z I

Applying the method given by [8, Corollary 1], we find three-term linear
recurrence formulae for P, and @Q,: For s = 1 we get with Ph, = 1, P, =
3, Qo =1, Q1 =2 that

P, = (2n+1)Pn—1 — P, o, Qn = (2n+1)Qn—1 _Qn—Q (’I’L > 2)7
whereas for s > 1 the recurrences start with Pp =0, P, =1, Qo =1, Q1 = s:

P, =s2n—1)Py1— P2, Qn = s2n—1)Qn-1— Qn-2 (n>2).
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These recurrence formulae correspond to the well-known non-regular contin-

ued fraction
1

tan(l/s) =

3§ — ————
28— .

see [13, ch. 8, (27)]. By these facts, in connection with the results for exp(1/s)
in (1.1) and (1.2), it follows that Lemma 1.1 holds for h(e!/*) just as for
h(tan(1/s)). As a consequence, we may replace the hyperbolic functions in
our preceding results by certain trigonometric functions.

THEOREM 6.1. Let s be a positive integer. Then, the theorems listed in
the following table hold for the numbers h(e'/*) and h(tan(1/s)) both.

Theorem No. £ = h(el/?) & = h(tan(1/s))
Proposition 1.2 sinh(1/s) —cot(2/s)
Proposition 1.8 cosh(1/s) cosec (2/s)
Proposition 1.4 tanh(1/s) —cos(2/s)
Theorem 1.5 (sinh (1/s) — cosech (1/s))/2 —cot(4/s)
sinh(1/s) — 1 1+ tan(2/s)
Theorem 1.6 sinh(1/s) + 1 1 — tan(2/s)
Theorem 1.9 (sinh(2/s))/2 — cosec (2/s) cot(2/s)

A real irrational number £ is said to be a Liouville number, if there is a
sequence of rationals (an/b,), o with 1 < b; <by < --- and

1
< b—n (n>0)

n

20
(61) g

n

REMARK 6.2. If £ is a Liouville number and x(n) any strictly increasing
sequence of positive integers satisfying x(n) > n, then there is a sequence of
rationals (A, /Bp),~q with 1 < By < By < --- and

A, 1
‘ § — B_n < W (n > 0)

This follows by setting A, := ay(n), Bn := byeny (n > 0).

REMARK 6.3. When the inequality (6.1) holds for all subscripts n > ng
only, ¢ is a Liouville number defined by the shifted sequence of rationals al, /b/,
with al, := aning, b, = bpin, (n > 0).

THEOREM 6.4. Let a be a real number such that tan(ra/2) is a Liouville
number. Then there is a sequence of rationals (pn/qn),~o with 1 < q1 < g2 <
- and a sequence of positive integers (ry), satisfying

1
pr ¢ =p>+r3, p,=0 mod2.
n
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In particular, sin(m) is a Liouville number.

ProoOF. Without loss of generality we may assume that 0 < a < 1. From
the hypothesis of the theorem it follows that there is a sequence of rationals
(an/bn), s With 1 < by < by < --- satisfying

o an
tan ( - ) - —
2 bn
For 0 < a < 1 the number tan(mwa/2) is positive. In what follows we separate
our arguments according to the cases tan(ma/2) < 1 and tan(ra/2) > 1.
CASE 1. tan(ra/2) <1
Then, for all sufficiently large subscripts n > ni, we have 0 < a,, /b, < 1.
CASE 2. tan(ra/2) >1
Here, we have for large subscripts n > ng that 1 < a,/b, < 1+ tan(ra/2).
Set

1
b%n-‘,—l :

f@) =
Then,

/ _ 2(1 _x2)

f(x) = _(1+x2)2.

For n > 0 there is a real number 7 depending possibly on « and n such that

62 [r(n () -r ()] = v | (5) - 32

where either a, /b, < n < tan(mwa/2) or tan(ra/2) < n < an /b, holds. By our
construction, the situation described in Case 1 yields 0 < n < 1 for n > ny,
whereas in Case 2 we have 1 < n < 14 tan(ra/2) for n > ng. Hence
1 11— 7| 2
Sl = ——F5 <1—7|
2 (1+7?)°
1-n2 < 1 (Case 1)

)

n?—1 < tan(ra/2)(2+ tan(ra/2)) (Case 2)
or |[f'(n)] < Cy = 2max{ 1;tan(ra/2)(2 + tan(rer/2)) }. In the first case
we have 0 < a,, < by, and in the second case 0 < a, < bn(l + tan(wa/2)),
which is summarized by 0 < a,, < Cyb,. Now, the right-hand side of (6.2)
can be estimated as follows: Let b,, > 1 + Ci > Cy, and n > ny or n > ng,
respectively. Then,
C 1 1
/ t ( Ta ) _On < a —

1 1
< .
(b5 +CZ07)" (07 +ap)"
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The left-hand side of (6.2) equals to

2 tan(ma/2) 2a, /by ) 2apby,
5 - 3 | = |sin(ma) — ——+
1+ tan®(ra/2) 14 a2 /b2 a2 + b2
With p, = 2a,b,, ¢, = a2 + b2, and r, := |a? — b2|, we have proven for

sufficiently large n that

2
n

1 : 2 .2
o < P with D, + 1, =4
n

and (gn), is a strictly increasing sequence of positive integers. To prove
that sin(ma) is a Liouville number, it suffices to show that it is not rational.
But, assuming the contrary, it follows by

sin(7ra) tan? ( % ) — 2tan ( % ) + sin(ra) = 0

that tan(mwa/2) is an algebraic number. But every Liouville number is tran-
scendental, a contradiction. This completes the proof of the theorem. O

Observing the identity
1 — tan?(ma/2)
1+ tan?(ma/2)’

the following result can be proven in a similar manner by applying the mean
value theorem to the function f(z) = (1 —22)/(1 + 2?).

cos(mar) =

THEOREM 6.5. Let « be a real number such that tan(ra/2) is a Liouville
number. Then there is a sequence of rationals (pn/qn)n>0 with 1 < q1 < qo <
- and a sequence of positive even integers (rr,), . satisfying

1 2 2 2
o | Sy IR

In particular, cos(ra) is a Liouville number.
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