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Abstract. In this paper we study analytic properties of intertwining
operators and apply them to the determination of the composition series
of degenerate and generalized principal series for Sp(4, R). We expect that
that some of the methods developed here will extend to higher rank groups
in order to extend the formalism of degenerate Eisenstein series given by
[21] and [22]. In higher rank cases we expect to be more dependent on the
algebraic theory of representation theory of the real reductive groups as
developed by Vogan [30].

1. Introduction

In the theory of automorphic forms, and especially in the theory of Eisen-
stein series, (see [6–9, 13–16, 21, 22, 26, 32]) it is important to have a good
understanding of standard local intertwining operators: their poles, images
and kernels. This is directly related to the structure of composition series of
degenerate and generalized principal series of a given reductive group over a
local field (Archimedean or not).

In the series of the papers ([18–20]) we have obtained relatively good un-
derstanding of the reducibility and composition series of generalized principal
series for classical p–adic groups. Then one can apply Aubert–Schneider–
Sthuler–Zelevinsky involution [1] to obtain the reducibility and composition
series of degenerate principal series. As an application of our work, we have
constructed in a elegant way a large family of residual automorphic represen-
tations [21] that enables us to prove the unitarity of many isolated unitary
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representations of p–adic, real and complex classical groups proving that they
appear as local components of representations from the corresponding (resid-
ual part of) discrete spectrum (see [21,23]). This paper is a step towards ex-
tending our construction from [21] and [22] by relaxing the requirement that
the archimedean component is spherical. In a more general case, we expect
to use the same ideas to determine irreducible quotients and subrepresenta-
tions of certain degenerate representations in order to extend the formalism
of Eisenstein series given by [21] and [22] in order to determine the appear-
ance in the residual spectrum of Sp(2n,AQ) of irreducible representations for
Sp(2n,R). But in higher rank cases we expect to be more dependent on the
algebraic theory of the representation theory of the real reductive groups as
developed by Vogan [30].

The approach in the present paper is very conceptual and essentially ana-
lytic. Everything is based on the classification of irreducible Harish–Chandra
modules as explained in the book [10]: the classification of tempered rep-
resentations due to Knapp–Zuckerman and the Langlands quotient theorem
(see Section 8 for the description of irreducible Harish–Chandra modules for
Sp(4,R)). But we use analytic properties of intertwining operators extensively
(see Lemmas 7.2 and 7.3 of Section 7), and in a rather novel way. Except that
we use K–types (see Lemma 6.1) combined with the usual theory of transla-
tion functors ([10, 33]). As we pointed above, more things need to be added
for higher rank groups.

We explain the content of the paper. In Section 2 we fix notation and re-
call some well–known results related to the classification of irreducible Harish–
Chandra modules. In Section 3 we recall the translation functors ([10, 33]),
and prove some technical results needed later in the paper (see Lemma 3.4
and Lemma 3.5). In Section 4 we compute translation functors for GL2(R)
(see Lemmas 4.1 and 4.2) using the material of Section 3. In Section 5, we
write down the reducibility of principal series (see Lemma 5.1). This fol-
lows from [27], but for the convenience of the reader we give a more direct
proof combining the idea of the factorization of long–intertwining operators
([27]) with the computation of R–groups of Goldberg ([4]) (We should remark
here that although the work of Goldberg is on R–groups for split classical
groups p–padic, his work is based on general results on R–groups that holds
also for real groups ([10]). Therefore, as it was remarked in the introduction
of [4], the results of [4] hold also for real classical groups.). In Section 6,
we compute K–type structure of principal, generalized and degenerate prin-
cipal series (see Lemma 6.1). In Section 7, we elaborate our idea of using
analytic properties of intertwining operators (Lemmas 7.2 and 7.3). This is
the central section of the paper. We use Lemmas 7.2 and 7.3 as our main
tool in studying the structure of generalized and degenerate principal series
for Sp(4,R). In Section 8, we recall from [10] the classification of irreducible
Harish–Chandra modules for Sp(4,R). In Sections 9, 10, and 11 we determine
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composition series of generalized and degenerate principal series for Sp(4,R)
for integral infinitesimal character. In Section 12, we consider the easy case
of non–integral infinitesimal character.

We should warn the reader that there are well–known approaches in the
determination of composition series of generalized principal series for real
reductive groups. One approach is based on usage of cohomological methods
(see for example [11] and [30]). The other approach is based on geometric
considerations (see for example [12]). In the case of Sp(4,R) they are rather
different than the one explained here but one may use them (and some hard
work) to write down the results of the present paper but without getting any
information on the images and kernels of intertwining operators.

The structure composition series of generalized and degenerate principal
series for Sp(4, F ), F p–adic, was obtained earlier by Sally and Tadić in [24].
Their approach is based on Jacquet modules.

This manuscript is an extension of the manuscript called ”The composi-
tion series of generalized and degenerate principal series for Sp(2,R)”.

2. Preliminaries

Let H be a (Zariski connected) algebraic group defined over R. We write
H(R) for the group of its R–points. H(R) has a structure of a Lie group and
we write hR for its Lie algebra. The complexification of hR is hC := hR⊗RC. It
is a complex Lie algebra. Finally, H(R) need not be connected in the metric
topology. We write H(R)0 for its identity component.

Let G be a reductive split algebraic group defined over R. Then the group
of R–points G(R) has a natural structure of the real reductive group in the
sense of [30]. We assume that G is split over R and write B = TU for its
Borel subgroup, where T is split torus and U is maximal unipotent radical of
B. We write Σ for the set of roots of G with respect to T and Σ+ for the
set of positive roots with respect to B. Let ∆ be the basis of Σ+. Let W
be the Weyl group of G with respect to T , W ≃ NG(T )/T . One can take
representatives of elements in W in G(R).

Since G is split over R, this gives us the following decomposition on the
level of Lie algebra:

gR = ⊕α∈∆+
(gR)−α ⊕ tR ⊕α∈∆+

(gR)α.

We know that dimR(gR)±α = 1 and we may take a Chevalley basis X±α. We
know that there is a unique antilinear–automorphism of order two θ of G(C)
such that its differential on gC satisfies dθ(Xα) = −X−α and dθ|t(R) = −id.
The group of fixed points G(C)θ define maximal compact subgroup of G(R)
by KR = G(R) ∩ G(C)θ so that we have the Iwasawa decomposition G(R) =
KR · T (R)0 · U(R).
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For any subset Θ ⊆ ∆, there is a standard parabolic subgroup PΘ = P =
MN ⊆ G (Levi decomposition), where A = (∩α∈Θ kerα)0 1and M = ZG(A).
A is a maximal split torus in the center of M . We write ΣΘ

+ for the set of
all positive roots of T in M with respect to B ∩M . Next, X(M) and X(A)
are the groups of (R–rational) characters of M and A, respectively. Then
X(M) ⊆ X(A) is a subgroup of finite index. Hence

X(M) ⊗Z R ≃ X(A) ⊗Z R := a∗R.

Put aR := Hom(a∗R,R). As notation suggests, it can be identified by the Lie
algebra of A(R). We write 〈 , 〉 for the canonical pairing a∗R × aR → R. We
define (smooth) homomorphism HM : M(R) → aR characterized as follows:

exp 〈χ,HM (m)〉 = |χ(m)|, ∀χ ∈ X(M).

Clearly, any ν ∈ a∗C = a∗R ⊗R C, defines a character as follows:

m exp 〈ν,HM (m)〉.
Its differential is ν. Put 0M = kerHM . Then we clearly have M(R) =
0M · A(R)0 (direct product). Thus, Levi decomposition is more traditionally
written as a Langlands decomposition P (R) = 0M · A(R)0 · N(R) (direct
product of smooth manifolds).

This of course applies to G (= P∆) itself. If Z is maximal R–split subtorus
of the center of G, then G(R) = 0G · Z(R)0.

Let G = GLn so that G(R) = GLn(R). Let Z be the center of GLn. Then
ν ∈ z∗C ≃ C, and we have exp 〈ν,HGLn

(g)〉 = | det g|ν .
If Θ = ∅, then P = B, N = U , and T = M = A. In this case we also

have T (R) = 0T · T (R)0. In this case 0T is just a finite group that can be
characterized as follows 0T = KR ∩ T (R). We have an embedding a∗R →֒ t∗R,
defined by restriction of characters:

exp 〈ν,HM (t)〉 = exp 〈ν,HT (t)〉 ∀t ∈ T.

We define the positive Weyl chamber C+(A,N) of A with respect to N
as the set of all ν ∈ a∗R such that

〈ν, α∨〉 > 0, ∀α ∈ Σ+ \ ΣΘ
+.

Finally, let ν1, ν2 ∈ t∗R. Then we write ν1 ≥ ν2, if ν1 − ν2 =
∑

α∈∆+
cαα,

where all cα ∈ R≥0.
We write Irr(G(R)) for the set of equivalence classes of irreducible (admis-

sible) (gR,KR)–modules. We write Irr(G(R))temp and Irr(G(R))disc for sub-
classes of tempered and discrete series (admissible) (gR,KR) modules. When
(gR,KR)–module is unitarizable, it has a up to unitary equivalence unique
globalization to the irreducible unitary representation of G(R); we denote it
by HG(X) or just H(X). We write R(G(R)) for the Grothendieck group of
finite length admissible (gR,KR)– modules.

1Here superscript 0 means a connected component in an algebraic sense.
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We also recall Harish–Chandra’s subquotient theorem and the description
of infinitesimal characters. Let Z(gC) be the center of universal enveloping
algebra U(gC). If γ : Z(gC) → U(tC)W is Harish–Chandra homomorphism,
then for λ ∈ t∗C, we define character χλ of Z(gC). We have χλ = χλ′ if and
only if λ = w(λ′), for some w ∈W . If X ∈ Irr(G(R)), then Z(gC) acts by χλ

on X , for some λ. Shortly, we say that X has an infinitesimal character λ.

Theorem 2.1. Let µ : T (R) → C× be a character. We can write in a
more traditional way (δ, ν), according to the decomposition T (R) = 0T ·T (R)0,
where δ = µ|0T (R) and exp 〈ν,HT (·)〉 = µ|T (R)0 . We have the following:

(i) Two principal series Ind
G(R)
B(R)(µ)KR−finite and Ind

G(R)
B(R)(µ

′)KR−finite

have the same semi–simplification in R(G(R)) if and only if there exists
w ∈ W such that w(µ) = µ′ or, equivalently, w(δ) = δ′ and w(ν) = ν′.

(ii) All irreducible subquotients of the principal series Ind
G(R)
B(R)(µ)KR−finite

have the same infinitesimal character χν .
(iii) Assume that X is an irreducible (gR,KR)–module with infinitesi-

mal character χλ. Then there exists character µ : T (R) → C×,
exp 〈λ,HT (·)〉 = µ|T (R)0 , such that X is an irreducible subquotient of

Ind
G(R)
B(R)(µ)KR−finite.

If G(R) = GLn(R) or G(R) = Sp(2n,R), then we write µ = µ1⊗· · ·⊗µn,
and we write following Tadić and Zelevinsky (cf. [T, Ze]):

(2.1)
µ1 × · · · × µn := Ind

G(R)
B(R)(µ)KR−finite, G(R) = GL

n
(R);

µ1 × · · · × µn ⋊ 1 := Ind
G(R)
B(R)(µ)KR−finite, G(R) = Sp(2n,R).

We can parameterize all characters of R× as follows. Put sgn(x) = x/|x|.
This is a character of R× and all other can be obtain are of the form sgn( )ǫ| |s,
s ∈ C, ǫ ∈ {0, 1}. Thus, we can write µi = sgn( )ǫi | |si , si ∈ C, ǫi ∈ {0, 1}.
Then in both cases in (2.1) the infinitesimal character is given by (s1, . . . , sn) ∈
Cn.

More generally, we have the following theorem

Theorem 2.2. Let P = MN be a standard parabolic subgroup of G where
G is a split reductive R–group. Let HM be some irreducible admissible Hilbert
space representation of M having infinitesimal character χλ. Assume ν ∈ a∗C.

Then any irreducible subquotient of Ind
G(R)
P (R)(exp 〈ν,HM (·)〉 ⊗ HM )KR−finite

has infinitesimal character χλ+ν

Finally, we recall the Langlands classification.

Theorem 2.3. Let P be a standard parabolic subgroup of G, XM a tem-
pered irreducible (mR,KR ∩ M(R))–module, and ν ∈ C+(A,N). Then the
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(gR,KR)–module on

(2.2) Ind
G(R)
P (R)(exp 〈ν,HM (·)〉 ⊗ H(XM ))KR−finite

has a unique irreducible quotient. We write

Lang
(
Ind

G(R)
P (R)(exp 〈ν,HM (·)〉 ⊗ H(XM ))

)

for the Langlands quotient. We call an induced representation of the form
(2.2) a standard representation. The Langlands quotient appears with multi-
plicity one in the composition series of (2.2). Let wl be the longest element
of W and let wl,Θ be the longest element of the Weyl group of Θ. Then
wlwl,Θ(Θ) ⊆ ∆. We write P ′ = M ′N ′ for the corresponding standard para-
bolic subgroup. Then we again form induced representation:

(2.3) Ind
G(R)
P ′(R)(exp 〈wlwl,Θ(ν), HM (·)〉 ⊗ wlwl,Θ (H(XM )))KR−finite

Then the induced representations (2.2) and (2.3) have the same semisimpli-
fications in R(G(R)). The semisimplification of standard module in (2.2) in
R(G(R)) is of the form

Ind
G(R)
P (R)(exp 〈ν,HM (·)〉 ⊗ H(XM ))KR−finite =

Lang
(
Ind

Gn(R)
P (R) (exp 〈ν,HM (·)〉 ⊗H(XM )

)
+

∑

X∈IrrG(R), νX<ν

m(X) ·X,

where m(X) ∈ Z≥0, and it is zero for all except finitely many X ∈ Irr(G(R)).
Moreover, the Langlands quotient is a unique irreducible subrepresentation in
(2.3). Next, the space of intertwining operators between the induced represen-
tations (2.2) and (2.3) is one–dimensional. Finally, if X ∈ Irr(G(R)), then
there exists a unique standard parabolic subgroup P = PΘ, a unique tempered
irreducible (m,KR ∩M(R))–module XM , and a unique ν ∈ C+(A,N) such
that X is equivalent to the Langlands quotient of (2.2).

The next two theorems are well-known.

Theorem 2.4. Let G(R) = SL2(R). Then KR = U(1). We write the
Weyl group W = {id, w0} of T in G. Put η = sgnǫ| |s, s ∈ C, ǫ ∈ {0, 1}.
Then we have the following:

(i) η ⋊ 1 is irreducible unless s ∈ Z and ǫ ≡ (s+ 1) (mod 2).
(ii) Let s ∈ Z>0. Then there are two non-equivalent representations in

the discrete series X(s,+) (of lowest KR–type s + 1) and X(s,−) (of
highest KR–type −s − 1), and a unique irreducible finite–dimensional
representation of dimension s, Vs (it has a highest weight s− 1) such
that:

X(s,+) ⊕X(s,−) →֒ | |ssgns+1 ⋊ 1։ Vs,

Vs →֒ | |−ssgns+1 ⋊ 1։ X(s,+)⊕X(s,−).
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(iii) Let s = 0. Then there are two non-equivalent tempered irreducible
representations (limits of discrete series) X(0,+) (of lowest KR–type
1) and X(0,−) (of highest KR–type −1) such that:

sgn⋊ 1 ≃ X(0,+)⊕X(0,−).

(iv) All discrete series of SL2(R) are described as follows:

Irr(SL2(R))disc = {X(s,+), X(s,−); s ∈ Z>0}.

The next theorem concerns representations of GL2(R). We say that
δ ∈ Irr(GL2(R)) is square–integrable (resp., essentially square–integrable)
modulo center if it poses a globalization Hδ (resp., a globalization Hδ and
a positive character η : GL2(R) → R>0) such that Hδ (resp., η ⊗ Hδ) has
a non–trivial matrix coefficient f which is square–integrable modulo center:∫

Z\GL2(R) |f(g)|2dg <∞.

Theorem 2.5. Let G(R) = GL2(R). Put ηi = | |sisgnǫi, si ∈ C, ǫi ∈
{0, 1}, η = | |ssgnǫ, s ∈ C, ǫ ∈ {0, 1}. Then we have the following:

(i) η1 × η2 is irreducible unless η1η
−1
2 = | |ksgnk+1, k ∈ Z \ {0}. In any

case, η1 × η2 and η2 × η1 have the same composition series.
(ii) η| |k/2sgnk+1×η| |−k/2, k > 0, has a unique irreducible subrepresenta-

tion that we denote by δ(η, k) and a unique irreducible quotient that we
denote by ζ(η, k). δ(η, k) ≃ δ(η′, k′) if and only if η′ ∈ {η, sgn ·η} and
k = k′. For different pairs (η, k) the representations ζ(η, k) are mu-
tually non–isomorphic (since they are Langlands quotients). δ(η, k) is
an essentially square–integrable modulo center representation. δ(η, k)
is square–integrable if and only if η is unitary. Finally, we have the
following:

δ(η, k) →֒ η| |k/2sgnk+1 × η| |−k/2
։ ζ(η, k),

ζ(η, k) →֒ η| |−k/2 × η| |k/2sgnk+1
։ δ(η, k).

(iii)
(
η| |k/2sgnk+1 × η| |−k/2

)
|SL2(R) ≃ | |ksgnk+1 ⋊ 1, k > 0. ζ(η, k) is

a finite–dimensional representation of dimension k, having restriction
Vk to SL2(R).

(iv) U(1) is subgroup of KR = O(2) of index two. Note that

[
0 1
1 0

]
acts on

a character z  zj by sending it to z  z−j. Thus the set of irreducible

representation is described by Wj := Ind
O(2)
U(1)(z  zj), j 6= 0, and

trivial and determinant character (note that Wi ≃ Wj if and only if
j ∈ {−i, i}). Moreover, we have the following:

δ(η, k)|O(2) ≃ ⊕j≡k+1 (mod 2),j≥k+1Wj .
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Finally, we have the following:

ζ(η, k)|O(2) ≃
{
⊕j≡k+1 (mod 2),j∈[1,k−1]Wj k ≡ 0 (mod 2),

⊕j≡k+1 (mod 2),j∈[2,k−1]Wj ⊕ η|O(2) k ≡ 1 (mod 2).

3. Translation Functors

In this section we describe basic construction related to translation func-
tors following [10] (see also [27], Section 5) and prove some lemmas. We
continue with the notation from the previous section.

Let Σ+
1 be some positive root system in Σ. We say that λ ∈ t∗C is a Σ+

1 –
dominant weight if 〈Re(λ), α∨〉 ∈ R≥0, for all α ∈ Σ+

1 , and if 〈Re(λ), α∨〉 = 0,
for all α ∈ Σ+

1 , we require 〈Im(λ), α∨〉 ∈ R≥0 , for all α ∈ Σ+
1 , where we

take real part and imaginary part with respect to obvious real structure on
t∗C. All Σ+

1 –dominant weights form a fundamental domain for the action
of W on t∗C. We write D(Σ+

1 ) for the set of all Σ+
1 –dominant weights in

t∗C. There is a unique w ∈ W such that w(Σ+) = Σ+
1 . This implies that

w(D(Σ+)) = D(Σ+
1 ).

Fixing any positive root system Σ+
1 , there is a one-to-one correspondence

between dominant integral weights λ ∈ D(Σ+
1 ) ∩ X(T ) and algebraic finite

dimensional irreducible representations of G(C), λ  Vλ, characterized by
that λ is a highest weight when Vλ is restricted to T (C). Clearly, taking
Vλ|G(R) one gets a proper subset of all smooth irreducible representations of
G(R). It is characterized by the fact that λ is highest weight of Vλ. We
write V −λ for its dual. It is module of lowest weight −λ. This also gives
parameterization of a subset of all smooth irreducible finite dimensional G(R)
representations.

Let M(gR,KR) be the category of finite–length admissible (gR,KR)–
modules. For any λ ∈ t∗C, we define the functor pλ on M(gR,KR) that maps
a module X onto a module pλ(X), which is by the definition the largest
submodule of X where z − χλ(z) is nilpotent, for any z ∈ Z(gC). Clearly,
pλ = pw(λ), for any w ∈W . Also, this is an exact functor and X ≃ ⊕λpλ(X),
where λ ranges over some finite set in t∗C .

Now, we fix some positive root system Σ+
1 and let λ ∈ D(Σ+

1 ) and µ ∈
D(Σ+

1 ) ∩X(T ). We define two functors on M(gR,KR)

(3.1) ϕλ
λ+µ(X) := pλ+µ (pλ(X) ⊗ Vµ) ,

and

(3.2) ψλ+µ
λ (Y ) := pλ

(
pλ+µ(Y ) ⊗ V −µ

)
.

Remark 3.1. Clearly, for any w ∈ W , w(λ) ∈ D(w(Σ+
1 )) and w(µ) ∈

D(w(Σ+
1 ))∩X(T ), and the functor ϕ

w(λ)
w(λ)+w(µ) (resp., ψ

w(λ)+w(µ)
w(λ) ) is naturally

isomorphic to ϕλ
λ+µ (resp., ψλ+µ

λ ).
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Theorem 3.2. Let λ ∈ D(Σ+
1 ) and µ ∈ D(Σ+

1 ) ∩X(T ) for some positive
root system Σ+

1 in Σ. We write W (λ + µ) and W (λ) for stabilizers in W
of the corresponding weights. Assume that X,Y are objects of the category
M(gR,KR). Assume that X has the infinitesimal character λ and Y has the
infinitesimal character λ+ µ. Then we have the following:

(i) ϕλ
λ+µ(X) = 0 implies X = 0.

(ii) Assume that X is irreducible. Then ψλ+µ
λ (ϕλ

λ+µ(X)) has a composi-

tion series of exactly #(W (λ)/W (λ+ µ)) elements. Moreover, any

irreducible constituent of ϕλ
λ+µ(X) maps under ψλ+µ

λ to a module that
is either zero or it has all irreducible constituents isomorphic to X.

(iii) If we have the equality of stabilizers W (λ+ µ) = W (λ) (in W ), then

ψλ+µ
λ (ϕλ

λ+µ(X)) ≃ X,

ϕλ
λ+µ(ψλ+µ

λ (Y )) ≃ Y.

(iv) Assume that an module with a generalized infinitesimal character λ+µ
has a composition series consisting of isomorphic (irreducible) pieces,

say Y , then its image under ψλ+µ
λ is zero or it has a composition series

composition series consisting of isomorphic (irreducible) pieces, say X.
Moreover, if the whole module is irreducible and isomorphic to Y , then
Y appears in ϕλ

λ+µ(X).

(v) Hom(gR,KR)(Y, ϕ
λ
λ+µ(X)) ≃ Hom(gR,KR)(ψ

λ+µ
λ (Y ), X).

Remark 3.3. Let λ ∈ D(Σ+
1 ) and µ ∈ D(Σ+

1 ) ∩X(T ) for some positive
root system Σ+

1 in Σ. It is easy to see that we have the following relation
between stabilizers in W : W (λ+ µ) = W (λ) ∩W (µ).

We now write the effect of the action on the induced representation in
the form we need later in the paper.

Lemma 3.4. Let λ, µ ∈ t∗C. We assume that there exists a positive root
system Σ+

1 in Σ such that λ ∈ D(Σ+
1 ) and µ ∈ D(Σ+

1 )∩X(T ). Let P = MN ⊆
G be a standard parabolic subgroup corresponding to Θ ⊂ ∆. Assume that
there exists a positive root system Σ+

M,1 in that of Θ such that λ ∈ D(Σ+
1 )M

and µ ∈ D(Σ+
1 )M ∩ X(T ). Let XM be an admissible finite length (mR,K ∩

M(R))–module with infinitesimal character λ. Put X = Ind
G(R)
P (R)(XM ) (then

X also has infinitesimal character λ). Then there is an inclusion:

(3.3) Ind
G(R)
P (R)(ϕ

λ
λ+µ(XM )) →֒ ϕλ

λ+µ(X).

Let YM be an admissible finite length (mR,K ∩M(R))–module with infinites-

imal character λ + µ. Put Y = Ind
G(R)
P (R)(YM ) (then Y also has infinitesimal

character λ+ µ). Then we have the following:

(3.4) ψλ+µ
λ (Y ) ≃ Ind

G(R)
P (R)(ψ

λ+µ
λ (YM )).
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Proof. First, (3.4) is proved for example in [27, Corollary 5] (see also
[10]). We prove (3.3). We consider the restriction

(3.5) Vµ|M(C) ≃ V M
µ ⊕µ′<µ mult(V

M
µ′ , Vµ)V M

µ′ .

Here µ′ < µ refers to the order with respect to Σ+
1 , but when we write V M

µ′ ,

we consider µ′ as a Σ+
M,1–dominant weight. Now, by Lie theorem [10], (3.5)

implies that Vµ|M(C)N(C) has a subrepresentation V M
µ (where N(C) acts triv-

ially), and in its filtration other irreducible subquotients are of the form V M
µ′

(where N(C) acts trivially) each appearing with multiplicity mult(VM
µ′ , Vµ).

Now,

X ⊗ Vµ ≃ Ind
G(R)
P (R)(XM ⊗ (Vµ)|M(R)N(R))

immediately implies (3.3).

We will be more precise in the next lemma.

Lemma 3.5. Let λ, µ ∈ t∗C. We assume that λ ∈ D(Σ+) and µ ∈ D(Σ+)∩
X(T ). Then we have the following:

(i) Let η be a character of T (R). We assume that its restriction ν to T (R)0

is W–conjugate to λ, say ν = w0(λ). Then we have the following:

ϕλ
λ+µ(Ind

G(R)
B(R)(η)) =

∑

w∈(W (ν)∩W (µ))\W (ν)w0

Ind
G(R)
B(R)(η · w(µ)),

in R(G(R)).
(ii) Let η be a character of T (R). We assume that its restriction ν to

T (R)0 is W–conjugate to λ + µ. We fix w0 such that w0(λ + µ) = ν.
Then we have the following:

ψλ+µ
λ (Ind

G(R)
B(R)(η)) ≃ Ind

G(R)
B(R)(η(w0(µ))−1).

Proof. We prove (i). We first note that, in the case M = T , the
decomposition in (3.5) is ordinary weight–decomposition of Vµ. We write
mult(µ′, Vµ) for the dimension of weight space of µ′ in Vµ. Hence

ϕλ
λ+µ(Ind

G(R)
B(R)(η)) = Ind

G(R)
B(R)(ηµ) +

∑

µ′<µ

mult(µ′, Vµ)pλ+µ

(
Ind

G(R)
B(R)(ηµ

′)
)
,

where we compute in R(G(R)). The term Ind
G(R)
B(R)(ηµ

′) has infinitesimal char-

acter λ+ µ if and only if there exists w ∈W such that w−1(ν + µ′) = λ+ µ.
We write ν = w0(λ), and we obtain the following:

w−1w0(λ) + w−1(µ′) = λ+ µ.

This means
0 ≥ w−1(µ′) − µ = λ− w−1w0(λ) ≥ 0.

Hence w−1(µ′) = µ and w−1w0(λ) = λ. Thus, we see that w ∈ w0W (λ),
µ′ = w(µ), and mult(µ′, Vµ) = 1. Finally, if w,w′ ∈ w0W (λ) satisfy w(µ) =
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w′(µ′), then w′w−1 ∈ W (µ). We can write w = w0w1 and w′ = w0w
′
1, where

w1, w
′
1 ∈ W (λ) Hence w′w−1 = w0(w

′
1w

−1
1 )w−1

0 . But the left–hand side of
the last formula is in W (µ) while the right-hand side is in W (ν). Hence
w′w−1 ∈W (ν) ∩W (µ). This proves the displayed formula in (i).

We prove (ii). We note that taking contragredients in (3.5), we have the
following (see the last proof for the notation):

V −µ|T (C) ≃ ⊕µ′≤µmult(µ
′, Vµ)(V −µ)µ′ .

Hence

ψλ+µ
λ (Ind

G(R)
B(R)(η)) =

∑

µ′≤µ

mult(µ′, Vµ)pλ

(
Ind

G(R)
B(R)(η(µ

′)−1)
)
,

in R(G(R)). Note that Ind
G(R)
B(R)(η(µ

′)−1) has infinitesimal character χν−µ′ . It

is equal to χλ if there exists w ∈ W such that w(λ) = ν − µ′. Since we have
fixed w0 such that w0(λ+ µ) = ν. We have the following computation:

w−1
0 w(λ) = w−1

0 (ν) − w−1
0 (µ′) = λ+ µ− w−1

0 (µ′).

Hence
0 ≥ w−1

0 w(λ) − λ = µ− w−1
0 (µ′) ≥ 0.

Thus, λ = w−1
0 w(λ) and µ′ = w0(µ). Hence w−1

0 w ∈ W (λ), and now, it is
easy to see that (ii) holds.

4. Translation Functors for GL2(R)

In this section we prove two lemmas that we need later in the determina-
tion of the composition series of generalized and degenerate principal series
of Sp(4,R).

Irreducible finite dimensional holomorphic representations of GLn(C) (or
equivalently irreducible representations of U(n)) are parameterized by weights
µ = (m1, . . . ,mn) ∈ Zn, m1 ≥ m2 ≥ . . . ≥ mn. We write Vµ for the corre-
sponding representation.

Lemma 4.1. Let G(R) = GL2(R) and let µ = (m1,m2), mi ∈ Z, m1 ≥
m2. Then we have the following:

(i) Let ηi = sgnǫi | |si , i = 1, 2. We write λ = (s1, s2) for the infinitesimal
character of η1 × η2 (assumed to be dominant 2). Then we have the
following:

1. If m1 > m2 and s1 = s2, then we have the following exact
sequence:

η1| |m1sgnm1 × η2| |m2sgnm2 →֒
ϕλ

λ+µ(η1 × η2)։ η1| |m2sgnm2 × η2| |m1sgnm1.

2i.e., Re(s1) > Re(s2) or Re(s1) = Re(s2) and Im(s1) ≥ Im(s2) (see the beginning
of Section 3).
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2. If the above conditions in (1) do not hold, then we have the
following:

ϕλ
λ+µ(η1 × η2) ≃ η1| |m1sgnm1 × η2| |m2sgnm2 .

(ii) Assume that η = sgnǫ| |s is a character of R×, k ∈ Z>0. We write
λ = (s + k/2, s − k/2) for the infinitesimal character of δ(η, k) and
ζ(η, k). Obviously, λ is dominant. Then we have the following:

ϕλ
λ+µ(δ(η, k)) ≃ δ(η| |(m1+m2)/2sgnm2 , k +m1 −m2),

ϕλ
λ+µ(ζ(η, k)) ≃ ζ(η| |(m1+m2)/2sgnm2, k +m1 −m2),

Proof. (i) follows from the proof of Lemma 3.5 (i). To prove (ii), we
first note the following exact sequence:

δ(η, k) →֒ η| |k/2sgnk+1 × η| |−k/2
։ ζ(η, k).

Now, we apply exact functor ϕλ
λ+µ to this and we obtain:

(4.1) ϕλ
λ+µ(δ(η, k)) →֒ ϕλ

λ+µ(η| |k/2sgnk+1 × η| |−k/2)։ ϕλ
λ+µ(ζ(η, k)).

Next, (i) implies that ϕλ
λ+µ(η| |k/2sgnk+1 × η| |−k/2) is isomorphic to

(η| |(m1+m2)/2sgnm2)| |(k+m1−m2)/2sgnk+(m1−m2)+1

× (η| |(m1+m2)/2sgnm2)| |−(k+m1−m2)/2.

Also, Theorem 2.5 (ii), implies

δ(η| |(m1+m2)/2sgnm2η| |m2 , k +m1 −m2)(4.2)

→֒ (η| |(m1+m2)/2sgnm2)| |(k+m1−m2)/2sgnk+(m1−m2)+1

×(η| |(m1+m2)/2sgnm2)| |−(k+m1−m2)/2)

։ ζ(η| |(m1+m2)/2sgnm2 , k +m1 −m2).

Now, since ϕλ
λ+µ(δ(η, k)) 6= 0 and ϕλ

λ+µ(ζ(η, k)) 6= 0 (by Theorem 3.2 (i)),

(4.1) and (4.2) complete the proof (ii).

Lemma 4.2. Let G = GL2(R) and let µ = (m1,m2), mi ∈ Z, m1 ≥ m2.
Then we have the following:

(i) Let ηi = sgnǫi| |si , i = 1, 2. We write λ + µ = (s1, s2) for the infin-
itesimal character of η1 × η2 (assumed to be dominant). Assume also
that λ = (s1 − m1, s2 −m2) is dominant; that is Re(s1) − Re(s2) ≥
m1 −m2 ≥ 0, and if Re(s1)−Re(s2) = 0, then Im(s1)− Im(s2) ≥ 0.
Then we have the following:

ψλ+µ
λ (η1 × η2) = η1| |−m1sgn−m1 × η2| |−m2sgn−m2 .

If we assume that η1 × η2 is irreducible (that is, η1/η2 is not of the
form | |ksgnk+1, k ∈ Z6=0), then η1| |−m1sgn−m1 × η2| |−m2sgn−m2 is
irreducible.
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(ii) Assume that η = sgnǫ| |s is a character of R×, k ∈ Z>0. We write
λ+µ = (s+ k/2, s− k/2) for the infinitesimal character of δ(η, k) and
ζ(η, k). Assume that k ≥ m1 −m2 ≥ 0 so that λ = (s+ k/2−m1, s−
k/2 −m2) is also dominant. Then we have the following:

ψλ+µ
λ (δ(η, k)) ≃

{
δ(η| |−(m1+m2)/2sgn−m2 , k − (m1 −m2)) k > m1 −m2,

η| |−(m1+m2)/2sgn−m2+1 × η| |−(m1+m2)/2sgn−m2 k = m1 −m2

and

ψλ+µ
λ (ζ(η, k)) ≃

{
ζ(η| |−(m1+m2)/2sgn−m2, k − (m1 −m2)) k > m1 −m2

0 k = m1 −m2.

Proof. (i) follows form Lemma 3.5 (ii). To prove (ii), observe that
k > m1 − m2, means that both λ and λ + µ are regular. Therefore, we

apply Theorem 3.2 (iii) to see that ψλ+µ
λ (ζ(η, k)) 6= 0 and ψλ+µ

λ (δ(η, k)) 6= 0.
In this case we may proceed as in the proof of Lemma 4.1 (ii) . Finally, assume
that k = m1 −m2. In this case, we have the following:

ψλ+µ
λ (η| |ksgnk+1 × η)

≃ (η| |−(m1+m2)/2sgn−m2)| |(k+m2−m1)/2sgnk+m2−m1+1

×(η| |−(m1+m2)/2sgn−m2)| |−(k+m2−m1)/2,

and, therefore, an exact sequence (k = m1 −m2):

ψλ+µ
λ (δ(η, k)) →֒ (η| |−(m1+m2)/2sgn−m2)| |(k+m2−m1)/2sgnk+m2−m1+1

×(η| |−(m1+m2)/2sgn−m2)| |−(k+m2−m1)/2(4.3)

։ ψλ+µ
λ (ζ(η, k)).

Since the induced representation in the middle is irreducible (see Theo-

rem 2.5), we see that exactly one of the representations ψλ+µ
λ (ζ(η, k)) and

ψλ+µ
λ (δ(η, k)) must be zero and the other one must be isomorphic to that

induced representation. Since obviously ψλ+µ
λ (ζ(η, k)) is finite dimensional,

we are done.

We write a corollary to the above discussion.

Corollary 4.3. Let η = | |ssgnǫ be a character of R×, k ∈ Z>0. Then
we define dominant weights by µ = (k, 0), λ + µ = (s + k/2, s − k/2), and
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λ = (s− k/2, s− k/2). Then we have the following:

(4.4) ψλ+µ
λ (η| |k/2sgnk+1 × η| |−k/2)

≃ ψλ+µ
λ (δ(η, k)) ≃ η| |−k/2sgn× η| |−k/2.

Moreover,

X := ϕλ
λ+µ

(
ψλ+µ

λ (δ(η, k))
)

has the following filtration:

X0 ⊂ X1 ⊂ X2 ⊂ X2 ⊂ X,

where 




X0 ≃ δ(η, k),

X1/X0 ≃ ζ(η, k),

X2/X1 ≃ ζ(η · sgn, k),
X/X2 ≃ δ(η, k).

Proof. The statement (4.4) follows directly from Lemma 4.2 (ii). Next,
using (4.4) and Lemma 4.1 (i), X has a filtration that has η| |k/2sgnk+1 ×
η |−k/2 for a subrepresentation and

η| |−k/2sgn× η| |k/2sgnk ≃ (η · sgn)| |−k/2 × (η · sgn)| |k/2sgnk+1,

since sgn2 = 1. Now, we apply Theorem 2.5 to prove the claim.

5. Principal Series of Sp(4,R)

In this section we start to investigate the composition series of principal
series, generalized principal series, and degenerate principal series of G(R) =
Sp(4,R) proving two preliminary results. We start by the following lemma
due to Speh [27]:

Lemma 5.1. Assume that ηi = | |sisgnǫi , i = 1, 2, are the characters
of R×. Then the principal series η1 × η2 ⋊ 1 reduces if and only one of the
following holds:

si ∈ Z, ǫi ≡ (si + 1) (mod 2), for some i ∈ {1, 2}.
η1η2 = | |ksgnk+1, for some k ∈ Z6=0.

η1η
−1
2 = | |ksgnk+1, for some k ∈ Z6=0.

Proof. For convenience of the reader, we give a more direct proof. We
remark that the reducibility conditions are invariant under the action of the
Weyl group. Therefore, we may assume that Re(s1) ≥ Re(s2) ≥ 0. First,
the case Re(s1) = R(s2) = 0 follows form the Goldberg’s and Herb’s work
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([4,5]) on R–groups since it is based entirely on the Harish–Chandra’s theory
of R–groups which is the same for archimedean and non–archimedean fields.

Next, we consider the case Re(s1) ≥ R(s2) > 0. Then η1 × η2 ⋊ 1 is a
standard representation (as defined in the statement of Theorem 2.3). We use
a method of the factorization of the long–intertwining operators developed by
Speh ([27]). We consider the following factorization of the long–intertwining
operator:
(5.1)
η1 × η2 ⋊1 → η1 × η−1

2 ⋊1 → η−1
2 × η1 ⋊1 → η−1

2 × η−1
1 ⋊1 → η−1

1 × η−1
2 ⋊1.

All intertwining maps in (5.1) are induced from the corresponding long–
intertwining operators of GL2(R) or SL2(R). Therefore, they are holomor-
phic. Also, the image of the composition of all intertwining operators in (5.1)
is exactly Lang(η1 × η2 ⋊ 1). Therefore, η1 × η2 ⋊ 1 reduces if and only if
ηi ⋊ 1 reduces (for some i ∈ {1, 2}) or η±1

1 × η±1
2 reduces for some choice of

signs. Now, Theorem 2.4 and Theorem 2.5 complete the proof in this case.
Finally, we consider the case Re(s1) > R(s2) = 0. If η2 ⋊ 1 is reducible,

then the lemma follows from Theorem 2.4 (i). So, assume that η2 ⋊ 1 is
irreducible. Then η1 × η2 ⋊ 1 is a standard representation. In this case we
have the following chain of intertwining operators:

(5.2) η1 × η2 ⋊ 1 → η2 × η1 ⋊ 1 → η2 × η−1
1 ⋊ 1 → η−1

1 × η2 ⋊ 1.

Again, all intertwining operators are induced from the corresponding long–
intertwining operators of GL2(R) or SL2(R). Therefore, they are all holomor-
phic. The image of the composition of all intertwining operators in (5.2) is
exactly the Langlands quotient. The lemma follows as in the previous case.

Corollary 5.2. Assume that η, η1 and η2 are unitary characters of R×.
Then η1×η2 ⋊1 is irreducible unless η1 = sgn or η2 = sgn. Next, the induced
representations η ⋊X(0,±) are irreducible, and we have the following:

sgn× η ⋊ 1 ≃ η × sgn⋊ 1 ≃ η ⋊X(0,+) ⊕ η ⋊X(0,−).

Proof. This follows from Lemma 5.1 and Theorem 2.4.

6. On the restriction to KR

Again, we let G(R) = Sp(4,R). We note that KR ≃ U(2). In this section
we compute the restriction to KR = U(2) of various induced representations.
We use the notation V(k1,k2) introduced at the beginning of Section 5. Restrict-
ing that representation to the standard torus in SL2(C) (or that of SU(2)),
we find the following weights: k1 − k2, k1 − k2 − 2, · · · ,−(k1 − k2). Since the
center of GL2(C) acts on the each of the corresponding weight spaces as the
same scalar k1 + k2, we see that all weight spaces of V(k1,k2) (for the standard
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torus of GL2(C) or of U(2)) are one dimensional and they are (k1 − i, k2 + i),
0 ≤ i ≤ k1 − k2. Now, we are ready to compute the restrictions:

Lemma 6.1. Assume that η = | |ssgnǫ, ηi = | |sisgnǫi (ǫ, ǫi ∈ {0, 1},
s, si ∈ C), i = 1, 2, are characters of R×, p ∈ Z≥0 and k ∈ Z>0. Then we
have the following:

(η1 × η2 ⋊ 1) |U(2) ≃
⊕k1+ǫ1≡k2+ǫ2 (mod 2) #{i; 0 ≤ i ≤ k1 − k2, i ≡ k1 + ǫ1 (mod 2)}V(k1,k2).

Let w ∈ {±}. Let J(w) be the set of all j such that j ≡ p + 1 (mod 2) and
j ≥ p+ 1 (w = +) or j ≤ −p− 1 (w = −). Then we have the following:

(η ⋊X(p, w)) |U(2) ≃ ⊕p≡k1+k2+ǫ+1 (mod 2)#{j ∈ J(w); k2 ≤ j ≤ k1}V(k1,k2).

Assume p > 0. Then we have the following:

(η ⋊ Vp) |U(2) ≃
⊕p≡k1+k2+ǫ+1 (mod 2)#{j; j ≡ p+1 (mod 2), j ∈ [−p+1, p−1]∩[k2, k1]}V(k1,k2).

Next, we have the following:

(δ(η, k) ⋊ 1) |U(2) ≃ ⊕k1+k2≡k+1 (mod 2), k1−k2−k−1≥0
(k1 − k2 − k + 1)

2
V(k1,k2).

Proof. We remind the reader that T stands for the standard torus of
Sp(4). Then T (R)∩KR = {±1}×{±1}. In fact, if we use standard embedding
U(1) × U(1) →֒ U(2), then T (R) ∩ (U(1) × U(1)) = {±1} × {±1}.

Now, we prove the first displayed formula. Obviously, we have

(η1 × η2 ⋊ 1) |U(2) ≃ Ind
U(2)
T (R)∩(U(1)×U(1))(sign

ǫ1 ⊗ signǫ2).

Now, by Frobenius reciprocity the multiplicity of V(k1,k2) in (η1 × η2 ⋊ 1) |U(2)

is equal to the number of weights (k1 − i, k2 + i), 0 ≤ i ≤ k1 − k2 such that
(−1)k1−i = (−1)ǫ1 and (−1)k2+i = (−1)ǫ2 . The formula follows.

Let w ∈ {±}, then we have the following:

(η ⋊X(p, w)) |U(2) ≃
Ind

U(2)
{±1}×U(1)(sgn

ǫ ⊗X(p, w)|U(1)) ≃ ⊕jInd
U(2)
{±1}×U(1)(sgn

ǫ ⊗ (z  zj)),

where the sum runs over all j ≡ p + 1 (mod 2) and j ≥ p + 1 (w = +) or
j ≤ −p−1 (w = −). Again, we use the Frobenius reciprocity to conclude that

V(k1,k2) appears in Ind
U(2)
{±1}×U(1)(sgn

ǫ ⊗ (z  zj)) if and only if there exists i,

0 ≤ i ≤ k1−k2, such that (−1)k1−i = (−1)ǫ and k2 + i = j. This is equivalent
with k2 ≤ j ≤ k1, j ≡ k1 +k2 + ǫ (mod 2). Note that j ≡ k1 +k2 + ǫ (mod 2)
means p ≡ k1 +k2 + ǫ+1 (mod 2). This proves the second displayed formula.
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The third displayed formula is proved similarly. Next, we have the following
formula:

(δ(η, k) ⋊ 1) |U(2) ≃ Ind
U(2)
O(2)(δ(η, k)|O(2))

≃ ⊕j≥k+1, j≡k+1 (mod 2)Ind
U(2)
O(2)(Wj)

≃ ⊕j≥k+1, j≡k+1 (mod 2)Ind
U(2)
U(1)(z  zj).

Here, U(1) is embedded in the standard torus U(1)×U(1) of U(2) as follows
z  (z, z−1). Next, again by the Frobenius reciprocity, we see that the

multiplicity of V(k1,k2) in Ind
U(2)
O(2)(δ(η, k)|O(2)) is equal to the number of j ≥

k+ 1, j ≡ k+ 1 (mod 2) such that k1 − k2 − 2i = j for some 0 ≤ i ≤ k1 − k2.
This is equivalent to k1 + k2 ≡ k+ 1 (mod 2) and i ∈ [0, (k1 − k2 − k− 1)/2].

7. Poles of normalized intertwining operators

In this section we prove some technical results related to intertwining
operators which are used later for the determination of the composition series
of generalized and degenerate principal series.

Lemma 7.1. Assume that η = | |ssgnǫ is a character of R×. Then the
contragredient representations satisfy the following:

δ̃(η, k) ≃ δ(η−1, k), ζ̃(η, k) ≃ ζ(η−1sgnk+1, k).

Proof. We remind the reader that k > 0. First, by the definition (see
Theorem 2.5), we have the following:

δ(η, k) →֒ η| |k/2sgnk+1 × η| |−k/2
։ ζ(η, k),

and, then taking the contragredients, we obtain:

ζ̃(η, k) →֒ η−1| |−k/2sgnk+1 × η−1| |k/2
։ δ̃(η, k).

Combining this with the fact

ζ((η−1sgnk+1), k) →֒ (η−1sgnk+1)| |−k/2 × (η−1sgnk+1)| |k/2sgnk+1

։ δ((η−1sgnk+1), k),

we obtain

ζ̃(η, k) ≃ ζ(η−1sgnk+1, k), δ̃(η, k) ≃ δ((η−1sgnk+1), k).

Combining this with Theorem 2.5 (ii), we obtain δ̃(η, k) ≃ δ((η−1sgnk+2), k).
This proves the lemma.

Now, we fix some notation. Let P = MN ⊂ G be the (standard) Siegel
parabolic subgroup of Sp(4,R). We write w0 for the representative in G(R) =
Sp(4,R) of the non-trivial element of the Weyl groupW (M) ≃ NG(M)/M . It



366 G. MUIĆ

acts on M by conjugation m w0mw
−1
0 . Under M(R) ≃ GL2(R), the action

of w0 is given by g  (gt)−1, where gt is the transpose matrix of g. This
automorphism acts on irreducible (gl2(R), O(2))–modules in a obvious way.
In fact, it transforms (gl2(R), O(2))–module to its contragredient module as
can be easily seen comparing their characters on the set of regular semisimple
elements.

Assume that η = | |ssgnǫ (s ∈ C, ǫ ∈ {0, 1}). We remind the reader that

we write δ(η, k) ⋊ 1 for Ind
Sp(4,R)
P (R) (δ(η, k)).

If Re(s) > 0, then the long–intertwining operator f  
∫

N(R) f(w−1
0 ng)dn,

is a non-zero intertwining map δ(η, k) ⋊ 1 → δ(η−1, k) ⋊ 1 having the image
isomorphic Lang(δ(η, k) ⋊ 1).

We remark that a well–known result of Knapp–Zuckerman ([10]) implies
that Lang(δ(η, k) ⋊ 1) is Hermitian if and only if s ∈ R.

Finally, in R(Sp(4,R)), the semisimplifications are related by δ(η, k)⋊1 =
δ(η−1, k) ⋊ 1. In more detail, for generic value of s, the long–intertwining
operator is an isomorphism, and then we use fact that character tr((δ(η, k) ⋊

1)(f)) of δ(η, k) ⋊ 1, applied to a test function f ∈ C∞
c (Sp(4,R)), is analytic

in s.
Now, we will analyze the long–intertwining operator δ(η, k) ⋊ 1 →

δ(η−1, k) ⋊ 1. Put ηu = | |Im(s)signǫ. Since δ(ηu, k) →֒ ηu| |k/2sgnk+1 ×
ηu| |−k/2, we obtain i : | det |tδ(ηu, k) ⋊ 1 →֒ ηu| |t+k/2sgnk+1 × ηu| |t−k/2

which does not depend on t := Re(s). Similarly, we have an embedding
j : | det |−tδ(η−1

u , k) ⋊ 1 →֒ η−1
u | |−t+k/2 × η−1

u | |−t−k/2sgnk+1 ⋊ 1 which does
not depend on t = Re(s).

Lemma 7.2. Let t = Re(s) > 0. Then we have the following de-
composition of the long intertwining operator A(t) : | det |tδ(ηu, k) ⋊ 1 →
| det |−tδ(η−1

u , k) ⋊ 1 into integral–rank one intertwining operators:

(7.1)

| det |tδ(ηu, k) ⋊ 1
i−−−−→ ηu| |t+k/2sgnk+1 × ηu| |t−k/2 ⋊ 1

A1(t)

y

ηu| |t+k/2sgnk+1 × η−1
u | |−t+k/2 ⋊ 1

A(t)

y A2(t)

y

η−1
u | |−t+k/2 × ηu| |t+k/2sgnk+1 ⋊ 1

A3(t)

y

| det |−tδ(η−1
u , k) ⋊ 1

j−−−−→ η−1
u | |−t+k/2 × η−1

u | |−t−k/2sgnk+1 ⋊ 1,

where Ai(t), i = 1, 2, 3, are induced (integral) long–intertwining operators.
Moreover, we have the following:
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(i) A1(t) has a simple pole if there exists p ∈ Z≥ǫ such that s = t =
k/2−p, p ≡ ǫ (mod 2). Otherwise it is holomorphic. The intertwining
operators Ai(t), i = 2, 3, are holomorphic for t > 0.

(ii) Assume that A1(t) is holomorphic. Then it is an isomorphism unless
s = t, t−k/2 ∈ Z6=0 and t−k/2 ≡ ǫ+1 (mod 2). Moreover, if t > k/2,
then

kerA1(t) ≃ ηu| |t+k/2sgnk+1 ⋊ (X(t− k/2,+)⊕X(t− k/2,−)) ,

ImA1(t) ≃ ηu| |t+k/2sgnk+1 ⋊ Vt−k/2.

Furthermore, if t < k/2, then

kerA1(t) ≃ ηu| |t+k/2sgnk+1 ⋊ Vk/2−t,

ImA1(t) ≃ ηu| |t+k/2sgnk+1 ⋊ (X(k/2 − t,+) ⊕X(k/2 − t,−)) .

Finally, if s = t = k/2 and ǫ ≡ 1 (mod 2), then A1(t) acts as a
(different) multiple of identity on any of the two components of

ηu| |t+k/2sgnk+1 × sgn⋊ 1 ≃
ηu| |t+k/2sgnk+1 ⋊X(0,+)⊕ ηu| |t+k/2sgnk+1 ⋊X(0,−).

(iii) A2(t) is an isomorphism unless s = t and t− k/2 ∈ Z. In this case we
have the following:

kerA2(t) ≃ δ(| |k/2sgnǫ, 2t) ⋊ 1,

ImA2(t) ≃ ζ(| |k/2sgnǫ, 2t) ⋊ 1.

(iv) A3(t) is an isomorphism unless s = t, t − k/2 ∈ Z and t − k/2 ≡ ǫ
(mod 2). In this case we have the following:

kerA3(t) ≃ sgnǫ| |−t+k/2 ⋊ (X(t+ k/2,+)⊕X(t+ k/2,−)) ,

ImA3(t) ≃ sgnǫ| |−t+k/2 ⋊ Vt+k/2.

Proof. We remind the reader that we assume t > 0. First, the commuta-
tive diagram in the lemma follows from the analytic continuation of intertwin-
ing operators [10]. Also, the long–intertwining operator A2(t), being induced
from the long–intertwining operator of GL2(R) (and since t+ k/2 > t− k/2),
is holomorphic and non–zero. Similarly, t + k/2 > 0, implies that is long–
intertwining operator A3(t) for SL2(R) holomorphic and non–zero. Next, all
statements except the one about the poles of A1(t) in (i) and (ii) follow from
Theorem 2.4.

Now, we compute the poles of A1(t). We normalize the intertwining
operator A1(t) as proposed by Langlands ([2]). The normalization factor is
given by

(7.2) r(t) = π−1/2(
√
−1)−ǫ · Γ((1 + s− k/2 + ǫ)/2)

Γ((s− k/2 + ǫ)/2)
.
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We let

(7.3) R1(t) = r(t)A1(t),

where the number π is a usual given by π = 3.14 . . ., and Γ is the usual gamma
function. We analyze poles and zeros of A1(t) and R1(t) in the next few easy
steps.

First, we remind the reader that Γ–function has no zeros and it has simple
poles for each element of Z≤0 (and only for them). This implies Γ((s− k/2 +
ǫ)/2) = ∞ is equivalent to s − k/2 + ǫ ∈ 2Z≤0. This is equivalent to the
following:

(7.4) there exists p ∈ Z≥ǫ such that s = t = k/2 − p, p ≡ ǫ (mod 2).

Similarly, Γ((1 + s− k/2 + ǫ)/2) = ∞ is equivalent to 1 + s− k/2 + ǫ ∈ 2Z≤0.
Hence, this is equivalent to the following:
(7.5)

there exists p ∈ Z≥ǫ+1 such that s = t = k/2 − p, p ≡ ǫ+ 1 (mod 2).

It is clear that the (simple) zeros of r(t) are given by (7.4) and the (simple)
poles by (7.5). Next, A1(t) and R1(t) are holomorphic and non–zero for
t > k/2. Further, R1(t) is holomorphic and non–zero for t = k/2, by usual
property of normalized intertwining operators. Next, by the theory of R–
groups, A1(t) has a simple pole at t = k/2 if and only if ηu ⋊ 1 is irreducible
and η2

u = 1. This is equivalent to Im(s) = 0 and ǫ = 0. Next, we show that
R1(t) is never zero. In more detail, we put R1(t, ηu) = R1(t) and we have
that the composition of intertwining operators

(7.6) ηu| |t−k/2 ⋊ 1
R1(t,ηu)−−−−−→ η−1

u | |−t+k/2 ⋊ 1
R1(k−t,η−1

u
)−−−−−−−−→ ηu| |t−k/2 ⋊ 1

is identity (by the usual property of the normalized intertwining operators).
If t ≥ k/2, then R1(t, ηu) is non–zero. If t < k/2, then k − t > k/2 and
R1(k − t, η−1

u ) is non–zero and holomorphic. This implies that R1(t) is never
zero. Hence we see that the poles of R1(t) can exist only for t < k/2. Now,
(7.6) immediately shows that R1(t) has a pole if and only if ηu| |t−k/2 ⋊ 1
reduces and t < k/2. Applying Theorem 2.4, for t < k/2, ηu| |t−k/2 ⋊ 1
reduces if and only if

there exists p ∈ Z>0 such that s = t = k/2 − p, ǫ ≡ p+ 1 (mod 2).

This is equivalent to (7.5). Finally, since R1(t) is never zero and the poles of
R1(t) are all simple (which is well–known and follows for example from the
computation of the local coefficients given in [25]), we obtain (i) from (7.3).
To prove (ii), assume that A1(t) is holomorphic. Then clearly A1(t) is an
isomorphism if ηu| |t−k/2 ⋊ 1 is irreducible. By Theorem 2.4, this happens
exactly when s = t, t − k/2 ∈ Z and t − k/2 ≡ ǫ + 1 (mod 2). Now, if
t − k/2 6= 0, then (ii) follows from Theorem 2.4. If t = k/2, then A1(t) acts
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as a (different) multiple of identity on any of the two irreducible components
of sgn⋊ 1 ≃ X(0,+)⊕X(0,−), by the theory of R–groups.

Now, we consider the analogue of the previous lemma for other standard
(non-Siegel) parabolic subgroup of Sp(4,R). Again, we fix some notation
first. Let P = MN ⊂ G be that maximal parabolic subgroup. We have
M(R) ≃ R× × SL2(R). We write w0 for the representative in G(R) of non-
trivial element of Weyl group W (M) ≃ NG(M)/M . It acts on M by the
conjugation m  w0mw

−1
0 , than under M(R) ≃ R× × SL2(R) is given by

(h, g) ∈ R× × SL2(R) (h−1, g).
Assume that η = | |ssgnǫ (s ∈ C, ǫ ∈ {0, 1}). Let p ∈ Z≥0 and let

w ∈ {±}. We remind the reader that we write η ⋊X(p, w) for Ind
Sp(4,R)
P (R) (η ⋊

X(p, w)).
If Re(s) > 0, then the long–intertwining operator f  

∫
N(R) f(w−1

0 ng)dn,

is a non-zero intertwining operator η ⋊X(p, w) → η−1 ⋊X(p, w) having the
image isomorphic Lang(η ⋊X(p, w)).

We remark that a well–known result of Knapp–Zuckerman ([10]) implies
that Lang(η ⋊X(p, w)) is Hermitian if and only if s ∈ R.

Finally, in R(Sp(4,R)), the semisimplifications are related by η ⋊

X(p, w) = η−1 ⋊X(p, w).
Now, we will analyze the long–intertwining operator. Put ηu =

| |Im(s)signǫ. We have the embeddings

i : | |tηu ⋊X(p, w) →֒ | |tηu × | |psgnp+1 ⋊ 1,

j : | |−tη−1
u ⋊X(p, w) →֒ | |−tη−1

u × | |psgnp+1 ⋊ 1,

which do not depend on t := Re(s).

Lemma 7.3. Let p ∈ Z≥0 and let t = Re(s) > 0. Then we have the
following decomposition of the long intertwining operator B(t) into integral–
rank one intertwining operators:
(7.7)

| |tηu ⋊X(p,+)⊕ | |tηu ⋊X(p,−)
i−−−−→ | |tηu × | |psgnp+1 ⋊ 1

B1(t)

y

| |psgnp+1 × | |tηu ⋊ 1

B(t)

y B2(t)

y

| |psgnp+1 × | |−tη−1
u ⋊ 1

B3(t)

y

| |−tη−1
u ⋊X(p,+)⊕ | |−tη−1

u ⋊X(p,−)
j−−−−→ | |−tη−1

u × | |psgnp+1 ⋊ 1,
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where Bi(t), i = 1, 2, 3, are induced long–intertwining operators. Moreover,
we have the following:

(i) The intertwining operators Bi(t), i = 2, 3, are holomorphic for t > 0.
B1(t) has a simple pole if and only if s = t ∈ Z, t ≤ p, t ≡ ǫ + 1
(mod 2).

(ii) Assume that B1(t) is holomorphic. Then B1(t) is not an isomorphism
if and only if s = t ∈ Z, t 6= p, t ≡ ǫ (mod 2). Further, if t > p, then

kerB1(t) ≃ δ(| |(t+p)/2sgnp+1, t− p) ⋊ 1,

ImB1(t) ≃ ζ(| |(t+p)/2sgnp+1, t− p) ⋊ 1.

Next, if p > t, then

kerB1(t) ≃ ζ(| |(t+p)/2sgnt, p− t) ⋊ 1,

ImB1(t) ≃ δ(| |(t+p)/2sgnt, p− t) ⋊ 1.

(iii) B2(t) is not an isomorphism if and only if s = t ∈ Z, t ≡ ǫ+1 (mod 2).
In that case we have the following:

kerB2(t) ≃ | |psgnp+1 ⋊ (X(t,+) ⊕X(t,−)) ,

ImB2(t) ≃ | |psgnp+1 ⋊ Vt.

(iv) B3(t) is not an isomorphism if and only if s = t ∈ Z, and t ≡ ǫ
(mod 2). In that case we have the following:

kerB3(t) ≃ δ(| |(p−t)/2sgnt, p+ t) ⋊ 1,

ImB3(t) ≃ ζ(| |(p−t)/2sgnt, p+ t) ⋊ 1.

Proof. The parts (ii), (iii) and (iv) follow from Theorems 2.4 and 2.5.
The first part of (i) is obvious. Now, we compute the poles of B1(t). Again
we normalize the intertwining operator as proposed by Langlands:

r1(t) = π−1/2(
√
−1)−ǫ′ · Γ((1 + s− p+ ǫ′)/2)

Γ((s− p+ ǫ′)/2)

and

R1(t) = r1(t)B1(t),

where ǫ′ ∈ {0, 1} is defined by ǫ′ ≡ ǫ + p + 1 (mod 2). Now, as in the
previous lemma we see that R1(t) has simple poles if and only if t − p < 0
and | |tηu ×| |psgnp+1 reduces. Therefore, R1(t) has a simple pole if and only
if t − p ∈ Z<0, s = t, and t − p+ 1 ≡ ǫ+ p+ 1 (mod 2). The last condition
reduces to t ≡ ǫ (mod 2). Finally, R1(t) has a simple pole if and only if

(7.8) s = t ∈ Z, t < p, t ≡ ǫ (mod 2).

Now, we turn our attention to the normalization factor r1(t). We see that
Γ((1 + s − p + ǫ′)/2) = ∞ if and only if (1 + s − p + ǫ′)/2 ∈ Z≤0. This is
equivalent with s = t ∈ Z, 1 + t− p+ ǫ′ ≤ 0, t ≡ ǫ (mod 2). It is easy to see
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that this is equivalent with (7.8). Now, the B1(t) has a (simple) pole if and
only if Γ((s− p+ ǫ′)/2) = ∞. This proves (i).

8. Irreducible (sp(2,R), U(2))–modules

In this section we list irreducible (sp(2,R), U(2))–modules using the Lang-
lands classification ([10]). We describe the set of equivalence classes as follows:

(min) Langlands quotients supported on the minimal parabolic subgroup:

Lang(| |s1sgnǫ1 × | |s2sgnǫ2 ⋊ 1),

where (s1, s2, ǫ1, ǫ2) ∈ C × C × {0, 1} × {0, 1}, Re(s1) ≥ Re(s2) ≥ 0 and
Re(s1) +Re(s2) > 0; the infinitesimal is (s1, s2).

(sig) Langlands quotients supported on the Siegel maximal parabolic
subgroup:

Lang(δ(| |s, k) ⋊ 1) ≃ Lang(δ(| |ssgn, k) ⋊ 1),

(s, k) ∈ C × Z>0, Re(s) > 0; the infinitesimal is (s+ k/2, s− k/2)
(non-sig) Langlands quotients supported on the non–Siegel maximal par-

abolic subgroup:

Lang(| |ssgnǫ ⋊X(p, w)),

(s, ǫ, p, w) ∈ C × {0, 1} × Z≥0 × {±}, Re(s) > 0; the infinitesimal is (s, p).
(dis) Discrete series for Sp(4,R) have regular and integral infinitesimal

characters. This means that after a conjugation by an element of the Weyl
group the infinitesimal character is of the form (p, t) ∈ Z × Z, p > t > 0.
There are four non–equivalent discrete series having the infinitesimal character
(p, t) ∈ Z × Z, p > t > 0. We describe them using [10, Theorem 9.20]. We
use the standard realization of roots found in [3]. In particular, (1,−1) is
a simple compact root and (0, 2) is other root for C2–system. According to
[10, Theorem 9.20], those discrete series are determined by their restriction
to U(2):

1. U(2)–type (p, t) + (2, 1) − (1,−1) = (p + 1, t + 2) is contained with
multiplicity one. All other U(2)–types are of the form (p+ 1, t+ 2) +
n(1,−1) +m(0, 2) = (p+ n+ 1, t+ 2− n+ 2m), for some m,n ∈ Z≥0.
We denote this representation by X(p, t).

2. U(2)–type (p,−t) + (2,−1) − (1,−1) = (p + 1,−t) is contained with
multiplicity one. All other U(2)–types are of the form (p + 1,−t) +
n(1, 1) +m(0,−2) = (p + n + 1,−t+ n − 2m), for some m,n ∈ Z≥0.
We denote this representation by X(p,−t).

3. U(2)–type (t,−p) + (1,−2) − (1,−1) = (t,−p − 1) is contained with
multiplicity one. All other U(2)–types are of the form (t,−p − 1) +
n(−1,−1) +m(2, 0) = (t− n+ 2m,−p− 1 − n), for some m,n ∈ Z≥0.
We denote this representation by X(t,−p).

4. U(2)–type (−t,−p)+(−1,−2)−(1,−1) = (−t−2,−p−1) is contained
with multiplicity one. All otherU(2)–types are of the form (−t−2,−p−
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1) + n(1,−1) + m(−2, 0) = (−t − 2 + n − 2m,−p− 1 − n), for some
m,n ∈ Z≥0. We denote this representation by X(−t,−p).

(limit-dis) Limits of discrete series for Sp(4,R) ([10, Theorem 12.26])
have infinitesimal characters, that after a conjugation by an element of the
Weyl group, are of the form (p, t) ∈ Z×Z, where either p = t > 0 or p > t = 0.
Now, ([10], Theorem 12.26) shows that we may define them as follows. Let

(m1,m2) ∈ Z2, m1 > m2 > 0. When p = t > 0, we have ψ
(p+m1,p+m2)
(p,p) (X(p+

m1, p + m2)) = 0 and ψ
(p+m1,p+m2)
(p,p) (X(−p − m2,−p − m1)) = 0 since the

parameter (p, p) is orthogonal to the compact root (1,−1). We write

X1(p,−p) = ψ
(p+m1,p+m2)
(p,p) (X(p+m1,−p−m2)) 6= 0,(8.1)

X2(p,−p) = ψ
(p+m1,p+m2)
(p,p) (X(p+m2,−p−m1)) 6= 0,(8.2)

for the limits of discrete series for the cases (2) and (3), respectively. Their
U(2)–type structure is as in (2) and (3), respectively, but for p = t.

Similarly, for p > t = 0, we get four limits of discrete series for the cases
described by (1)–(4):

X1(p, 0) = ψ
(p+m1,m2)
(p,0) (X(p+m1,m2)),(8.3)

X2(p, 0) = ψ
(p+m1,m2)
(p,0) (X(p+m1,−m2)),(8.4)

X1(0,−p) = ψ
(p+m1,m2)
(p,0) (X(m2,−p−m1)),(8.5)

X2(0,−p) = ψ
(p+m1,m2)
(p,0) (X(−m2,−p−m1)).(8.6)

(temp) Tempered representations that are not discrete series or limits
of discrete series are fully induced from discrete series or limits of discrete
series of Levi factors by the work of Knapp–Zuckerman ([10]). Thus, except
irreducible unitary principal series (see Lemma 5.1) we have the following:

Lemma 8.1. Let η be a unitary character of R×, p ∈ Z≥0, and k ∈ Z>0.
Then we have the following:

(i) η ⋊X(p, w), w ∈ {±}, is reducible if and only if η = 1 and p > 0:

1 ⋊X(p,+) ≃ X1(p, 0) ⊕X2(p, 0),

1 ⋊X(p,−) ≃ X1(0,−p)⊕X2(0,−p).
(ii) δ(η, k)⋊1 is reducible if and only if η ∈ {1, sgn} and k is even. More-

over, for p > 0, δ(1, 2p)⋊1 = δ(sgn, 2p)⋊1 ≃ X1(p,−p)⊕X2(p,−p).

Proof. This follows from the classification of tempered representations
done by Knapp–Zuckerman [10], Langlands disjointness theorem ([10], Theo-
rem 14.90), and Corollary 5.2. In fact, reducibilities are Schmid’s identities.
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9. Composition series in the case of integral infinitesimal

character I

In this section we begin the description of the composition series of gener-
alized and degenerate principal series having integral infinitesimal characters
(p, t) ∈ Z × Z. Up to a conjugation by an element of the Weyl group we see
that there are four types of the principal series | |psgnǫ1 × | |tsgnǫ2 ⋊ 1:

(9.1) (ǫ1, ǫ2) ≡ (p, t), (p, t+ 1), (p+ 1, t), (p+ 1, t+ 1) (mod 2)Z × 2Z)

with that infinitesimal character. We also assume that

(9.2) p ≥ t ≥ 0 and p+ t > 0.

The first condition in (9.2) is obtained applying a conjugation by a suitable
element of the Weyl group. Then the second condition means that we do
not consider the case p = t = 0 here since it is treated in Lemma 5.1 and
Corollary 5.2.

Lemma 9.1. | |psgnp × | |tsgnt ⋊ 1 is irreducible.

Proof. This follows from Lemma 5.1.

Also, Theorems 2.4 and 2.5 imply that in R(Sp(4,R)) we have the fol-
lowing (we let V0 = 0):

(9.3)

| |psgnp+1 × | |tsgnt+1 ⋊ 1

= | |tsgnt+1 × | |psgnp+1 ⋊ 1

= | |psgnp+1 ⋊ (X(t,−) +X(t,+)) + | |psgnp+1 ⋊ Vt

= | |tsgnt+1 ⋊ (X(p,−) +X(p,+)) + | |tsgnt+1 ⋊ Vp,

(9.4)

| |psgnp+1 × | |tsgnt ⋊ 1 = | |psgnp+1 × | |−tsgnt ⋊ 1

= δ(| |(p−t)/2sgnt, p+ t) ⋊ 1 + ζ(| |(p−t)/2sgnt, p+ t) ⋊ 1

= δ(| |(p+t)/2sgnt, p− t) ⋊ 1 + ζ(| |(p+t)/2sgnt, p− t) ⋊ 1 (p > t)

= | |tsgnt ⋊X(p,+) + | |tsgnt ⋊X(p,−) + | |tsgnt ⋊ Vp,

and
(9.5)
| |tsgnt+1 × | |psgnp ⋊ 1 = | |psgnp × | |−tsgnt+1 ⋊ 1

= δ(| |(p−t)/2sgnt+1, p+ t) ⋊ 1 + ζ(| |(p−t)/2sgnt+1, p+ t) ⋊ 1

= δ(| |(p+t)/2sgnt+1, p− t) ⋊ 1 + ζ(| |(p+t)/2sgnt+1, p− t) ⋊ 1 (p > t)

= | |psgnp ⋊X(t,+) + | |psgnp ⋊X(t,−) + | |psgnp ⋊ Vt.
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We note that Theorem 2.5 (ii) implies that

δ(| |(p−t)/2sgnt, p+ t) ≃ δ(| |(p−t)/2sgnt+1, p+ t),

δ(| |(p+t)/2sgnt, p− t) ≃ δ(| |(p+t)/2sgnt+1, p− t).

Hence, in R(Sp(4,R)) (the last step follows using the discussion before the
proof of Lemma 7.2), we have the following:

(9.6)
δ(| |(p−t)/2sgnt, p+ t) ⋊ 1 = δ(| |(p−t)/2sgnp, p+ t) ⋊ 1

= δ(| |(t−p)/2sgnp, p+ t) ⋊ 1.

The decompositions (9.3), (9.4), and (9.5) will help us to determine prin-
cipal series where non–tempered irreducible subquotients having infinitesimal
character (p, t) appear as subquotients. We have the following lemma:

Lemma 9.2. Assume that (9.2) holds. Then, we have the following:

(i) | |psgnp × | |tsgnt ⋊ 1 ≃ Lang (| |psgnp × | |tsgnt ⋊ 1).
(ii) Up to multiplicity, all non–tempered irreducible subquotients of the rep-

resentation | |psgnp+1 × | |tsgnt+1 ⋊ 1 are the following:

Lang(| |tsgnt+1 ⋊X(p,+)), Lang(| |tsgnt+1 ⋊X(p,−)),

Lang(| |psgnp+1 ⋊X(t,+)), Lang(| |psgnp+1 ⋊X(t,−)),

Lang(| |psgnp+1 × | |tsgnt+1 ⋊ 1) (multiplicity one).

(iii) Up to multiplicity, all non–tempered irreducible subquotients of the rep-
resentation | |psgnp+1 × | |tsgnt ⋊ 1 and | |tsgnt+1 × | |psgnp ⋊ 1 are
the following:

Lang(| |psgnp ⋊X(t,+)), Lang(| |psgnp ⋊X(t,−)),

Lang(| |tsgnt ⋊X(p,+)), Lang(| |tsgnt ⋊X(p,−)),

Lang(δ(| |(p+t)/2sgnt, p− t) ⋊ 1), Lang(δ(| |(p−t)/2sgnt, p+ t) ⋊ 1),

Lang(| |psgnp+1 × | |tsgnt ⋊ 1),

(only in | |psgnp+1 × | |tsgnt ⋊ 1; multiplicity one),

Lang(| |psgnp × | |tsgnt+1 ⋊ 1),

(only in | |tsgnt+1 × | |psgnp ⋊ 1; multiplicity one).

Proof. Using the list of irreducible representations given in Section 8,
it is easy to write down all irreducible non–tempered representations having
infinitesimal character (p, t). They are given by (i), (ii) and (iii) the above.
Also, Lemma 9.1, (9.3), (9.4), and (9.5) describe some principal series where
they appear as subquotients. Next, (i) follows from Lemma 9.1, and irre-
ducible representation from (i) cannot appear as an irreducible subquotient
of principal series considered in (ii) and (iii) because of Theorem2.3. Finally,
to complete the proof of (ii) and (iii), we use U(2)–types. More precisely,
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Lemma 6.1 implies that the principal series | |psgnp+1 × | |tsgnt+1 ⋊ 1 does
not have any U(2)–type common with those of | |psgnp+1 × | |tsgnt ⋊ 1 and
| |tsgnt+1 × | |psgnp ⋊ 1.

Now, we list all tempered irreducible representations of infinitesimal char-
acter (p, t) and determine principal series where they appear as subquotients.
We have the following lemma:

Lemma 9.3. Assume that (9.2) holds. Then we have the following:

(i) There are no tempered irreducible subquotients in | |psgnp×| |tsgnt⋊1,
while for | |psgnp+1 × | |tsgnt+1 ⋊ 1 only possible tempered irreducible
subquotients appear when p > t = 0 and they are sgn⋊X(p, w) (w ∈
{±}) (they are irreducible by Lemma 8.1).

(ii) Up to multiplicity, all tempered irreducible subquotients of | |psgnp+1×
| |tsgnt ⋊ 1 and | |tsgnt+1 × | |psgnp ⋊ 1 are the following:

1. (p > t > 0) X(p, t), X(p,−t), X(t,−p), and X(−t,−p);
2. (p > t = 0) X1(p, 0), X2(p, 0), X1(0,−p), and X2(0,−p);
3. (p = t > 0) X1(p,−p) and X2(p,−p).

Moreover, any of them must appear in | |psgnp+1 × | |tsgnt ⋊ 1 or in
| |tsgnt+1 × | |psgnp ⋊ 1.

Proof. Using the list of irreducible representations from Section 8 it is
easy to see that all tempered irreducible representations having infinitesimal
character (p, t) are those listed in (i) and (ii) of the statement of Lemma 9.3.
Next, according to Theorem 2.1 (iii) any irreducible tempered representation
having infinitesimal character (p, t) must be a subquotient of one of our four
principal series mentioned in Lemma 9.2. Since | |psgnp × | |tsgnt ⋊ 1 is
irreducible (see Lemma 9.1) it cannot contain tempered representations. Next,
those listed in (ii), using the description of U(2)–types of them (see (dis)
and (limit–dis) in Section 8) and Lemma 6.1, cannot appear in | |psgnp+1 ×
| |tsgnt+1 ⋊1. Those, listed in (i) obviously appear | |psgnp+1×sgn⋊1, while
they cannot appear in | |psgnp+1 × | |tsgnt ⋊ 1 and | |tsgnt+1 × | |psgnp ⋊ 1
(t = 0) for the same reason.

Now, we begin to study the composition series of generalized and degener-
ate principal series having infinitesimal character (p, t). Lemma 9.1 completes
the investigation of the first case in (9.1). In this section we consider the last
case in (9.1). The remaining two cases are more complicated and they will be
treated in Sections 10 and 11.

Lemma 9.4. Assume that p > t > 0. Let w ∈ {±}. Then we have the
following:
(9.7)
| |tsgnt+1 ⋊X(p, w) →֒ | |psgnp+1 ⋊X(t, w)։ Lang(| |psgnp+1 ⋊X(t, w)).
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Also, in R(Sp(4,R)), we have the following (the composition series is obvi-
ous):

(9.8)

| |tsgnt+1 ⋊X(p, w) = Lang(| |tsgnt+1 ⋊X(p, w)),

| |psgnp+1 ⋊X(t, w) = Lang(| |tsgnt+1 ⋊X(p, w)))

+ Lang(| |psgnp+1 ⋊X(t, w)),

| |psgnp+1 ⋊ Vt = Lang(| |psgnp+1 × | |tsgnt+1 ⋊ 1).

Finally, | |tsgnt+1 ⋊ Vp has the following composition series V0 ⊂ V1 =
| |tsgnt+1 ⋊ Vp, where

V0 ≃ Lang(| |psgnp+1 ⋊X(t,+)) ⊕ Lang(| |psgnp+1 ⋊X(t,−)),

V1/V0 ≃ Lang(| |psgnp+1 × | |tsgnt+1 ⋊ 1).

Proof. We use Lemma 7.3 (in our case we have ηu = sgnt+1). Now, in
the commutative diagram (7.7), B1(t) has a simple pole. We write B1 for the
corresponding residue operator. Put Bi = Bi(t), i = 2, 3. Now, since B(t) is
holomorphic, we obtain the following diagram:

(9.9)

⊕ε∈{±}| |tsgnt+1 ⋊X(p, ε)
i−−−−→ | |tsgnt+1 × | |psgnp+1 ⋊ 1

B1

y

| |psgnp+1 × | |tsgnt+1 ⋊ 1

0

y B2

y

| |psgnp+1 × | |−tsgnt+1 ⋊ 1

B3

y

⊕ε∈{±}| |−tsgnt+1 ⋊X(p, ε)
j−−−−→ | |−tsgnt+1 × | |psgnp+1 ⋊ 1,

Now, Theorems 2.4 and 2.5 show that B1 and B3 are isomorphisms. Also,
hence the commutative diagram (9.9) shows that

| |tsgnt+1 ⋊X(p,+)⊕ | |tsgnt+1 ⋊X(p,−) →֒ kerB2.

Applying Theorem 2.4, it is easy to compute kerB2. We obtain the following:

(9.10)
| |tsgnt+1 ⋊X(p,+) ⊕ | |tsgnt+1 ⋊X(p,−)

→֒ | |psgnp+1 ⋊X(t,+) ⊕ | |psgnp+1 ⋊X(t,−) = kerB2.
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Next, we the following diagram:

(9.11)

| |psgnp+1 × | |tsgnt+1 ⋊ 1
B−1

1−−−−→ | |tsgnt+1 × | |psgnp+1 ⋊ 1

J1−−−−→ | |tsgnt+1 × | |−psgnp+1 ⋊ 1

≃−−−−→ | |−psgnp+1 × | |tsgnt+1 ⋊ 1

J2−−−−→ | |−psgnp+1 × | |−tsgnt+1 ⋊ 1,

where we choose some non–zero intertwining operators J1 and J2 (induced
long–intertwining operators). The image of the composition of all intertwining
operators is isomorphic to Lang(| |psgnp+1×| |tsgnt+1 ⋊1) as it follows from
the Langlands classification.

Next, by using embedding in (9.10), we obtain

(9.12)
kerJ1 = | |tsgnt+1 ⋊X(p,+) ⊕ | |tsgnt+1 ⋊X(p,−)

⊂ B−1
1

(
| |psgnp+1 ⋊X(t,+) ⊕ | |psgnp+1 ⋊X(t,−)

)
.

Next, (9.11) gives an analogue of (7.7) for | |psgnp+1 ⋊ X(t,+) ⊕
| |psgnp+1⋊X(t,−) (observe no pole situation since p > t by our assumption).
Hence, the composition of the first three intertwining operators in (9.11) has
the image isomorphic to Lang(| |psgnp+1 ⋊ X(t,+)) ⊕ Lang(| |psgnp+1 ⋊

X(t,−)). Thus, (9.12) implies

(9.13)
B−1

1

(
| |psgnp+1 ⋊X(t,+) ⊕ | |psgnp+1 ⋊X(t,−)

)
/ kerJ1

≃ Lang(| |psgnp+1 ⋊X(t,+)) ⊕ Lang(| |psgnp+1 ⋊X(t,−)).

This implies

(9.14)
⊕w∈{±}| |tsgnt+1 ⋊X(p, w) →֒ ⊕w∈{±} | |psgnp+1 ⋊X(t, w)

։⊕w∈{±} Lang(| |psgnp+1 ⋊X(t, w)).

Now, (9.14) implies the following. If Lang
(
| |tsgnt+1 ⋊X(p, w)

)
is a subquo-

tient of | |psgnp+1 ⋊X(t, w′), then

(9.15) | |tsgnt+1 ⋊X(p, w) →֒ | |psgnp+1 ⋊X(t, w′).

Now, we restrict (9.15) to U(2) and apply Lemma 6.1 to obtain w = w′. This
proves (9.7). Now, Lemma 9.2 (ii), Lemma 9.3, and (9.7) imply the first two
equalities in (9.8). The composition series of | |tsgnt+1 ⋊ Vp follows from
(9.11). In more detail, (9.13) and (9.7) imply

(9.16)
Lang(| |psgnp+1 ⋊X(t,+)) ⊕ Lang(| |psgnp+1 ⋊X(t,−))

→֒ Im J1 ≃ | |tsgnt+1 ⋊ Vp.

Next, we send Im J1 by the isomorphism in (9.11), and then we intersect the
image with kerJ2, which is isomorphic to

| |−psgnp+1 ⋊X(t,−) ⊕ | |−psgnp+1 ⋊X(t,+).
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If this intersection is not exactly equal to the direct sum in (9.16), then the
first and second formula in (9.8) (proved above) show that | |tsgnt+1 ⋊ Vp

contains | |tsgnt+1 ⋊ X(p, w), for some w ∈ {±}. This is not possible since
| |tsgnt+1 ⋊X(p, w) is large, while | |tsgnt+1 ⋊Vp cannot contain a large sub-
quotient (we may also use Lemma 6.1 to obtain the same conclusion). Now,
since the image of the composition of all intertwining operators in (9.7) is iso-
morphic to Lang(| |psgnp+1×| |tsgnt+1 ⋊1), as it follows from the Langlands
classification, we obtain the composition series. Finally, the fourth formula
follows from (9.3) combined with already proved the first two equalities in
(9.8), together with the composition series of | |tsgnt+1 ⋊ Vp.

The other two lemmas have similar, but easier proofs. We leave to the
reader to make necessary modifications.

Lemma 9.5. Assume that p = t > 0. In R(Sp(4,R)), we have the follow-
ing (w ∈ {±}):

| |psgnp+1 ⋊X(p, w) = Lang(| |psgnp+1 ⋊X(p, w)),

| |psgnp+1 ⋊ Vp = Lang(| |psgnp+1 × | |psgnp+1 ⋊ 1).

Lemma 9.6. Assume that p > t = 0. Then, in R(Sp(4,R)), we have the
following (w ∈ {±}):

sgn⋊X(p, w) is irreducible

| |psgnp+1 ⋊X(0, w) = sgn⋊X(p, w) + Lang(| |psgnp+1 ⋊X(0, w)).

Also, we have the following:

sgn⋊ Vp ≃ Lang(| |psgnp+1 ⋊X(0,+)) ⊕ Lang(| |psgnp+1 ⋊X(0,−)).

10. Composition series in the case of integral infinitesimal

character II

In this section we determine the structure of generalized and degenerate
principal series of | |psgnp+1 × | |tsgnt ⋊ 1. We assume that (9.2) holds. We
start with the next two theorems where we describe the composition series of
all generalized principal series appearing in (9.4).

Theorem 10.1. Assume p > t > 0. Then the following sequences are
exact:

(10.1)
X(p,−t)⊕X(t,−p) →֒ δ(| |(p−t)/2sgnt, p+ t) ⋊ 1

։ Lang(δ(| |(p−t)/2sgnt, p+ t) ⋊ 1).

(10.2)
X(p, t) ⊕X(p,−t) →֒ | |tsgnt ⋊X(p,+)։ Lang(| |tsgnt ⋊X(p,+))

X(t,−p) ⊕X(−t,−p) →֒ | |tsgnt ⋊X(p,−)։ Lang(| |tsgnt ⋊X(p,−)).

Moreover, X(p,−t) and X(t,−p) are large ([29]).
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Proof. We begin by showing that Lang(δ(| |(p−t)/2sgnt, p + t) ⋊ 1) is
only non–tempered irreducible subquotient of δ(| |(p−t)/2sgnt, p + t) ⋊ 1.
If not, then the inequality in Theorem 2.3 and Lemma 9.2 (iii) show
that some other non–tempered irreducible subquotient must be of the form
Lang(| |tsgnt ⋊ X(p, w)), w ∈ {±}. Now, Lemma 9.2 (iii) implies that
Lang(| |tsgnt ⋊ X(p, w)) is only non–tempered irreducible subquotient of
| |tsgnt ⋊ X(p, w) since only other possible is δ(| |(p−t)/2sgnt, p + t) ⋊ 1.
Next, Lemma 9.3 (ii) implies that other possible irreducible subquotients
of | |tsgnt ⋊ X(p, w) are discrete series X(p, t), X(p,−t), X(t,−p), and
X(−t,−p). Now, using Lemma 6.1, we see that (p+1, t) (resp., (−t,−p− 1))
appears in | |tsgnt ⋊X(p,+) (resp., | |tsgnt ⋊X(p,−)) with multiplicity one.
Next, the description of U(2)–types of discrete series (see Section 8, (dis))
shows that those types do not appear in discrete series. Hence, if w = +
(resp., w = −), then we see that the type (p + 1, t) (resp., (−t,−p− 1)) ap-
pears in Lang(| |tsgnt ⋊ X(p,+)) (resp., in Lang(| |tsgnt ⋊ X(p,−))) with
multiplicity one. Finally, Lemma 6.1 shows that those two types do not ap-
pear in δ(| |(p−t)/2sgnt, p + t) ⋊ 1. This is a contradiction that proves that
Lang(δ(| |(p−t)/2sgnt, p+t)⋊1) is only non–tempered irreducible subquotient
of δ(| |(p−t)/2sgnt, p + t) ⋊ 1. Now, Lemma 9.3 (ii) implies that other possi-
ble irreducible subquotients of δ(| |(p−t)/2sgnt, p + t) ⋊ 1 are discrete series
X(p, t), X(p,−t), X(t,−p), and X(−t,−p). Lemma 6.1 shows that the types
(p+ 1, t+ 2) and (−t− 2,−p− 1) do not appear in δ(| |(p−t)/2sgnt, p+ t) ⋊ 1.
Hence, X(p, t) and X(−t,−p) are not subquotients. We denote this fact as
follows:

(10.3) δ(| |(p−t)/2sgnt, p+ t) ⋊ 1 6≥ X(p, t), X(−t,−p).

Also, Lemma 6.1 shows that the pairs (p + 1,−t) and (t,−p − 1) appear
δ(| |(p−t)/2sgnt, p+t)⋊1 with multiplicity one. This means that X(p,−t) and
X(t,−p) appear with multiplicity at most one. It remains to show that they
appear with multiplicity one. Thus, in R(Sp(4,R)), we have the following:

(10.4) δ(| |(p−t)/2sgnt, p+ t) ⋊ 1 =

m ·X(p,−t) + n ·X(t,−p) + Lang(δ(| |(p−t)/2sgnt, p+ t) ⋊ 1),

where m,n ∈ {0, 1}. Next, we consider the U(2)–type (p,−t−1). Lemma 6.1
implies it appears with multiplicity one in δ(| |(p−t)/2sgnt, p + t) ⋊ 1 and
the description of discrete series given by (Section 8, (dis)) shows that this
type does not appear in X(p,−t) and in X(t,−p). Thus, it appears in
Lang(δ(| |(p−t)/2sgnt, p + t) ⋊ 1) (with multiplicity one). Next, the above
discussion also shows that, for w ∈ {±}, only possible non–tempered irre-
ducible subquotient of | |tsgnt ⋊ X(p, w), except its Langlands quotient, is
Lang(δ(| |(p−t)/2sgnt, p + t) ⋊ 1), but the type (p,−t − 1) do not appear in
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| |tsgnt ⋊X(p, w) by Lemma 6.1. Hence, only non–tempered irreducible sub-
quotient of | |tsgnt⋊X(p, w), is its Langlands quotient. Also, using Lemma 6.1
the description of discrete series given by (Section 8, (dis)) we easily check

(10.5)

| |tsgnt ⋊X(p,+) = m1 ·X(p, t) + n1 ·X(p,−t)
+ Lang(| |tsgnt ⋊X(p,+)),

| |tsgnt ⋊X(p,−) = m2 ·X(t,−p) + n2 ·X(−t,−p)
+ Lang(| |tsgnt ⋊X(p,−)),

m1,m2, n1, n2 ∈ {0, 1}, in R(Sp(4,R)).
Now, since ζ(| |(p−t)/2sgnt, p+ t)⋊1 does not contain large subquotients,

(9.4) shows that all large subquotients of | |psgnp+1 × | |tsgnt ⋊ 1 belong to
δ(| |(p−t)/2sgnt, p+ t)⋊1. Furthermore, | |tsgnt ⋊X(p, w), w ∈ {±} contains
a large subquotient. Now, (10.4) and (10.5) imply that X(p,−t) and X(t,−p)
must be large and m = n = n1 = m2 = 1. Now, we are ready to prove the
claim (10.1).

Put λ = (t,−t) and µ = (0, t− p), so that λ + µ = (t,−p). Next, acting
by the elements of the Weyl group W of Sp(4,R):

(p, t) → (t, p) → (t,−p)(p−t, 0) → (0, p−t) → (0, t−p)(t, t) → (t, t) → (t,−t),
we see that there is a positive root system of the roots of Sp(4,R) such that λ
is dominant and µ is dominant integral. This means that the functors ϕλ

λ+µ

and ψλ+µ
λ are well–defined (see the beginning of Section 3). Clearly, the same

is true for the Siegel Levi subgroup. Now, Lemma 3.4 (see (3.4)) implies:

ψλ+µ
λ

(
δ(| |(t−p)/2sgnp, p+ t) ⋊ 1

)
≃ ψλ+µ

λ

(
δ(| |(t−p)/2sgnp, p+ t)

)
⋊ 1.

Next, using Lemma 4.2 (ii), we see that

ψλ+µ
λ

(
δ(| |(t−p)/2sgnp, p+ t)

)
≃ δ(sgn, 2t) = δ(1, 2t).

Hence, by Lemma 8.1,
(10.6)

ψλ+µ
λ

(
δ(| |(p−t)/2sgnt, p+ t) ⋊ 1

)
≃ δ(1, 2t) ⋊ 1 ≃ X1(t,−t) ⊕X2(t,−t).

Also, [10, Theorem 12.26] (see also (8.1)) implies

(10.7)
ψλ+µ

λ (X(p,−t)) ≃ X1(t,−t),
ψλ+µ

λ (X(t,−p)) ≃ X2(t,−t).
Now, Theorem 3.2 (v), implies

(10.8)
Hom(sp(2,R),U(2))(δ(| |(t−p)/2sgnp, p+ t) ⋊ 1, ϕλ

λ+µ(X))

≃ Hom(sp(2,R),U(2))(X
1(t,−t) ⊕X2(t,−t), X).
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Next, taking X = X i(t,−t), i = 1, 2, we see that (10.8) implies that there is a
non–zero equivariant–map δ(| |(t−p)/2sgnp, p+ t) ⋊ 1 → ϕλ

λ+µ(X i(t,−t)), i =

1, 2. We denote this map by J . We show that X(p,−t) (resp. X(t,−p)) is iso-
morphic to ImJ if i = 1 (resp. i = 2). We prove this fact for i = 1. The proof
for i = 2 is analogous. First, any irreducible subquotient of ϕλ

λ+µ(X1(t,−t))
maps under ψλ+µ

λ to a module that has in its composition series irreducible
subquotients isomorphic to X1(t,−t). Thus, (10.7) shows that X(t,−p) is not
a subquotient of ImJ . Next, since Lang(δ(| |(p−t)/2sgnt, p + t) ⋊ 1 appears
in δ(| |(t−p)/2sgnp, p+ t)⋊1 with multiplicity one and a as unique irreducible
subrepresentation, it is not a subquotient of ImJ (otherwise, J would be an
embedding and X(t,−p) would appear too). Now, (10.4) completes the proof
of the claim. In particular, we have demonstrated

Lang(δ(| |(p−t)/2sgnt, p+ t) ⋊ 1)

→֒ δ(| |(t−p)/2sgnp, p+ t) ⋊ 1։ X(p,−t) ⊕X(t,−p).

Now, taking contragredients we obtain (10.1) (see (9.6) and the discussion
before the statement of Lemma 7.2).

Now, we prove (10.2). First, we show the following:

(10.9)

| |tsgnt ⋊X(p,+) ≥ X(p, t) (multiplicity one),

| |tsgnt ⋊X(p,−) ≥ X(−t,−p) (multiplicity one),

| |tsgnt ⋊ Vp 6≥ X(p, t), X(−t,−p).

We prove (10.9) in two steps. First, if t = p − 1, then X(p, t) (resp.
(X(−t,−p)) contain U(2)–type (p+1, p+1) (resp. (−p−1,−p−1)) with mul-
tiplicity one, but this type is not contained in | |tsgnt ⋊Vp and it is contained
in | |tsgnt ⋊ X(p,+) (resp. | |tsgnt ⋊ X(p,−)) with multiplicity one. Now,
Lemma 9.3 (ii) completes the proof of (10.9). In general, we let λ = (t, t+ 1),

µ = (0, p− t− 1). Hence λ+ µ = (t, p). Clearly, the functors ϕλ
λ+µ and ψλ+µ

λ

are well–defined. Lemma 3.4 implies the following (w ∈ {±}):

ψλ+µ
λ

(
| |tsgnt ⋊X(p, w)

)
≃ | |tsgnt ⋊X(t+ 1, w),

ψλ+µ
λ

(
| |tsgnt ⋊ Vp

)
≃ | |tsgnt ⋊ Vt+1.

Since ψλ+µ
λ (X(p, t)) ≃ X(t+1, t) and ψλ+µ

λ (X(−t,−p)) ≃ X(−t,−t−1),
applying Theorem 3.2 (iii) we obtain (10.9). Also, we obtain n1 = m2 = 1
in (10.5). Now, to complete the proof of (10.2), we argue as follows. Put
λ = (0, p− t), µ = (t, t). Hence λ+µ = (t, p). Clearly, the functors ϕλ

λ+µ and

ψλ+µ
λ are well–defined. Lemma 3.4 implies the following (w ∈ {±}):

ψλ+µ
λ

(
| |tsgnt ⋊X(p, w)

)
≃ 1 ⋊X(p− t, w).
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Also, ([10], Theorem 12.26) (see also (8.1)) implies X1(p, 0) = ψλ+µ
λ (X(p, t)),

X2(p, 0) = ψλ+µ
λ (X(p,−t)), X1(0,−p) = ψλ+µ

λ (X(t,−p)), and X1(0,−p) =

ψλ+µ
λ (X(−t,−p)). Now, one can apply Lemma 8.1 (i) and (10.5) (where we

have n1 = n2 = m1 = m2 = 1) to complete the proof of (10.2). The proof is
similar to that of (10.1). One just needs to observe that the type description
given in Theorem 2.4 and in Section section6 implies the following description

of contragredient representations: X̃(p,−) ≃ X(p,+), X̃(p, t) ≃ X(−t,−p),
and ˜X(p,−t) ≃ X(t,−p).

We record the following corollary of the previous proof.

Corollary 10.2. Assume p > t > 0. Then we have the following:

(i) | |tsgnt ⋊ Vp 6≥ X(p, t), X(p,−t), X(t,−p), X(−t,−p). In particular,
discrete series subquotients appear in | |psgnp+1 × | |tsgnt ⋊ 1 with
multiplicity one.

(ii) δ(| |(p+t)/2sgnt, p− t) ⋊ 1 6≥ X(p, t), X(−t,−p).
(iii) ζ(| |(p−t)/2sgnt, p+ t) ⋊ 1 6≥ X(p,−t), X(t,−p).
(iv) ζ(| |(p−t)/2sgnt, p+t)⋊1, ζ(| |(p+t)/2sgnt, p−t)⋊1 ≥ X(p, t), X(−t,−p)

(multiplicity one).
(v) The type (p + 1, t) (resp., (−t,−p − 1)) appears in Lang(| |tsgnt ⋊

X(p,+)) (resp., in Lang(| |tsgnt ⋊ X(p,−))) with multiplicity one.
The type (p,−t − 1) appears with multiplicity one in the Langlands
quotient Lang(δ(| |(p−t)/2sgnt, p+ t) ⋊ 1).

Proof. We prove (i). First, since X(p,−t) and X(t,−p) are large by
Theorem 10.1, we see that | |tsgnt ⋊ Vp 6≥ X(p,−t), X(t,−p). Next, in
the proof of Theorem 10.1, we have demonstrated that | |tsgnt ⋊ Vp 6≥
X(p, t), X(−t,−p). Now, the fact that discrete series appear in | |psgnp+1 ×
| |tsgnt ⋊ 1 with multiplicity one follows from Theorem 10.1. This proves (i).
To prove (ii), we apply Lemma 6.1 to see that the types (p + 1, t + 2) and
(−t − 2,−p− 1) do not appear in δ(| |(p+t)/2sgnt, p− t) ⋊ 1, while they ap-
pear in X(p, t) and X(−t,−p) with multiplicity one, respectively. (iii) follows
from (i), using Theorem 10.1 and the second equality in (9.4). The inequal-
ity ζ(| |(p−t)/2sgnt, p + t) ⋊ 1 ≥ X(p, t), X(−t,−p) follows from the second
equality in (9.4) and Theorem 10.1. The other inequality follows from the last
equality in (9.4) and (ii). The claimed multiplicities follow from (i). Finally,
(v) is contained in the proof of Theorem 10.1.

Finally, we prove the next theorem that completes the description of all
generalized principal series appearing in (9.4).

Theorem 10.3. Assume p > t > 0. Then there is a representation W
such that the following sequence is exact:

W →֒ δ(| |(p+t)/2sgnt, p− t) ⋊ 1։ Lang(δ(| |(p+t)/2sgnt, p− t) ⋊ 1),
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and

δ(| |(p−t)/2sgnt, p+ t) ⋊ 1 →֒W

։ Lang(| |tsgnt ⋊X(p,+)) ⊕ Lang(| |tsgnt ⋊X(p,−)).

Proof. First, we apply Lemma 7.2 (see (7.1)) to δ(| |(p+t)/2sgnt, p−t)⋊1.
Since in this case in (7.1) the first operator has a simple pole, we obtain the
following commutative diagram:

(10.10)

δ(| |(p−t)/2sgnt, p+ t) ⋊ 1
i−−−−→ | |psgnp+1 × | |−tsgnt ⋊ 1

≃

y

| |psgnp+1 × | |tsgnt ⋊ 1

0

y A2

y

| |tsgnt × | |psgnp+1 ⋊ 1

A3

y

δ(| |−(p−t)/2sgnt, p+ t) ⋊ 1
j−−−−→ | |tsgnt × | |−psgnp+1 ⋊ 1

It is clear that

kerA2 ≃ δ(| |(p+t)/2sgnt, p− t) ⋊ 1,

kerA3 ≃ | |tsgnt ⋊X(p,+)⊕ | |tsgnt ⋊X(p,−).

Now, (10.10), (i) and (ii) imply

(10.11) δ(| |(p−t)/2sgnt, p+ t) ⋊ 1 →֒ δ(| |(p+t)/2sgnt, p− t) ⋊ 1.

We apply Lemma 7.3 with ηu = sgnt. First, comparing the diagrams (10.10)
and (7.7) we see that ImB1(t) = kerA2. Similarly, the embedding (8.9)
implies that the image of δ(| |(p+t)/2sgnt, p − t) ⋊ 1 under (isomorphism)
B2(t) contains kerB3(t). This and (7.7) implies that δ(| |(p+t)/2sgnt, p−t)⋊1
contains a subrepresentation W such that

(10.12)
δ(| |(p−t)/2sgnt, p+ t) ⋊ 1 →֒ W

։ Lang(| |tsgnt ⋊X(p,+)) ⊕ Lang(| |tsgnt ⋊X(p,−)).

Moreover, B3(t) induces an embedding

δ(| |(p+t)/2sgnt, p−t)⋊1/δ(| |(p−t)/2sgnt, p+t)⋊1 →֒ | |−tsgnt×| |psgnp+1⋊1.

Moreover, Theorem 10.1 and Corollary Corollary 8.1 (ii) show that this image
intersects the image of j (given by (7.7)) exactly in the image of W under B3.
Next, if we choose the intertwining operator B4 properly,

(10.13) | |−tsgnt × | |psgnp+1 ⋊ 1
B4−−−−→ | |−tsgnt × | |−psgnp+1,



384 G. MUIĆ

then the composition of B4 ◦ B3(t) ◦ B2(t) on ImB1(t) = kerA2 has the
image isomorphic to Lang(δ(| |(p+t)/2sgnt, p − t) ⋊ 1) (applying Lemma 7.2
to δ(| |(p+t)/2sgnt, p− t) ⋊ 1). Thus

δ(| |(p+t)/2sgnt, p− t) ⋊ 1/W ≃ Lang(δ(| |(p+t)/2sgnt, p− t) ⋊ 1).

Before we attack degenerate principal series for regular infinitesimal char-
acter we consider easier degenerate case.

Theorem 10.4. Assume p = t > 0. Then we have the following:

(i) In R(Sp(4,R)), we have the following:

| |psgnp × | |psgnp+1 ⋊ 1

= X1(p,−p) +X1(p,−p) + Lang(| |psgnp ⋊X(p,+))

+ Lang(| |psgnp ⋊X(p,−)) + Lang(| |psgnp × | |psgnp+1 × ⋊1).

(ii) In R(Sp(4,R)), we have the following:

| |psgnp ⋊X(p,+) = X1(p,−p) + Lang(| |psgnp ⋊X(p,+)),

| |psgnp ⋊X(p,−) = X2(p,−p) + Lang(| |psgnp ⋊X(p,−)),

| |psgnp ⋊ Vp = Lang(| |psgnp × | |psgnp+1 ⋊ 1)

(it is obvious how to write composition series in this case).
(iii) We have the following exact sequence:

Lang(| |psgnp ⋊X(p,+)) ⊕ Lang(| |psgnp ⋊X(p,−))

→֒ ζ(sgnp, 2p) ⋊ 1։ Lang(| |psgnp × | |psgnp+1 × ⋊1)

(we remind the reader that Lemma 8.1 implies δ(sgnp, 2p) ⋊ 1 ≃
X1(p,−p) ⊕X2(p,−p)).

Proof. First, the second equality in (9.4) implies that δ(sgnp, 2p) ⋊ 1
contains all large subquotients of | |psgnp × | |psgnp+1 ⋊ 1. Also, the induced
representation | |psgnp ⋊X(p,±) must contain all large subquotients. Since,
by Lemma 8.1, δ(sgnp, 2p)⋊1 ≃ X1(p,−p)⊕X2(p,−p) we see that Lemma 5.2
implies

(10.14)

| |psgnp ⋊X(p,+) ≥ X1(p,−p) (multiplicity one) ,

| |psgnp ⋊X(p,+) 6≥ X2(p,−p),
| |psgnp ⋊X(p,−) 6≥ X1(p,−p),
| |psgnp ⋊X(p,−) ≥ X2(p,−p) (multiplicity one) .

This also shows that both X1(p,−p) and X2(p,−p) are large. Hence

(10.15) | |psgnp ⋊ Vp 6≥ X1(p,−p), X2(p,−p).
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We apply (7.7), where p = t and ηu = sgnp. Note that B1(p) is holomorphic
and an isomorphism (see Theorem 2.5). Next, B2(p) is also an isomorphism.
Furthermore, Lemma 8.1 and Lemma 7.3 (iii) show that

kerB3(p) ≃ δ(sgnp, 2p) ⋊ 1 ≃ X1(p,−p) +X2(p,−p).
Now, since (7.7) implies that the composition B3(p)◦B2(p)◦B1(p)◦ i has the
image isomorphic to Lang(| |psgnp ⋊ X(p,+)) ⊕ Lang(| |psgnp ⋊ X(p,−)),
using (10.14) we obtain

(10.16)
| |psgnp ⋊X(p,+) = X1(p,−p) + Lang(| |psgnp ⋊X(p,+)),

| |psgnp ⋊X(p,−) = X2(p,−p) + Lang(| |psgnp ⋊X(p,−)).

This proves the first two equalities in (ii). Next, (10.15) and the last equality
in (9.4), using Lemma 9.2 (iii) and Lemma 9.3 (ii), show that (i) holds up to
the multiplicity of the third and the fourth representation in the expansion.
Next, using Lemma 6.1, we see that a type (p + 1, p) (resp., (−p,−p − 1))
appears in | |psgnp ⋊X(p,+) (resp., in | |psgnp ⋊X(p,−)) with multiplicity
one. Using, the description of the limits of discrete series (see Section 8), we
see that (p+ 1, p) (resp., (−p,−p− 1)) does not appear in X1(p,−p) (resp.,
in X2(p,−p)). Hence (10.16) shows that a type (p+1, p) (resp., (−p,−p−1))
appears in Lang(| |psgnp ⋊X(p,+)) (resp., in Lang(| |psgnp ⋊X(p,−))) with
multiplicity one. Finally, by Lemma 6.1, they do not appear in | |psgnp ⋊ Vp.
Hence, we obtain (i) and

| |psgnp ⋊ Vp = Lang(| |psgnp × | |psgnp+1 ⋊ 1).

Hence (ii). The semi-simplification of the exact sequence in (iii) follows from
(i) and δ(sgnp, 2p)⋊1 ≃ X1(p,−p)⊕X2(p,−p). The claim about the quotient
is obvious. We need to show

Lang(| |psgnp ⋊X(p,+)) ⊕ Lang(| |psgnp ⋊X(p,−)) →֒ ζ(sgnp, 2p) ⋊ 1,

and this will prove (iii). Again, this follows from (5.7) since, as we noticed
above, we have

B3(p) ◦B2(p) ◦B1(p) ◦ i
≃ Lang(| |psgnp ⋊X(p,+)) ⊕ Lang(| |psgnp ⋊X(p,−)),

kerB3(p) ⊂ ImB2(p) ◦B1(p) ◦ i,
ImB3(p) ≃ ζ(sgnp, 2p) ⋊ 1.

The next corollary will be needed in the proof of Theorem 10.6 below.

Corollary 10.5. Assume p > t > 0. The multiplicities of the
representations Lang(| |tsgnt ⋊ X(p,+)) and Lang(| |tsgnt ⋊ X(p,−)) in
| |tsgnt × | |psgnp+1 ⋊ 1 are exactly one.
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Proof. Put µ = (0, p− t) and λ = (t, t). Then λ + µ = (t, p). Clearly,

the functor ψλ+µ
λ is well–defined. Lemma 3.4 implies the following (w ∈ {±}):

(10.17)
ψλ+µ

λ

(
| |tsgnt ⋊X(p, w)

)
≃ | |tsgnt ⋊X(t, w),

ψλ+µ
λ

(
| |tsgnt ⋊ Vp

)
≃ | |tsgnt ⋊ Vt.

Now, starting from the exact sequence (see Theorem 10.1 (see (10.2)):

X(p, t) ⊕X(p,−t) →֒ | |tsgnt ⋊X(p,+)։ Lang(| |tsgnt ⋊X(t,+)),

and applying the exactness of the functor ψλ+µ
λ , we obtain

ψλ+µ
λ (X(p, t)) ⊕ ψλ+µ

λ (X(p,−t)) →֒ ψλ+µ
λ (| |tsgnt ⋊X(p,+))

։ ψλ+µ
λ (Lang(| |tsgnt ⋊X(p,+))).

Now, since ψλ+µ
λ (X(p, t)) = 0 and ψλ+µ

λ (X(p,−t)) = X1(t,−t), Theorem 10.4
(ii) (or just Theorem 3.2 (iv)) implies the isomorphism (10.18) when w = +:

(10.18) ψλ+µ
λ (Lang(| |tsgnt ⋊X(p, w))) ≃ Lang(| |tsgnt ⋊X(t, w)),

w ∈ {±}. The other one is proved similarly. Next, Theorem 10.4 (ii) shows

| |tsgnt ⋊ Vt 6≥ Lang(| |tsgnt ⋊X(t, w)).

Now, combining (10.17) and (10.18), we obtain

| |tsgnt ⋊ Vp 6≥ Lang(| |tsgnt ⋊X(p, w)).

Finally, the last equality in (9.4) and Theorem 10.1 (see (10.2)) completes the
proof of the corollary.

The next theorem completes the investigation of the structure of the rep-
resentation | |psgnp+1 × | |tsgnt ⋊ 1 (p > t > 0).

Theorem 10.6. Assume p > t > 0. Then, we have the following:

(i) In R(Sp(4,R)), we have the following:

| |psgnp+1 × | |tsgnt ⋊ 1

= X(p, t) +X(p,−t) +X(t,−p) +X(−t,−p) + Lang(| |tsgnt ⋊X(p,+))

+ Lang(| |tsgnt ⋊X(p,−)) + Lang(δ(| |(p−t)/2sgnt, p+ t) ⋊ 1)

+ Lang(δ(| |(p+t)/2sgnt, p− t) ⋊ 1) + Lang(| |tsgnt × | |psgnp+1 ⋊ 1).

(ii) We have the following exact sequence:

(10.19)
X(p, t) ⊕X(−t,−p) →֒ ζ(| |(p+t)/2sgnt, p− t) ⋊ 1

։ Lang(| |psgnp+1 × | |tsgnt ⋊ 1).
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(iii) There is a representation W ′ such that we have the following exact
sequences:

(10.20)
Lang(| |tsgnt ⋊X(p,+)) ⊕ Lang(| |tsgnt ⋊X(p,−))

→֒W ′
։ Lang(δ(| |(p+t)/2sgnt, p− t) ⋊ 1)

and

(10.21) W ′ →֒ ζ(| |(p−t)/2sgnt, p+ t) ⋊ 1։ ζ(| |(p+t)/2sgnt, p− t) ⋊ 1.

(iv) We have the following exact sequence:

Lang(| |psgnp+1 × | |tsgnt ⋊ 1) ⊕ Lang(δ(| |(p−t)/2sgnt, p+ t) ⋊ 1)

→֒ | |tsgnt ⋊ Vp ։ Lang(δ(| |(p+t)/2sgnt, p− t) ⋊ 1).

Proof. We use the notation and results established in the proof of The-
orem 10.3. We also consider some (induced) non–zero intertwining operator:

(10.22) | |−tsgnt × | |−psgnp+1 ⋊ 1
B5−−−−→ | |−psgnp+1 × | |−tsgnt ⋊ 1.

Now, we note that the composition B5 ◦B4 ◦B3(t) ◦B2(t) has the image

B5 ◦B4 ◦B3(t) ◦B2(t)
(
| |psgnp+1 × | |tsgnt ⋊ 1

)

≃ Lang(| |psgnp+1 × | |tsgnt ⋊ 1).

Also, we see that Lemma 7.3 (iii) and (iv) imply that the semisimplifica-
tions in R(Sp(4,R)) of kerB2(t) (resp., kerB3(t)) are {0} (resp., described
by Theorem 10.1 (see (10.1))). Next, kerB4(t) (see (8.11)) has the same
semisimplification in R(Sp(4,R)) as kerB2(t) and kerB5(t) (see (10.22)) is
isomorphic to δ(| |−(p+t)/2sgnp+1, p− t)⋊1, which has the same semisimplifi-
cation in R(Sp(4,R)) as δ(| |(p+t)/2sgnt, p−t)⋊1, described by Theorem 10.3.
We conclude that, except the Langlands quotient, | |psgnp+1 × | |tsgnt ⋊ 1
can have only the following irreducible subquotients: X(p, t), X(p,−t),
X(t,−p), X(−t,−p), Lang(| |tsgnt ⋊ X(p,+)), Lang(| |tsgnt ⋊ X(p,−)),
Lang(δ(| |(p−t)/2sgnt, p+ t) ⋊ 1), and Lang(δ(| |(p+t)/2sgnt, p− t) ⋊ 1) up to
multiplicity. It remains to determine multiplicities.

First, by Corollary 10.2 (i) all discrete series appear with multiplicity one.
Next, by Corollary 10.5, Lang(| |tsgnt⋊X(p,±)) also appear with multiplicity
one. Obviously, Lang(| |psgnp+1 × | |tsgnt ⋊ 1) appears with multiplicity one
too. Next, if we consider how the images under the intertwining operators
B2(t), B3(t) ◦ B2(t), and B4 ◦ B3(t) ◦ B2(t) intersect the kernels kerB3(t),
kerB4, and kerB5, respectively, we conclude that Lang(δ(| |(p+t)/2sgnt, p −
t) ⋊ 1) appears with multiplicity one.

It remains to determine the multiplicity of Lang(δ(| |(p−t)/2sgnt, p+t)⋊1).
We consider the two cases:

Assume p ≡ t + 1 (mod 2). Then the multiplicity of type (p,−p) in
δ(| |(p−t)/2sgnt, p+ t)⋊1, δ(| |(p+t)/2sgnt, p− t)⋊1, | |tsgnt × | |psgnp+1 ⋊1,
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using Lemma 6.1, is (p − t + 1)/2, (p + t + 1)/2, and p, respectively. Next,
using the description of the types of discrete series (given in Section 8) we see
that X(p,−t) and X(t,−p) do not contain that type. Hence, Theorem 10.1
(see (10.1)) implies that its multiplicity in Lang(δ(| |(p−t)/2sgnt, p + t) ⋊ 1)
must be (p− t+ 1)/2. Since

(p− t+ 1)/2 + (p+ t+ 1)/2 = p+ 1 > p,

we see that (9.4) implies that Lang(δ(| |(p−t)/2sgnt, p+ t) ⋊ 1) is not a sub-
quotient of ζ(| |(p−t)/2sgnt, p+ t)⋊1. This proves (i) when p ≡ t+1 (mod 2).

Assume p ≡ t (mod 2). Choose (m,n) ∈ Z2 such that m > n > 0 and
m ≡ n+ 1 (mod 2). Then, by Lemma 3.1,

ψ
(p+m,t+n)
(p,t) (| |p+msgnp+m+1 × | |t+nsgnt+n ⋊ 1) ≃ | |psgnp+1 × | |tsgnt ⋊ 1.

Since by the previous case | |p+msgnp+m+1 × | |t+nsgnt+n ⋊ 1 is multiplicity
free we see that | |psgnp+1×| |tsgnt⋊1 is also multiplicity free. This completes
the proof of (i).

In order to prove (ii), we note that the semisimplification of (10.19) follows
from (i), Theorem 10.3 and (9.4). To show the exact sequence in (10.19), we
remind the reader that we use the notation from the proof of Theorem 10.3.
In particular, we have

kerB1(t) ≃ ζ(| |(t+p)/2sgnt, p− t) ⋊ 1,

ImB1(t) ≃ δ(| |(t+p)/2sgnt, p− t) ⋊ 1.

Now, as (7.7) shows, we have

Im i ≃ | |tsgnt ⋊X(p,+) ⊕ | |tsgnt ⋊X(p,−).

Thus, Theorem 10.1 (see (10.2)) and Theorem 10.3 show

(10.23) kerB1(t) ∩ Im i ≃ X(p, t) ⊕X(−t,−p).
Also, inducing in stages and using Theorem 2.5, we obtain

| |psgnp+1 × | |tsgnt ⋊ 1։ ζ(| |(t+p)/2sgnt, p− t) ⋊ 1.

Since Lang(| |psgnp+1 × | |tsgnt ⋊ 1) is a unique irreducible quotient of
| |psgnp+1 × | |tsgnt ⋊ 1, we obtain (10.19). This proves (ii). (iii) follows
directly from the fact that the isomorphism B2(t) induces the embedding
(10.11), Theorems 2.5 and 10.3. In fact,

W ′ ≃W/
(
δ(| |(p−t)/2sgnt, p+ t) ⋊ 1

)
.

Finally, we prove (iv). First, the semisimplification of (iv) holds (using the
last equality in (9.4), Theorems 10.1 and 10.3, and (i)). Next, inducing in
stages and applying Theorem 2.3, we obtain (see (7.7))

Im i →֒ | |tsgnt × | |psgnp+1 ⋊ 1։ | |tsgnt × Vp.
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Hence, (10.23) and (10.19) implies

Lang(| |psgnp+1 × | |tsgnt ⋊ 1) →֒ | |tsgnt × Vp.

Similarly, using the inclusions

δ(| |−(p−t)/2sgnt, p+ t) ⋊ 1, | |tsgnt × Vp →֒ | |tsgnt × | |−psgnp+1 ⋊ 1,

that follow applying Theorems 2.4 and 2.5, we see that the images of the
left–hand sides must intersect. Hence

Lang(δ(| |(p−t)/2sgnt, p+ t) ⋊ 1 →֒ | |tsgnt × Vp

using (i) and Theorem 10.1 (see (10.2)). Now, (iv) follows.

We end this section considering one more degenerate case that completes
the investigation of | |psgnp+1 × | |tsgnt ⋊ 1 under the assumption (9.2).

Theorem 10.7. Assume p > t = 0. Then we have the following:

(i) In R(Sp(4,R)), we have the following:
(10.24)
| |psgnp+1 × 1 ⋊ 1 = X1(p, 0) +X2(p, 0) +X1(0,−p) +X2(0,−p)

+ Lang(δ(| |p/2, p) ⋊ 1) + Lang(| |psgnp+1 × 1 ⋊ 1).

(ii) We have the following exact sequences:

(10.25) X2(p, 0) ⊕X1(0,−p) →֒ δ(| |p/2, p) ⋊ 1։ Lang(δ(| |p/2, p) ⋊ 1),

(10.26) X1(p, 0)⊕X2(0,−p) →֒ ζ(| |p/2, p) ⋊ 1։ Lang(| |psgnp+1 × 1 ⋊ 1),

(10.27) Lang(δ(| |p/2, p) ⋊ 1) →֒ 1 ⋊ Vp ։ Lang(| |psgnp+1 × 1 ⋊ 1).

Proof. We use the translation functors. Let (m1,m2) ∈ Z2 be any
pair such that m1 > m2 > 0. Put µ = (m1,−m2), λ = (p, 0). Hence

λ+ µ = (p+m1,−m2). We see that ψλ+µ
λ is well defined. Next, we have the

following (see Lemma 4.2):

(10.28) ψλ+µ
λ (δ(| |(p+m1−m2)/2sgnm2 , p+m1 +m2) ⋊ 1) ≃ δ(| |p/2, p) ⋊ 1.

Now, applying Theorem 10.1 (see (10.1)), (limit–dis) in Section 8, Theorem 3.2

(iv), and the exactness of the functor ψλ+µ
λ we obtain (10.25) and

(10.29)

ψλ+µ
λ (Lang(δ(| |(p+m1−m2)/2sgnm2 , p+m1+m2)⋊1)) ≃ Lang(δ(| |p/2, p)⋊1).

We leave details to the reader. Also, Lemma 4.2 implies
(10.30)

ψ
(p+m1,m2)
(p,0) (δ(| |(p+m1+m2)/2sgnm2 , p+m1 −m2) ⋊ 1) ≃ δ(| |p/2, p) ⋊ 1,

ψ
(p+m1,m2)
(p,0) (ζ(| |(p+m1+m2)/2sgnm2 , p+m1 −m2) ⋊ 1) ≃ ζ(| |p/2, p) ⋊ 1,
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Next, Remark 3.1 implies that the functors ψλ+µ
λ and ψ

(p+m1,m2)
(p,0) are naturally

isomorphic. Hence, (10.28), (10.29), and Theorem 10.3, implies

(10.31) ψ
(p+m1,m2)
(p,0) (Lang(δ(| |(p+m1+m2)/2sgnm2, p+m1 −m2) ⋊ 1)) = 0.

Also, (10.19), the second formula in (10.30), (limit–dis) in Section 8, Theo-

rem 3.2 (iv), and the exactness of the functor ψλ+µ
λ imply (10.26) and

(10.32)
ψ

(p+m1,m2)
(p,0) (Lang(| |p+m1sgnp+m1+1 × | |m2sgnm2 ⋊ 1))

≃ Lang(| |psgnp+1 × 1 ⋊ 1).

Now, since we have proved (10.25) and (10.26), we obtain (i) applying the
first equality in (9.4). It remains to prove (10.27). Clearly, the functor

ψ
(m2,p+m1)
(0,p) is well defined and, by Remark 3.1, naturally isomorphic to ψλ+µ

λ

and ψ
(p+m1,m2)
(p,0) . Also, Lemma 3.4 implies

ψ
(m2,p+m1)
(0,p) (| |m2sgnm2 ⋊ Vp+m1

) ≃ 1 ⋊ Vp.

Now, Theorem 10.6 (iv) and the exactness of the functor ψ
(m2,p+m1)
(0,p) , implies

(10.27), applying (10.29), (10.31) and (10.32).

11. Composition series in the case of integral infinitesimal

character III

In this section we consider | |psgnp×| |tsgnt+1 ⋊1. We assume that (9.2)
holds. This is the last case among those described in (9.1).

Theorem 11.1. Assume p > t > 0. Then we have the following:

(i) We have the following exact sequence:

Lang(δ(| |(p+t)/2sgnt+1, p− t) ⋊ 1) →֒ | |psgnp ⋊ Vt

։ Lang(| |psgnp × | |tsgnt+1 ⋊ 1).

(ii) | |psgnp⋊X(t,+) has the following filtration V0 ⊂ V1 ⊂ V2 ≃ | |psgnp⋊

X(t,+), where

V0 ≃ X(p,−t),
V1/V0 has a filtration consisting of

Lang(δ(| |(p−t)/2sgnt, p+ t) ⋊ 1), Lang(| |tsgnt ⋊X(p,+)),

V2/V1 ≃ Lang(| |psgnp ⋊X(t,+)).
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(iii) | |psgnp⋊X(t,−) has the following filtration V0 ⊂ V1 ⊂ V2 ≃ | |psgnp⋊

X(t,+), where

V0 ≃ X(t,−p),
V1/V0 has a filtration consisting of

Lang(δ(| |(p−t)/2sgnt, p+ t) ⋊ 1), Lang(| |tsgnt ⋊X(p,−)),

V2/V1 ≃ Lang(| |psgnp ⋊X(t,−)).

(iv) ζ(| |(p+t)/2sgnt+1, p− t)⋊1 has the following filtration V0 ⊂ V1 ⊂ V2 ≃
ζ(| |(p+t)/2sgnt+1, p− t) ⋊ 1, where

V0 ≃ Lang(δ(| |(p−t)/2sgnt, p+ t) ⋊ 1),

V1/V0 ≃ Lang(| |psgnp ⋊X(t,+)) ⊕ Lang(| |psgnp ⋊X(t,−)),

V2/V1 ≃ Lang(| |psgnp × | |tsgnt+1 ⋊ 1).

(v) ζ(| |(p−t)/2sgnt+1, p+ t)⋊1 has the following filtration V0 ⊂ V1 ⊂ V2 ⊂
V3 ⊂ V4 ≃ ζ(| |(p−t)/2sgnt+1, p+ t) ⋊ 1, where

V0 ≃ Lang(δ(| |(p−t)/2sgnt, p+ t) ⋊ 1,

V1/V0 ≃ Lang(| |psgnp ⋊X(t,+)) ⊕ Lang(| |psgnp ⋊X(t,−)),

V2/V1 ≃ Lang(| |psgnp × | |tsgnt+1 ⋊ 1),

V3/V2 ≃ Lang(| |tsgnt ⋊X(p,+)) ⊕ Lang(| |tsgnt ⋊X(p,−)),

V4/V3 ≃ Lang(δ(| |(p+t)/2sgnt, p− t) ⋊ 1).

Proof. First, we write appropriate analogue of the diagram (7.7). We
have the following:

(11.1)

⊕ε∈{±}| |psgnp ⋊X(t, ε)
i−−−−→ | |psgnp × | |tsgnt+1 ⋊ 1

B1(p)

y

| |tsgnt+1 × | |psgnp ⋊ 1

B(p)

y B2(p)≃

y

| |tsgnt+1 × | |−psgnp ⋊ 1

B3(p)

y

⊕ε∈{±}| |−psgnp ⋊X(t, ε)
j−−−−→ | |−psgnp × | |tsgnt+1 ⋊ 1

B4

y

| |−psgnp × | |−tsgnt+1 ⋊ 1.
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Actually, we have added the last arrow to the diagram (11.1), where B4 is
some non–zero operator induced form that of | |tsgnt+1 ⋊1 → | |−tsgnt+1 ⋊1.
It has kernel equal to the image of j. Also, we recall that B1(p) is holomorphic
(see Lemma 7.3). Also, we recall that

kerB1(p) ≃ δ(| |(p+t)/2sgnt+1, p− t) ⋊ 1 = δ(| |(p+t)/2sgnt, p− t) ⋊ 1,

Im B1(p) ≃ ζ(| |(p+t)/2sgnt+1, p− t) ⋊ 1

and

kerB3(p) ≃ δ(| |(t−p)/2sgnp, p+ t) ⋊ 1 = δ(| |(t−p)/2sgnt, p+ t) ⋊ 1,

Im B3(p) ≃ ζ(| |(t−p)/2sgnp, p+ t) ⋊ 1.

Next, applying Theorem 2.5 and B2(t)
−1, we obtain the following embed-

ding:

a : ζ(| |(p+t)/2sgnt+1, p− t) ⋊ 1 →֒ | |tsgnt+1 × | |psgnp ⋊ 1,

b : δ(| |(t−p)/2sgnt, p+ t) ⋊ 1 →֒ | |tsgnt+1 × | |psgnp ⋊ 1.

We claim

(11.2) Im a ∩ Im b ≃ Lang(δ(| |(t−p)/2sgnt, p+ t) ⋊ 1).

First, we show that Im a ∩ Im b 6= 0. If not, then, since by Theorem 2.5 we
have an epimorphism

| |tsgnt+1 × | |psgnp ⋊ 1։ δ(| |(p+t)/2sgnt+1, p− t) ⋊ 1,

having kernel equal to Im a, we obtain

δ(| |(t−p)/2sgnt, p+ t) ⋊ 1 →֒ δ(| |(p+t)/2sgnt+1, p− t) ⋊ 1

= δ(| |(p+t)/2sgnt, p− t) ⋊ 1.

Now, the composition series of δ(| |(p+t)/2sgnt, p− t) ⋊ 1 described by Theo-
rem 10.3 shows

Lang(δ(| |(p−t)/2sgnt, p+ t) ⋊ 1) →֒ δ(| |(p−t)/2sgnt, p+ t) ⋊ 1.

This is a contradiction since δ(| |(p−t)/2sgnt, p+ t) ⋊ 1 is reducible (see Theo-
rem 10.1). This shows that the right–hand side of (11.2) is a subrepresentation
of the left–hand side. To see equality, we apply Theorem 10.1 that implies
that other two irreducible subquotients X(p,−t) and X(t,−p), being large
are not subquotients of ζ(| |(p+t)/2sgnt+1, p− t) ⋊ 1. This proves (11.2), but
it also proves

(11.3)
ζ(| |(p+t)/2sgnt+1, p− t) ⋊ 1 6≥ X(p,−t), X(t,−p),
Lang(δ(| |(p−t)/2sgnt, p+ t) ⋊ 1) →֒ ζ(| |(p+t)/2sgnt+1, p− t) ⋊ 1.
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Next, clearly (11.1) implies ImB1(p) ◦ i ⊂ Im a. Also, (11.1) implies Im i 6⊂
kerB1(p). Hence ImB1(p) ◦ i 6= 0. Now, if ImB1(p) ◦ i ∩ Im b 6= 0, then we
prove

ImB1(p) ◦ i ∩ Im b ≃ Lang(δ(| |(t−p)/2sgnt, p+ t) ⋊ 1)

in the same way we have proved (11.2). Written differently, we obtain

ImB2(p) ◦B1(p) ◦ i ∩ kerB3(p) ≃ Lang(δ(| |(t−p)/2sgnt, p+ t) ⋊ 1).

Hence, the commutative diagram (11.1) implies following exact sequence:

(11.4)
Lang(δ(| |(p−t)/2sgnt, p+ t) ⋊ 1) →֒ ImB1(p) ◦ i

։ Lang(| |psgnp ⋊X(t,+)) ⊕ Lang(| |psgnp ⋊X(p,−)),

if ImB1(p) ◦ i ∩ Im b 6= 0. Next, we note that
(11.5)

| |psgnp⋊Vt






≥ Lang(δ(| |(p+t)/2sgnt, p− t) ⋊ 1, (multiplicity one),

6≥ Lang(| |tsgnt ⋊X(p,±)), Lang(δ(| |(p−t)/2sgnt, p+ t) ⋊ 1),

6≥ X(p, t), X(p,−t), X(t,−p), X(−t,−p).

Hence, Theorem 10.3, (11.3) and (9.5) imply that Lang(δ(| |(t−p)/2sgnt, p +
t) ⋊ 1) must appear in Im i at least twice. Since it appears exactly once in
kerB1(p) (see Theorem 10.3), it must appear in B1(p) ◦ i. Hence (11.4) holds
without restrictions.

To prove the first inequality in (11.5), we consider another commutative
diagram (see (7.1)):

(11.6)

δ(| |(p+t)/2sgnt+1, p− t) ⋊ 1
i1−−−−→ | |psgnp × | |tsgnt+1 ⋊ 1

A1

y

| |psgnp × | |−tsgnt+1 ⋊ 1

A

y A2

y

| |−tsgnt+1 × | |psgnp ⋊ 1

A3≃

y

δ(| |−(p+t)/2sgnt+1, p− t) ⋊ 1
j1−−−−→ | |−tsgnt+1 × | |−psgnp ⋊ 1

A4 6=0(induced)

y

| |−psgnp × | |−tsgnt+1 ⋊ 1

This diagram consists of holomorphic and non–zero operators (see Lemma 7.2).
This implies

(11.7) | |psgnp ⋊ Vt ≥ Lang(δ(| |(p+t)/2sgnt+1, p− t) ⋊ 1).
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Now, we complete the proof of (11.5). First, we combine Lemma 6.1 and
Corollary 10.2(v) for Lang(| |tsgnt⋊X(p,±)), and Lemma 6.1 and description
of the types of discrete series for X(p, t) and X(−t,−p). Next, Theorem 10.1
implies that X(p,−t) and X(t,−p) are large and this proves (11.5) for them.
Finally, we note that the type (p,−t − 1) appears with multiplicity one in
Lang(δ(| |(p−t)/2sgnt, p + t) ⋊ 1) (by Corollary 10.2 (v)), with multiplicity
t+1 in δ(| |(p+t)/2sgnt+1, p− t)⋊1 (by Lemma 6.1), with multiplicity zero in
| |tsgnt⋊X(p,±), and with multiplicity t in | |psgnp ⋊Vt. Now, Theorem 10.3
implies that this type appears in Lang(δ(| |(p+t)/2sgnt+1, p − t) ⋊ 1) with
multiplicity t. This and (11.7) show that Lang(δ(| |(p−t)/2sgnt, p+ t) ⋊ 1) do
not appear in | |psgnp ⋊Vt, while Lang(δ(| |(p+t)/2sgnt+1, p− t) ⋊ 1) appears
with multiplicity at most one as claimed. This proves (11.5).

Next, we note that Im i1 = kerB1(p) and Im i = kerA1, and we claim the
following:

(11.8)
Im i ∩ kerB1(p) ≃
maximal proper subrepresentation of δ(| |(p+t)/2sgnt+1, p− t) ⋊ 1.

This follows directly from (11.5) and Theorem 10.3 since ImA1 ≃ | |psgnp⋊Vt.
Now, since

kerA2 ≃ δ(| |(p−t)/2sgnt+1, p+ t) ⋊ 1,

kerA4 ≃ δ(| |−(p+t)/2sgnt+1, p− t) ⋊ 1,

and the composition A4◦A3◦A2◦A1 has image Lang(| |psgnp×| |tsgnt+1⋊1),
(11.5) implies (i).

Next, Theorem 10.3, (9.4) and (9.8) imply that in R(Sp(4,R)) we have
the following:

| |psgnp ⋊X(t,+) + | |psgnp ⋊X(t,−)

= X(p,−t) +X(t,−p) + 2 · Lang(δ(| |(p−t)/2sgnt, p+ t) ⋊ 1)

+ Lang(| |tsgnt ⋊X(p,+)) + Lang(| |tsgnt ⋊X(p,−))

+ Lang(| |psgnp ⋊X(t,+)) + Lang(| |psgnp ⋊X(t,−)).

Now, we use the types to write this more precisely. We have that (p +
1,−t), (t,−p − 1), (p + 1, t), (−t,−p − 1), and (p,−t − 1) appear in
X(p,−t), X(t,−p), Lang(| |tsgnt ⋊X(p,+)), Lang(| |tsgnt ⋊X(p,−)), and
Lang(δ(| |(p−t)/2sgnt, p+ t) ⋊ 1) with multiplicity one, respectively (by (dis)
in Section 8 and Corollary 10.2 (v)). Lemma 6.1 shows that (p + 1,−t)
and (p + 1, t) belong to | |psgnp ⋊ X(t,+) but not to | |psgnp ⋊ X(t,−).
Also, (t,−p − 1) and (−t,−p − 1) belong to | |psgnp ⋊ X(t,−) but not to
| |psgnp ⋊ X(t,+). Finally, (p,−t − 1) appears in | |psgnp ⋊ X(t,−) and in
| |psgnp ⋊ X(t,−) with multiplicity one and with multiplicity at most one,
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respectively. Now, the composition series of δ(| |(p+t)/2sgnt, p− t) ⋊ 1 given
by Theorem 10.3, (11.4) and (11.8) imply (ii) and (iii).

Now, (i), (ii) and (iii), together with (9.5) and Theorems 10.1 and 10.3,
show that in semisimplification (iv) and (v) hold. Using (11.1) we see that
ζ(| |(p+t)/2sgnt+1, p − t) ⋊ 1 and Lang(| |psgnp × | |tsgnt+1 ⋊ 1) are both
quotients of | |psgnp × | |tsgnt+1 ⋊1. Now, (11.4) completes the proof of (iv).
In order to prove (v), we note the following exact sequence (which follows
from Theorem 2.5 taking contragredients):

(11.9)
δ̃(| |(p+t)/2sgnt+1, p− t) ⋊ 1 →֒ | |−tsgnt+1 × | |−psgnp ⋊ 1

։ ζ̃(| |(p+t)/2sgnt+1, p− t) ⋊ 1.

Using the Langlands classification and the description of contragredient rep-

resentations (see the end of the proof of Theorem 10.1): X̃(p,−) ≃ X(p,+),

X̃(p, t) ≃ X(−t,−p), and ˜X(p,−t) ≃ X(t,−p), we obtain the following de-
scription of contragredient representations:

L̃ang(| |psgnp ⋊X(t,+)) ≃ Lang(| |psgnp ⋊X(t,−)),

L̃ang(| |psgnp ⋊X(t,−)) ≃ Lang(| |psgnp ⋊X(t,+)),

L̃ang(| |tsgnt ⋊X(p,+)) ≃ Lang(| |tsgnt ⋊X(p,−)),

L̃ang(| |tsgnt ⋊X(p,−)) ≃ Lang(| |tsgnt ⋊X(p,+)),

L̃ang(δ(| |(p−t)/2sgnt, p+ t) ⋊ 1) ≃ Lang(δ(| |(p−t)/2sgnt, p+ t) ⋊ 1),

L̃ang(δ(| |(p+t)/2sgnt, p− t) ⋊ 1) ≃ Lang(δ(| |(p+t)/2sgnt, p− t) ⋊ 1),

L̃ang(| |psgnp × | |tsgnt+1 ⋊ 1) ≃ Lang(| |psgnp × | |tsgnt+1 ⋊ 1).

Now, applying Theorem 10.3 we obtain the filtration of δ̃(| |(p+t)/2sgnt+1, p−
t) ⋊ 1 and applying (iv) we obtain the filtration of ζ̃(| |(p+t)/2sgnt+1, p −
t) ⋊ 1. Combining them with (11.9), we obtain the filtration of the induced
representation:

(11.10) | |−tsgnt+1 × | |−psgnp ⋊ 1.

But, we note that ζ(| |(p−t)/2sgnt+1, p + t) ⋊ 1 is a subrepresentation of
| |−tsgnt+1 × | |psgnp ⋊ 1 (see Theorem 2.5). Next, Theorem 2.4 implies

(11.11) | |−tsgnt+1 × | |psgnp ⋊ 1 ≃ | |−tsgnt+1 × | |−psgnp ⋊ 1.

Hence ζ̃(| |(p−t)/2sgnt+1, p+t)⋊1 appears as a quotient of (11.10). Projecting

to the filtration of (11.10) to ζ̃(| |(p−t)/2sgnt+1, p+ t)⋊1, we easily obtain (v)
since we already know the semisimplification of ζ(| |(p−t)/2sgnt+1, p+ t) ⋊ 1.

Finally, we need to consider the degenerate case.
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Theorem 11.2. Assume p > t = 0. Then we have the following:

(i) | |psgnp⋊X(0,+) has the following filtration V0 ⊂ V1 ⊂ V2 ≃ | |psgnp⋊

X(0,+), where

V0 ≃ X2(p, 0),

V1/V0 ≃ Lang(δ(| |p/2, p) ⋊ 1),

V2/V1 ≃ Lang(| |psgnp ⋊X(0,+)).

(ii) | |psgnp ⋊ X(0,−) has the following filtration V0 ⊂ V1 ≃ | |psgnp ⋊

X(0,−), where

V0 ≃ X1(0,−p),
V1/V0 ≃ Lang(δ(| |p/2, p) ⋊ 1),

V2/V1 ≃ Lang(| |psgnp ⋊X(0,−)).

(iii) ζ(| |p/2sgn, p) ⋊ 1 has the following filtration V0 ⊂ V1 ⊂ V2 ≃
ζ(| |p/2sgn, p) ⋊ 1, where

V0 ≃ Lang(δ(| |p/2, p) ⋊ 1),

V1/V0 ≃ Lang(| |psgnp ⋊X(0,+)) ⊕ Lang(| |psgnp ⋊X(0,−)).

Proof. This has the proof that is similar to the proof of Theorem 11.1.
We leave to the reader to make necessary adjustments (one may also proceed
applying translations functors as in the proof of Theorem 10.7).

12. Composition series in the case of non–integral infinitesimal

character

In this section we complete our analysis of the composition series of gen-
eralized and degenerate principal series for Sp(4,R).

Theorem 12.1. Assume that η = | |ssgnǫ (s ∈ C, ǫ ∈ {0, 1}) and p ∈ Z≥0.
Then we have the following:

(i) Assume s−k/2 6∈ Z (hence, the infinitesimal character (s+k/2, s−k/2)
of δ(η, k) ⋊ 1 and ζ(η, k) ⋊ 1 is not integral). Then δ(η, k) ⋊ 1 and
ζ(η, k) ⋊ 1 are irreducible.

(ii) Assume s 6∈ Z (hence, the infinitesimal character (s, p) of η ⋊X(p,±)
and η ⋊ Vp (exists only for p > 0) is not integral). Then η ⋊X(p,±)
and η ⋊ Vp (exists only for p > 0) are irreducible.

Proof. We prove (i). The proof of (ii) is analogous and it is left to
the reader. To prove (i), we note that the contragredients of δ(η, k) ⋊ 1 and
ζ(η, k) ⋊ 1 are given by Lemma 7.1. Hence we may assume Re(s) ≥ 0. To
prove irreducibility of δ(η, k) ⋊ 1, we first consider the case Re(s) > 0. Now,
we use the notation introduced in Lemma 7.2. Applying Theorems 2.4 and 2.5
we see that all intertwining operators Ai(t) i = 1, 2, 3, are holomorphic and
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isomorphisms. Hence (7.1) shows that A(t) is an isomorphism. This implies
that δ(η, k) ⋊ 1 is irreducible. If Re(s) = 0, then δ(η, k) ⋊ 1 is irreducible by
Lemma 8.1.

To prove reducibility of ζ(η, k) ⋊ 1, for t = Re(s) ≥ 0, we use some non–
zero (induced) intertwining operatorsA1, A2, A3 instead ofA1(t), A2(t), A3(t),
respectively, in (7.1). Now, since δ(η, k) ⋊ 1 is irreducible it is large. In fact,
it is a unique large subquotient of

ηu| |t+k/2sgnk+1 × ηu| |t−k/2 ⋊ 1 = δ(η, k) ⋊ 1 + ζ(η, k) ⋊ 1.

This implies that there exists a non–zero intertwining operator A such that
the analogue of (7.1) holds. Now, we consider the two cases:

First, assume that t = Re(s) ≥ k/2. Then we add an (induced) non–zero
intertwining operator:

η−1
u | |−t+k/2 × η−1

u | |−t−k/2sgnk+1 ⋊ 1

A4−−−−→ η−1
u | |−t−k/2sgnk+1 × η−1

u | |−t+k/2 ⋊ 1

to the diagram (7.1). Now, the composition A4 ◦A3 ◦A2 ◦A1 is isomorphic to

Lang(ηu| |t+k/2sgnk+1 × ηu| |t−k/2 ⋊ 1).

It is clear that we have the following exact sequence:

(12.1) δ(η, k) ⋊ 1 ≃ kerA4 = Im j →֒ ImA3 ◦A2 ◦A1 ։ ζ(η, k) ⋊ 1.

Hence

ζ(η, k) ⋊ 1 ≃ Lang(ηu| |t+k/2sgnk+1 × ηu| |t−k/2 ⋊ 1).

Next, we assume that 0 ≤ t = Re(s) < k/2. Then, except the operator
A4, we need to add one more isomorphism:

η−1
u | |−t−k/2sgnk+1 × η−1

u | |−t+k/2 ⋊ 1

A5≃−−−−→ η−1
u | |−t−k/2sgnk+1 × ηu| |t−k/2 ⋊ 1.

Now, A5 ◦ A4 ◦ A3 ◦ A2 ◦ A1 is isomorphic to Lang(ηu| |t+k/2sgnk+1 ×
ηu| |−t+k/2 ⋊ 1). Also, (12.1) holds and we obtain

ζ(η, k) ⋊ 1 ≃ Lang(ηu| |t+k/2sgnk+1 × η−1
u | |−t+k/2 ⋊ 1).

This completes the proof of (i).
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[23] G. Muić, M. Tadić, Unramified Unitary Duals for Split Classical p–adic Groups; The

topology and Isolated Representations, Shahidi’s volume (to appear).
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15, Birkhäuser, Boston, 1981.
[31] D. A. Vogan, The unitary dual of G2, Invent. Math. 116 (1994), 677-791.
[32] T. Watanabe, Residual spectrum representations of Sp4, Nagoya Math J. 127 (1992),

15-47.
[33] G. Zuckerman, Tensor products of finite and infinite dimensional representations of

semisimple Lie groups, Ann. Math. (2) 106 (1977), 295-308.
[34] A. V. Zelevinsky, Induced representations of reductive p–adic groups. On irreducible
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