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Abstract. In this paper we present technical improvement of results
in [19]. We study asymptotic behavior of the functional

J ε
a,β,γ(v) = −

∫ 1

0

(

ε2v′′2(s) + W (v′(s)) + a(ε−βs, ε−γs)v2(s)
)

ds

as ε −→ 0, where a is 1 × 1-periodic. We determine (rescaled) minimal
asymptotic energy associated to J ε

a,β,γ
as ε −→ 0 where β, γ ≥ 0, β+γ > 0.

1. Introduction

We consider a variant of the energy in [1] which is perturbed by the
highly oscillatory non-periodic term a(ε−βs, ε−γs), where β, γ ≥ 0 are given
parameters and β 6= γ. The functional Iε

a,β with periodic oscillatory term,

studied in [19],

(1.1) Iε
a,β(v) := −

∫ 1

0

(

ε2v′′2(s) + W (v′(s)) + a(ε−βs)v2(s)
)

ds,

is now replaced by

(1.2) J ε
a,β,γ(v) := −

∫ 1

0

(

ε2v′′2(s) + W (v′(s)) + a(ε−βs, ε−γs)v2(s)
)

ds,

where v ∈ H2
per(〈0, 1〉), W ∈ C(R; [0, +∞〉), W (ξ) = 0 if and only if ξ ∈

{−1, 1}, W has superlinear growth in infinity, a is Carathéodory function on
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〈0, 1〉 × 〈0, 1〉 which satisfies a(ξ1, ξ2) ≥ α > 0 (a.e. (ξ1, ξ2) ∈ 〈0, 1〉 × 〈0, 1〉),
a ∈ L1

per(〈0, 1〉 × 〈0, 1〉). Typical choice for W is W (ξ) := (ξ2 − 1)2. In
this paper we obtain formulas which show how rescaled energies associated to
J ε

a,β,γ , namely,

Eε
a(β, γ) := min

v∈H2〈0,1〉
ε−2/3J ε

a,β,γ(v), Eε
a,per(β, γ) := min

v∈H2
per〈0,1〉

ε−2/3J ε
a,β,γ(v),

depend on a for various values of parameters β, γ > 0 as ε −→ 0. In particular,
we generalize results in [19]. Organization of the paper is as follows: First,
we fix the notation and quote some results which are the starting point for
our considerations (section 2). Second, we consider the case γ = 0 (section
3). Finally, in section 4 we deal with the general case γ > 0. Due to highly
technical nature of the proofs, we confine ourselves to presentation of the
proofs in full detail only in the case β ∈ 〈0, 1/3〉 and γ ∈ [0, 1/3〉. While in the
case when β > 1/3 or γ > 1/3 proofs do not contain significant modifications
in comparison to those already obtained in [19], the case β = 1/3 (or γ = 1/
3) can be treated analogously as herein, with a few details more involved.
The very basic result regarding oscillation on small scales is the well-known
McShanne’s Lemma:

Lemma 1.1 (McShanne). Consider Carathéodory function a ∈ L∞
per(〈0, 1〉

× 〈0, 1〉), β, γ > 0, aε
0(s) := a(ε−βs, s), aε(s) := a(ε−βs, ε−γs), s ∈ R. Then:

• aε
0

∗
−−−⇀a0 in L∞(R2), where a0(s) := −

∫ 1

0 a(ξ1, s)dξ1 (a.e. s ∈ R),

• aε ∗
−−−⇀a in L∞(R2), where a := −

∫ 1

0
−
∫ 1

0
a(ξ1, ξ2)dξ1dξ2.

Functionals like (1.1) and (1.2) are examples of one-dimensional function-
als of the Ginzburg-Landau type, which are common in modeling of physical
systems where phase transition occurs. The literature on the subject is ex-
tensive. Here we only mention [1,2] and [6–15]. Further list of references can
be found in [1]. According to approach in [1], the relative impact of fine mi-
crostructures and small gradient perturbations can be captured by means of
Γ-convergence of a family of suitably rescaled energies related to phase transi-
tion phenomena. Small parameter ε induces an internally created small scale
which can be identified by approach in [1]. In a more general framework,
we have to deal with mutually interacting and different small parameters.
Due to competition of multiple small scales, tools like McShanne’s Lemma
above are not sufficient to capture actual asymptotic behavior of the system.
In the case of functional (1.1) and (1.2) an interaction between internally
created scale and externally imposed scales develops as ε −→ 0. Results re-
lated to functional (1.1) are obtained in [19]. In this paper we extend the
analysis to the case of two different externally imposed small scales. In a
number of other papers the authors were already considering the functionals
of Ginzburg-Landau type with similar oscillation effect (for instance, see [4]).
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An interested reader can find in [20] a more comprehensive list of references
on multi-scale variational problems.

2. Some preliminaries

In this section we introduce the notation, and we quote some results which
we will use in sections 3 and 4. Most of our notation is inherited from [1]: we
work on the unit interval 〈0, 1〉 ⊆ R, but all the proofs can be carried out if we
consider any bounded open interval Ω ⊆ R endowed with Lebesgue measure
(denoted by λ). As usual, H2

per〈0, 1〉 denotes the set of all H2
loc(R) functions,

extended by periodicity out of 〈0, 1〉, while C−〈0, 1〉 (C+〈0, 1〉, resp.) denotes
the set of all lower-semicontinuous (upper-semicontinuous, resp.) functions
on 〈0, 1〉. As in [1], by Sx we denote a set of all discontinuities for some
real function x, and by |Sx| its cardinality. If U ⊆ R is open bounded
interval, by S(U) we denote the set of all piecewise affine continuous functions
x : U −→ R such that there holds x′(τ) ∈ {−1, 1} (a.e. τ ∈ U). By b ⊗ c we
denote the tensor product of two real functions b and c, namely the mapping
(ξ1, ξ2) 7→ b(ξ1)c(ξ2). If a is periodic function, a denotes average of a over its
period. By ⌈σ⌉ (⌊σ⌋, resp.) we denote the smallest integer greater or equal
to σ ∈ R (the largest integer below σ ∈ R, resp.). If y ∈ K, the L-periodic
operator PL : K −→ K is defined by PL(y)(τ) := y(τ), if τ ∈ 〈−L, L〉:
otherwise PL(y) is extended to R by L-periodicity.

Definition 2.1 (Γ-convergence). Let X be a metric space. A sequence
of functions F ε : X −→ [0, +∞] Γ-converges to F on X, and we write
F ε Γ

−−−→F , if the following is fulfilled:

(i) Lower-bound inequality: for every x ∈ X and a sequence (xε) in X
such that xε −→ x it holds lim infε F ε(xε) ≥ F (x).

(ii) Upper-bound inequality: For any y in X there exists a sequence (yε)
in X such that yε −→ y and lim supε F ε(yε) ≤ F (y).

The proof of the following Proposition can be found in chapters 6 and 7
in [3]:

Proposition 2.2. If F ε Γ
−−−→F and if the points xε minimize F ε for

every ε, then every cluster point x of the sequence (xε) minimizes F . In
particular, there holds limε−→0 F ε(xε) = F (x).

If ω ⊆ 〈0, 1〉, by χper
ω we denote 1-periodic extension to R of the char-

acteristic function χω : 〈0, 1〉 −→ R defined by χω(s) := 1 for s ∈ ω,
χω(s) := 0 for s ∈ 〈0, 1〉\ω. We introduce the following abbreviations:

A0 := 2
∫ 1

−1

√

W (ξ)dξ, C0 := (3/4)2/3, E0 := C0A
2/3
0 . For a given bounded

open interval U ⊆ R we also define fε,U
s , fU

s : L1(U) −→ [0, +∞] by

(2.1) fε,U
s,a (v) :=

{

−
∫

U

(

ε2/3v′′2 + ε−2/3W (v′) + aε
sv

2
)

, if v ∈ H2(U),

+∞, otherwise,
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(2.2) fU
s,a(x) :=

{ A0

λ(U) |SU (x′)| + a(s)−
∫

Ux2, if x ∈ S(U),

+∞, otherwise,

where, for U = 〈b1, b2〉 we define SU (x′) := Sx′ ∩ [b1, b2〉 and aε
s(τ) := a(s +

ε1/3−βτ), τ ∈ R. Then, by Proposition 3.4 in [1] we have fε,U
s,a

Γ
−−−→fU

s,a on

L1(U) (a.e. s ∈ 〈0, 1〉).
The asymptotic problem for the functional of Ginzburg-Landau type (1.1)

was formulated in [1, p. 814]. Subsequently, it was studied in [19], where the
following result was obtained:

Proposition 2.3. Let

Ea(β) := lim
ε−→0

min
v∈H2〈0,1〉

ε−2/3Iε
a,β(v), Ea,per(β) := lim

ε−→0
min

v∈H2
per〈0,1〉

ε−2/3Iε
a,β(v).

Then there holds:

(2.3) Ea(β) = Ea,per(β) =







E0a1/3, if β ∈ 〈0, 1/3〉,
F0(a), if β = 1/3,

E0a
1/3, if β > 1/3,

where F0(a) ≈ E0a1/3 when A0 ≈ 0, F0(a) ≈ E0a
1/3 when 1

A0
≈ 0.

As the following results show, we are able to compute rescaled asymp-
totic energy for more complex functionals. As an illustration for the situa-
tion where minimizers of the functional develop oscillations on multiple small
scales, we are concerned with the generalization of the formula (2.3) to the
case of functional (1.2). Our main result, Theorem 4.1, indeed proves that
minimization problem associated to (1.2) is a multi-scale variational problem,
although small scales of order εβ and εγ are in fact externally triggered.

3. Case γ = 0

Consider the functional J ε
a,β : H2〈0, 1〉 −→ [0, +∞〉 defined by

(3.1) J ε
a,β(v) := −

∫ 1

0

(

ε2v′′2(s) + W (v′(s)) + a(ε−βs, s)v2(s)
)

ds,

and associated energies

Eε
a,per(β, 0) := min

v∈H2
per〈0,1〉

ε−2/3J ε
a,β(v), Eε

a(β, 0) := min
v∈H2〈0,1〉

ε−2/3J ε
a,β(v)

Ea,per(β, 0) := lim
ε−→0

Eε
a,per(β, 0), Ea(β, 0) := lim

ε−→0
Eε

a(β, 0).

To begin with, we note that, bearing in mind results from [19], it is not difficult
to check that the following holds:
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Theorem 3.1. Let a ∈ L1
per(〈0, 1〉 × 〈0, 1〉) satisfies a(ξ1, ξ2) ≥ α > 0

(a.e. (ξ1, ξ) ∈ 〈0, 1〉 × 〈0, 1〉) and β ∈ 〈1/3, +∞〉. Then there holds

(3.2) Ea(β, 0) = Ea,per(β, 0) = E0 −

∫ 1

0

(

−

∫ 1

0

a(ξ1, ξ2)dξ1

)1/3

dξ2.

If β ∈ 〈0, 1/3〉, we expect that there holds

(3.3) Ea(β, 0) = Ea(β, 0) = E0 −

∫ 1

0

−

∫ 1

0

a1/3(ξ1, ξ2)dξ1dξ2.

The proof of (3.3) requires some additional effort in comparison to the proof
of (3.2). Indeed, s 7→ a(ε−βs, s) no longer εβ-periodic. Consequently, we
can not compute minimal asymptotic energy associated to functional (1.2) as
in [19] and a more careful comparison with minima of Γ-convergent function-
als (2.1) is needed.

Remark 3.2. In the case when function a equals b ⊗ c, the condition
b ∈ Lq

per〈0, 1〉, c ∈ Lp
per〈0, 1〉, where 1/p + 1/q = 1, p, q ∈ [1, +∞], guarantees

(by the Hölder inequality) integrability of the mapping s 7→ a(ε−βs, s).

In results below we essentially require that a = a(ξ1, ξ2) is a Carathéodory
function, i.e., that ξ1 7→ a(ξ1, ξ2) is measurable for every ξ2 ∈ R and that
ξ2 7→ a(ξ1, ξ2) is continuous for almost every ξ1 ∈ R. We point out that the
crucial ingredient in the proofs relies on some kind of ”integer-property” of
small parameter ε > 0. Roughly speaking, we show that arbitrary parameter
ε > 0 can be changed in a satisfactory fashion so as to get new small parameter
ε∗ > 0 with the desired ”integer-property”. The proof of (3.3) is performed in
several steps: in subsection 3.1 (subsection 3.2) we obtain the corresponding
lower bound (upper bound, resp.) when a belongs to some natural classes of
functions, and in subsection 3.3 we couple our results to get (3.3).

3.1. Lower Bound. First we deal with the lower bound associated to (3.3).
Consider bounded open interval Ω ⊆ R. Set

(3.4) Jε
α,ω(w) =

∫

ω

(

ε2−2βw′′2(s) + W (w′(s)) + αε2βw2(s)
)

ds,

(3.5) Jε
a,ω(w) =

∫

ω

(

ε2−2βw′′2(s) + W (w′(s)) + a(s)ε2βw2(s)
)

ds,

where ω ⊆ Ω is measurable set, α > 0, a ∈ L1
per(Ω). To begin with, we recall

that there holds:

Proposition 3.3. Let β ∈ [0, 1/3〉. If aε ∈ L1(Ω) satisfies aε −→ a (a.e.
s ∈ Ω), where a ∈ L1(Ω), then there holds

(3.6) lim inf
ε−→0

min
v∈H2(Ω)

ε−2/3Jε
aε,Ω(v) ≥ E0

∫

Ω

a1/3(ξ)dξ.
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Proof. Step 1. We assume that there exists M > 0 such that for every
ε ∈ 〈0, ε0〉 there holds ‖aε‖L∞(Ω) ≤ M . Hence ‖a‖L∞(Ω) ≤ M . By the

Egoroff theorem (cf. [5, p. 16]) for every η ∈ 〈0, 1〉 there exists a measurable
set Ωη ⊆ Ω such that there holds limε−→0 ‖a

ε − a‖L∞(Ωη) = 0. On the other

hand there exists a sequence of simple functions (aN ),

aN(s) =

N
∑

m=1

αN
mχAN

m
(s), s ∈ Ω,

such that a ≥ aN for every N ∈ N, limN−→+∞ aN = a almost everywhere.
Consider vε ∈ H2(Ω) such that

inf
v∈H2(Ω)

ε−2/3Jε
aε(v) = ε−2/3Jε

aε(vε).

Since aε(s) ≥ α > 0 (a.e s ∈ 〈0, 1〉), there exists C = C(α) > 0 such that
there holds lim supε−→0 ε−2/3

∫

Ω
v2

ε(s)ds ≤ C. Thus, it results

inf
v∈H2(Ω)

ε−2/3Jε
aε(v) ≥ ε−2/3Jε

aε,Ωη
(vε)

≥ inf
v∈H2(Ω)

ε−2/3Jε
a,Ωη

(v) − ‖aε − a‖L∞(Ωη)ε
−2/3

∫

Ω

v2
ε ,

lim inf
ε−→0

inf
v∈H2(Ω)

ε−2/3Jε
aε(v) ≥ lim inf

ε−→0
inf

v∈H2(Ω)
ε−2/3Jε

a,Ωη
(v)

− C lim sup
ε−→0

‖aε − a‖L∞(Ωη)

= lim inf
ε−→0

inf
v∈H2(Ω)

ε−2/3Jε
a,Ωη

(v).

Furthermore, there holds

inf
v∈H2(Ω)

ε−2/3Jε
a,Ωη

(v) ≥

N
∑

m=1

inf
v∈H2(Ω)

ε−2/3Jε
αN

m,An
m∩Ωη

(v).

Therefore, by Corollary 5.7 in [16] we recover

lim inf
ε−→0

inf
v∈H2(Ω)

ε−2/3Jε
a,Ωη

(v) ≥

N
∑

m=1

E0

∫

An
m∩Ωη

(αN
m)1/3ds = E0

∫

Ωη

a
1/3
N (s)ds.

By passing to the limit as N −→ +∞, we obtain

inf
v∈H2(Ω)

ε−2/3Jε
a,Ωη

(v) ≥ E0

∫

Ωη

a1/3(s)ds.

In effect, as η −→ 0, we get (3.6).
Step 2. Let a ∈ L1(Ω). Set aε

M (ξ) := min{aε(ξ), M}. Then aε
M −→ aM

(a.e. ξ ∈ Ω), where aM (ξ) := min{a(ξ), M}. By Step 1 there holds

(3.7) lim inf
ε−→0

min
v∈H2(Ω)

ε−2/3Jε
aε

M
,Ω(v) ≥ E0

∫

Ω

a
1/3
M (ξ)dξ.
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Finally, we pass to the limit as M −→ +∞ by means of Fatou’s Lemma to
recover (3.6).

In the first step, we prove the lower bound in the case when a is piecewise
constant in ξ2. The crucial feature of our proof is the fact that ”pieces” of
the domain where a takes constant values depend on ε.

Proposition 3.4. Let β ∈ 〈0, 1/3〉. Consider N ∈ N and ε ∈ 〈0, ε0(N)〉.

We define εN,∗∗ := ⌊ε−βN−1⌋−1/β, ε∗∗ := (ε−β
N,∗∗N)−1/β, ρε,∗∗ := εβ

∗∗ε
−β >

1. Let aε(ξ1, ξ2) =
∑N

k=1 aε
k(ξ2)χρ−1

ε,∗∗Ik
(ξ1), (ξ1, ξ2) ∈ 〈0, ρ−1

ε,∗∗〉× 〈0, 1〉, where

Ik := 〈k−1
N , k

N 〉, k = 1, . . . , N . We set aε(ξ1, ξ2) := 0, (ξ1, ξ2) ∈ 〈ρ−1
ε,∗∗, 1〉 ×

〈0, 1〉 and we extend aε by periodicity to R
2. Let functions aε

k ∈ L1
per〈0, 1〉

satisfy aε
k(ξ1) −→ ak(ξ1) as ε −→ 0 (a.e. ξ1 ∈ 〈0, 1〉), ak(ξ1) ≥ α > 0 (a.e.

ξ1 ∈ 〈0, 1〉), ak ∈ L1
per〈0, 1〉. Then there holds

(3.8) lim inf
ε−→0

min
v∈H2〈0,1〉

ε−2/3J ε
aε,β(v) ≥ E0 −

∫ 1

0

−

∫ 1

0

a1/3(ξ1, ξ2)dξ1dξ2,

where a ∈ L1
per(〈0, 1〉 × 〈0, 1〉) is defined by a(ξ1, ξ2) =:

∑N
k=1 ak(ξ1)χ

per
Ik

(ξ2).

Proof. We note that there holds

ε−2/3

∫

ρ−1

ε,∗∗Ik

(

ε2v′′2(s) + W (v′(s)) + aε
k(ε−βs)v2(s)

)

ds

= ρε,∗∗ε
−2/3

∫

Ik

(

ε2ρ2
ε,∗∗v

′′2(σ) + W (v′(σ)) + aε
k(ε−β

∗∗ σ)ρ−2
ε,∗∗v

2(σ)
)

dσ.

Set N∗∗ := ε−β
∗∗ . We can write Ik = ∪N∗∗

j=1〈
k−1
N +εβ

∗∗
j−1
N , k−1

N +εβ
∗∗

j
N 〉. Consider

u∗∗(σ) := ε−β
∗∗ u(εβ

∗∗σ). Consequently, since
ε−β
∗∗

N ∈ N, we get

ρ−1
ε,∗∗ε

−2/3

∫

Ik

(

ε2v′′2(s) + W (v′(s)) + a(ε−βs)v2(s)
)

ds

≥

N∗∗
∑

j=1

εβ
∗∗ min

u∗∗∈H2〈0, 1

N
〉
ε−2/3

∫ 1

N

0

(

ε2−2βu′′2
∗∗ + W (u′

∗∗) + aε
j,kε2βu2

∗∗

)

,

where, for j ∈ N, functions aε
j,k : R −→ R are defined by

(3.9) aε
j,k(σ) :=

{

aε
k(σ + j−1

N ), if σ ∈ 〈0, 1
N 〉

by periodicity, otherwise.

At this point we note that the multi-set of functions {aε
j,k : j = 1, . . . , N∗∗}

(for fixed ε) contains at most N distinct functions. Indeed, by definition
each of the functions aε

1,k, . . . , aε
N,k appears exactly N∗∗N

−1 ∈ N times in the
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mentioned multi-set. Thus, it results

ρ−1
ε,∗∗ε

−2/3

∫

Ik

(

ε2v′′2(s) + W (v′(s)) + a(ε−βs)v2(s)
)

ds

≥

N
∑

j=1

1

N
min

u∗∗∈H2〈0, 1

N
〉
ε−2/3

∫ 1

N

0

(

ε2−2βu′′2
∗∗ + W (u′

∗∗) + aε
j,kε2βu2

∗∗

)

.

By Proposition 5.9 in [16] we conclude that there holds

lim inf
ε−→0

min
u∗∗∈H2〈0, 1

N
〉
ε−2/3

∫ 1

N

0

(

ε2−2βu′′2
∗∗ + W (u′

∗∗) + aε
j,kε2βu2

∗∗

)

≥ E0

∫ 1

N

0

a
1/3
j,k (σ)dσ.

Set Aε(s) := aε(ε−βs, s), Aε
k(s) := aε

k(ε−βs). In effect, we have

lim inf
ε−→0

min
v∈H2(ρ−1

ε,∗∗Ik)
ε−2/3

∫

ρ−1

ε,∗∗Ik

(

ε2v′′2 + W (v′) + Aε
kv2
)

≥
1

N
E0 −

∫ 1

0

a
1/3
k (σ)dσ.

At last, we compute

lim inf
ε−→0

min
v∈H2〈0,1〉

ε−2/3 −

∫ 1

0

(

ε2v′′2 + W (v′) + Aεv2
)

≥

N
∑

k=1

lim inf
ε−→0

min
v∈H2(ρ−1

ε,∗∗Ik)
ε−2/3

∫

ρ−1

ε,∗∗Ik

(

ε2v′′2 + W (v′) + Aε
kv2
)

≥

N
∑

k=1

1

N
E0 −

∫ 1

0

a
1/3
k (ξ1)dξ1 = E0 −

∫ 1

0

−

∫ 1

0

a1/3(ξ1, ξ2)dξ1dξ2.

We can now address the case when a satisfy more general assumptions.

Theorem 3.5. Consider a ∈ L1
per(〈0, 1〉 × 〈0, 1〉) such that the mapping

ξ2 7→ a(ξ1, ξ2) is lower-semicontinuous for a.e. ξ1 ∈ 〈0, 1〉, a(ξ1, ξ2) ≥ α > 0
(a.e. (ξ1, ξ2) ∈ 〈0, 1〉 × 〈0, 1〉). Then for β ∈ 〈0, 1/3〉 there holds

(3.10) lim inf
ε−→0

min
v∈H2〈0,1〉

ε−2/3J ε
a,β(v) ≥ E0 −

∫ 1

0

−

∫ 1

0

a1/3(ξ1, ξ2)dξ1dξ2,

Proof. Set bε
k(ξ1) := minξ2∈ρ−1

ε,∗∗Ik
a(ξ1, ξ2), bk(ξ1) := minξ2∈Ik

a(ξ1, ξ2),

aε
N (ξ1, ξ2) :=

∑N
k=1 bε

k(ξ1)χρ−1

ε,∗∗Ik
(ξ2), aN(ξ1, ξ2) :=

∑N
k=1 bk(ξ1)χIk

(ξ2). Then

there holds a ≥ aε
N , a ≥ aN ,

lim
ε−→0

aε
N (ξ1, ξ2) = aN (ξ1, ξ2), lim

N−→+∞
aN (ξ1, ξ2) = a(ξ1, ξ2).
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By Proposition 3.4 we get

lim inf
ε−→0

min
v∈H2〈0,1〉

ε−2/3J ε
a,β(v) ≥ lim inf

ε−→0
min

v∈H2〈0,1〉
ε−2/3J ε

aε
N ,β(v)

≥ E0 −

∫ 1

0

−

∫ 1

0

a
1/3
N (ξ1, ξ2)dξ1dξ2(3.11)

To furnish the proof, we consider the limit as N −→ +∞ in (3.11), which (by
the dominated convergence theorem) yields (3.10).

We immediately deduce:

Corollary 3.6. Let a ∈ Lp
per〈0, 1〉⊗

(

C−〈0, 1〉∩Lq
per〈0, 1〉

)

, where 1/p+

1/q = 1, p, q ∈ [1, +∞]. Then (3.10) holds.

3.2. Upper Bound. It remains to establish the upper bound related to (3.3),
namely

(3.12) lim sup
ε−→0

min
v∈H2

per〈0,1〉
ε−2/3J ε

a,β(v) ≤ E0 −

∫ 1

0

−

∫ 1

0

a1/3(ξ1, ξ2)dξ1dξ2.

The proof of (3.12) is more subtle than the proof of the lower bound obtained
in Theorem 3.5. To begin with, we recall the following proposition:

Proposition 3.7. Consider open interval ω ⊂ R and function c ∈ L1(ω)
such that there holds c(s) ≥ 0 (a.e. s ∈ ω). Suppose that functions fε,Ur

s,c :=
fε

s,c (generated by c and Ur := 〈−r, r〉 as in (2.1)) satisfy fε
s,c

Γ
−−−→fs,c (where

fs,c := fUr
s,c ) on L1(Ur) (a.e. s ∈ ω). Then for every η > 0 there exists Mη > 0

and a sequence of functions (vε
∗) (which depends on η) such that vε

∗ ∈ H2
per(Ur)

and with properties
(3.13)

lim sup
ε−→0

∫

ω

fε
s,c(R

ε,∗
s vε

∗)ds ≤ E0

∫

ω

c1/3(s)ds + O(M
2

η)

∫

F M

c(s)ds + ηλ(ω),

where FM = {s ∈ ω : c(s) > M},

(3.14) |vε
∗(s)| ≤ Mηε1/3−β, s ∈ ω.

Proof. See Proposition 4.11 and Theorem 4.13 in [16].

Next, we obtain the upper bound in the case when function a = a(ξ1, ξ2)
is piecewise constant in ξ2:

Proposition 3.8. Consider a sequence of pairwise disjoint open intervals
(Ik), such that 〈0, 1〉 = ∪+∞

k=1Ik. Let a(ξ1, ξ2) =
∑+∞

k=1 ak(ξ1)χ
per
Ik

(ξ2). If

ak ∈ L1
per〈0, 1〉 satisfies ak(ξ1) ≥ α > 0 (a.e. ξ1 ∈ 〈0, 1〉), k ∈ N, then (3.12)

holds.
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Proof. First of all, notice that λk := λ(Ik) can be assumed rational (by a
standard density argument). We set λk := pk

qk
, where pk, qk ∈ N. We can also

assume (without loss of generality) that there holds pk = 1 for every k ∈ N

(otherwise we divide each interval Ik into pk pairwise disjoint intervals with
measure 1

qk
). Thus, without loss of generality λk = 1

qk
. Consider arbitrary

ξ ∈ 〈0, 1〉, η ∈ 〈0, 1〉 and m ∈ N. In the following we often omit indexing of
functions by ξ, η and m. Let Ik := 〈tk−1, tk〉. For simplicity we also assume
that there holds t0 := 0 (otherwise we relabel intervals Ik and functions ak to

make them well-ordered). Then for every k ∈ N we have tk =
∑k

i=1
1
qi

. Set

Em
k := Ik\I

m
k , Im

k := 〈tk−1 +
1

2mqk
, tk −

1

2mqk
〉, k ∈ N.

Consider εk,m,∗ := ⌈ε−βm−1λ1 · · ·λk⌉
−1/β , εk,∗ := (ε−β

k,m,∗mλ−1
1 · · ·λ−1

k )−1/β ,

ρε,k,∗ := εβ
k,∗ε

−β ∈ 〈0, 1〉, Nk,∗ := ε−β
k,∗. We define ak,j ∈ L1

per〈0, 1
qk
〉 by

ak,j(σ) :=

{

ak(σ + (j − 1)λk), if σ ∈ Ik

by periodicity, otherwise,
j ∈ N, k ∈ N.(3.15)

We also define fε
s,k,j := fε

s,ak,j
. Since fε

s,k,j
Γ

−−−→fs,k,j on L1〈−r, r〉 (almost

every s ∈ 〈0, 1
qk
〉), by Proposition 3.7 there exists a sequence (vε

k,∗,j) such that

vε
k,∗,j ∈ H2

per〈0, 1
qk
〉 and with properties

(3.16) lim sup
ε−→0

∫ 1

qk

0

fε
s,k,j(R

ε,∗
s vε

k,∗,j)ds ≤

∫ 1

qk

0

a
1/3
k,j + O(M

2

η)

∫

F M
k,j

ak,j +
η

q2
k

,

(3.17) ‖vε
k,∗,j‖L∞(R)

≤ Mηε1/3−β ,

where FM
k,j = {s ∈ Ik : ak,j(σ) > M}. Consider vε

k,∗ ∈ H2
per〈0, 1〉 defined by

vε
k,∗(s) := vε

k,∗,j(s), s ∈ 〈 j−1
qk

, j
qk
〉, j = 1, . . . , qk. Set vε

k(s) := εβ
k,∗v

ε
k,∗(ε

−β
k,∗s),

vε
k(s) := ρ−1

ε,k,∗v
ε
k(ρε,k,∗s), s ∈ R. Then vε

k ∈ H2
per〈0, εβ

k,∗〉, vε
k ∈ H2

per〈0, εβ〉.
We consider the sequence

(3.18) wε(s) := wε
k(s), s ∈ Ik, k ∈ N,

where wε
k : Ik −→ R is defined by

(3.19) wε
k(s) :=

{

vε
k(s), if s ∈ Im

k ,
ṽε(s), if s ∈ Ik\I

m
k ,

where ṽε
k : Ik\I

m
k −→ R is chosen in such a way that wε

k ∈ H2
per〈0, 1

qk
〉, wε ∈

H2
per〈0, 1〉 and for every k ∈ N ṽε

k on its domain has the following properties:
derivative of ṽε

k tales alternately the values 1 and −1 on consecutive intervals

of order ε1/3 (except the first and the last one, which have length of order
Mηε1/3), apart from transition layers of order ε at the end of each such
interval, where the second derivative is of order ε−1. The value of wε

k is of
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Figure 1. Construction of ṽε
k on 〈A, B〉, where A := tk−1,

B := tk−1 + 1
2mqk

, L := Mη.

order ε1/3 (except in the first and the last interval, where it is of order Mηε1/3

(cf. Figure 1)). In particular, by Proposition 3.7 and the construction above

there holds ‖wε
k‖L∞(R) ≤ Mηε1/3. Note that we can write Ik = ∪

Nk,∗

j=1 [tk−1 +
j−1
qk

εβ
∗,k, tk−1 + j

qk
εβ
∗,k〉. Moreover, we have tk =

∑k
i=1

1
qi

and ε−β
k,∗tk−1 ∈ N.

Since there exists ε0(m) > 0 such that for every ε ∈ 〈0, ε0(m)] there holds
Im
k ⊂ ρ−1

ε,k,∗Ik, it results

ε−2/3

∫

Ik

(

ε2(wε
k)′′2(s) + W ((wε

k)′(s)) + ak(ε−βs)(wε
k)2(s)

)

ds

≤ ε−2/3

∫

ρε,k,∗Ik

(

ε2(vε
k)′′2(s) + W ((vε

k)′(s)) + ak(ε−βs)(vε
k)2(s)

)

ds

+ε−2/3

∫

Ik\Im
k

(

ε2(wε
k)′′2(s) + W ((wε

k)′(s)) + ak(ε−βs)(wε
k)2(s)

)

ds.

For k ∈ N we calculate

ρ−1
ε,k,∗ε

−2/3

∫

ρε,k,∗Ik

(

ε2(vε
k)′′2(s) + W ((vε

k)′(s)) + ak(ε−βs)(vε
k)2(s)

)

ds

= ε−2/3

∫

Ik

(

ε2ρ2
ε,k,∗(v

ε
k)′′2(s) + W ((vε

k)′(s)) + ak(ε−β
k,∗s)ρ

−2
ε,k,∗(v

ε
k)2(s)

)

ds

=

Nk,∗
∑

j=1

εβ
k,∗ε

−2/3

∫ 1

qk

0

(

ε2−2β(vε
k,∗,j)

′′2 + W ((vε
k,∗,j)

′) + aj,kε2β(vε
k,∗,j)

2
)

.
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In particular, there are at most λ−1
k ∈ N distinct λk-periodic functions ak,j :

R −→ R, j = 1, . . . , Nk,∗. Furthermore, since by construction for every

k ∈ N there exists at most λ−1
k distinct λk-periodic functions vε

k,∗,j , for j =

1, . . . , Nk,∗ by (3.18) there are at most λ−1
k distinct values of the integral

∫ 1

qk

0

(

ε2−2β(vε
k,∗,j)

′′2 + W ((vε
k,∗,j)

′) + aj,kε2β(vε
k,∗,j)

2
)

.

Thus we infer:

Nk,∗
∑

j=1

εβ
∗ε−2/3

∫ 1

qk

0

(

ε2−2β(vε)′′2k,∗,j + W ((vε
k,∗,j)

′) + ak,jε
2β(vε)2k,∗,j

)

=

qk
∑

j=1

1

qk
ε−2/3

∫ 1

qk

0

(

ε2−2β(vε)′′2k,∗,j + W ((vε
k,∗,j)

′) + ak,jε
2β(vε)2k,∗,j

)

=

qk
∑

j=1

1

qk

∫ 1

qk

0

fε
s,k,j(R

ε,∗
s vε

k,∗,j)ds.

Consequently, we get

ε−2/3J ε
a,β(wε) ≤

+∞
∑

k=1

qk
∑

j=1

ρε,k,∗

qk

∫ 1

qk

0

fε
s,k,j(R

ε,∗
s vε

k,∗,j)ds +

+∞
∑

k=1

em,k(wε
k)

+

+∞
∑

k=1

ε−2/3

∫

Ik\Im
k

(

ε2(wε
k)′′2 + W ((wε

k)′)
)

ds,

where em,k(wε
k) := ε−2/3

∫

Ik\Im
k

ak(ε−βs)(wε
k)2(s)ds. Set Em

k = Em
k,1 ∪ Em

k,2,

Em
k,1 := [tk−1, tk−1 + 1

2mqk
], Em

k,2 := [tk −
1

2mqk
, tk〉. Then there exists ε1(m) ≥

ε0(m) such that for every ε ∈ 〈0, ε1(m)] there holds Em
k,l ⊆ ρε,k,∗Ẽ

m
k,l, l =

1, 2, where Ẽm
k,1 := [tk−1, tk−1 + 1

mqk
], Ẽm

k,2 := [tk − 1
mqk

, tk + 1
mqk

〉. Set

Ẽm
k := Ẽm

k,1 ∪ Ẽm
k,2, Aε

k(s) := ak(ε−βs) Aε,∗
k (s) := ak(ε−β

k,∗s). Then em,k(wε
k) ≤

ẽm,k(wε
k), where ẽm,k(wε

k) := ε−2/3
∫

ρε,k,∗Ẽm
k

Aε
k(wε

k)2. Since
Nk,∗

m ∈ N, we

have Ẽm
k,1 = ∪

N∗

m

j=1[tk−1 + j−1
qk

εβ
k,∗, tk−1 + j

qk
εβ

k,∗〉, and therefore

ε−2/3

∫

ρε,∗Ẽm
k,1

Aε
k(wε

k)2 ≤ ρε,k,∗ε
−2/3

∫

Ẽm
k,1

Aε,∗
k ρ−2

ε,k,∗M
2

ηε2/3

=

Nk,∗
m
∑

j=1

ρ−1
ε,k,∗ε

β
k,∗

∫ 1

qk

0

M
2

ηak,j(σ)dσ.
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Similarly as before, since
Nk,∗

mqk
∈ N, we conclude that in the sum above there

exists at most qk distinct integrals
∫

1

qk

0 ak,j(σ)dσ. Thus, it results

ε−2/3

∫

ρε,k,∗Ẽm
k,1

ak(ε−βs)(wε
k)2(s)ds ≤

1

m

qk
∑

j=1

ρ−1
ε,k,∗

1

qk

∫ 1

qk

0

M
2

ηak,j(σ)dσ

≤ 2M
2

η

1

mqk
‖ak‖L1〈0,1〉.

It is easy to verify that similar estimates hold on ρε,k,∗Ẽ
m
k,2. On the other

hand, it can be checked that for every k ∈ N and m ∈ N there holds

ε−2/3

∫

Em
k

(

ε2(wε
k)′′2(σ) + W ((wε

k)′(σ))
)

dσ = O(1)ε1/3.

Hence, a careful application of the dominated convergence theorem yields

lim sup
ε−→0

ε−2/3J ε
a,β(wε) ≤ lim sup

ε−→0

+∞
∑

k=1

qk
∑

j=1

ρε,k,∗

qk

∫ 1

qk

0

fε
s,k,j(R

ε,∗
s vε

k,∗,j)ds

+
+∞
∑

k=1

O(M
2

η)
1

mqk
‖ak‖L1〈0,1〉

≤

+∞
∑

k=1

qk
∑

j=1

(

E0
1

qk

∫ 1

qk

0

a
1/3
k,j + O(M

2

η)
1

qk

∫

F M
k,j

ak,j

)

+O(M
2

η)‖a‖L1(〈0,1〉×〈0,1〉)

1

m
+ η.

By passing to the limit as M −→ +∞ and m −→ +∞, we obtain

lim sup
ε−→0

min
w∈H2

per〈0,1〉
ε−2/3J ε

a,β(w) ≤

+∞
∑

k=1

λ(Ik)E0 −

∫ 1

0

a
1/3
k (ξ1)dξ1 + η

= E0 −

∫ 1

0

−

∫ 1

0

a1/3(ξ1, ξ2)dξ1dξ2 + η.

Arbitrariness of η > 0 completes the proof.

Now we can derive the following:

Corollary 3.9. Consider p ∈ [1, +∞]. Let a ∈ Lp
per〈0, 1〉 ⊗ Lq

per〈0, 1〉,
where 1/p + 1/q = 1. Then upper bound (3.12) holds.

Proof. Step 1. First we consider the case p ∈ 〈1, +∞]. Then q ∈
[1, +∞〉. Set a = b ⊗ c. Let κ > 0 be given. Since C〈0, 1〉 ∩ L∞〈0, 1〉
is strongly dense in Lq〈0, 1〉, there exists cκ ∈ C〈0, 1〉 ∩ L∞〈0, 1〉 such that
‖c − cκ‖Lq〈0,1〉 ≤ κ. Moreover, there exists a sequence of piecewise constant

functions (cκ
n), cκ

n(ξ2) =
∑Nκ

n

k=1 cn,κ,kχper
In

k
(ξ2), ξ2 ∈ R, In

k := 〈tnk , tnk+1〉, tn0 :=
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0, tnk := tn0 + k/Nκ
n , k = 1, . . . , Nκ

n , such that for every ξ2 ∈ 〈0, 1〉 there
holds cκ

n(ξ2) ց cκ(ξ2) as m −→ +∞. We define an,κ := b ⊗ cκ
n, aκ :=

b ⊗ cκ. Furthermore, by considering εNκ
n

:= ⌈ε−β · (Nκ
n )−1 · m−1⌉−1/β , ε∗ :=

(ε−β
Nκ

n ,∗mNκ
n )−1/β , ρε,∗ := εβ

∗ε−β ∈ 〈0, 1〉, we infer (quite in the same way as

in the proof of Proposition 3.8) that for every η ∈ 〈0, 1〉, M > 0 and m ∈ N,
there exists wε ∈ H2

per〈0, 1〉 (which depends on η, M > 0, m ∈ N and Nκ
n )

and Mη > 0 such that ‖wε‖L∞(R) ≤ Mηε1/3, and such that the following

estimates hold:

lim sup
ε−→0

ε−2/3J ε
a,β(wε) ≤ lim sup

ε−→0
ε−2/3J ε

aκ
n,β(wε)

+2M
2

η‖c− cκ‖Lq〈0,1〉‖b‖Lp〈0,1〉,

lim sup
ε−→0

ε−2/3J ε
a,β(wε)

≤

Nκ
n
∑

k=1

Nκ
n
∑

j=1

(

E0
1

Nκ
n

∫ 1

Nκ
n

0

a
1/3
k,n,κ,j(s)ds +

1

Nκ
n

O(M
2

η)

∫

F M
k,n,κ,j

ak,n,κ,j(s)ds

)

+O(M
2

η)
1

m
+ O(M

2

η)κ + η,

where ak,n,κ,j : R −→ R is defined by

ak,n,κ,j(σ) :=

{

ak,κ(σ + j−1
Nκ

n
), if σ ∈ In,κ

k

by periodicity, otherwise,
j ∈ N,(3.20)

FM
k,n,κ,j := {σ ∈ 〈0, 1〉 : ak,n,κ,j(σ) > M}.

As M −→ +∞, m −→ +∞ we obtain

lim sup
ε−→0

min
w∈H2

per〈0,1〉
ε−2/3J ε

a,β(w) ≤

Nκ
n
∑

k=1

λ(Ik)E0 −

∫ 1

0

b
1/3
n,κ,k(ξ2)dξ2 + η

= E0 −

∫ 1

0

−

∫ 1

0

a1/3
n,κ(ξ1, ξ2)dξ2dξ1 + η.

Finally we consider the limit as n −→ +∞ and then as κ −→ 0, getting

(3.21) lim sup
ε−→0

min
w∈H2

per〈0,1〉
ε−2/3J ε

a,β(w) ≤ E0 −

∫ 1

0

−

∫ 1

0

a1/3(ξ1, ξ2)dξ2dξ1 + η.

By taking the limit as η −→ 0 in (3.21), we prove the assertion.
Step 2. Let p = 1 and q = +∞. By the Luzin theorem (cf. [5, p. 15]) for

every κ > 0 there exists compact set Ωκ ⊆ 〈0, 1〉 and bκ ∈ C〈0, 1〉 such that
λ(s ∈ 〈0, 1〉 : cκ(s) 6= c(s)) ≤ κ. Set cκ := min{cκ, ‖b‖L∞〈0,1〉}, Ωκ := {s ∈
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〈0, 1〉 : cκ(s) = c(s)}. Then λ(〈0, 1〉\Ωκ) ≤ κ. By using the notation from
Step 1, we derive the following estimate:

lim sup
ε−→0

ε−2/3J ε
a,β(wε) ≤ lim sup

ε−→0
ε−2/3J ε

aκ
n,β(wε)

+2M
2

η‖c − cκ‖L∞(〈0,1〉\Ωκ)‖b‖L1(〈0,1〉\Ωκ).

Thus we are able to finish the proof as in the Step 1.

Remark 3.10. Note that sequence of functions (ak) in the proof of Propo-
sition 3.8 need not be dominated by some ã ∈ L1〈0, 1〉. In the following result,
however, such a condition is essential.

Theorem 3.11. Suppose that a ∈ L1
per(〈0, 1〉 × 〈0, 1〉) satisfies: there

exists ã ∈ L1
per〈0, 1〉 such that ess supξ2

a(ξ1, ξ2) ≤ ã(ξ1) (a.e. ξ1 ∈ 〈0, 1〉), (in
particular, if a ∈ L∞

per(〈0, 1〉 × 〈0, 1〉)), then upper bound (3.12) holds.

Proof. Step 1. Let a ∈ L∞
per(〈0, 1〉 × 〈0, 1〉). By outer Borel regularity

of λ there exists a sequence of piecewise constant functions

(3.22) an(ξ1, ξ2) =
+∞
∑

k=1

αn
kχper

In
k

(ξ2)χ
per
ωn

k
(ξ1), (ξ1, ξ2) ∈ R

2,

with the following properties:

• a ≤ an, n ∈ N, limn−→+∞ an = a,
• In

k ⊆ 〈0, 1〉 and ωn
k ⊆ 〈0, 1〉 are bounded open intervals,

• an ∈ L∞
per(〈0, 1〉 × 〈0, 1〉).

Thus, if we define an
k (ξ1) := αn

kχper
ωn

k
(ξ1), an

k ∈ L1
per〈0, 1〉, by Proposition 3.8

the upper bound holds for an for every n ∈ N. Then we pass to the limit as
n −→ +∞, and we get upper bound for J ε

a,β .

Step 2. Let a ∈ L1
per(〈0, 1〉 × 〈0, 1〉) satisfies condition of the theorem.

Consider FM
ã,ε := {s ∈ 〈0, εβ〉 : ã(ε−βs) > M}, FM

ã := {σ ∈ 〈0, 1〉 : ã(σ) >

M}. Since ã(ε−βs) ≤ M implies a(ε−βs, s + (j − 1)εβ) ≤ M (a.e. s ∈ 〈0, 1〉),
j ∈ N, for a.e. s ∈ 〈0, εβ〉 we get

a(ε−βs, s + (j − 1)εβ) ≤ aM (ε−βs, s + (j − 1)εβ)

+a(ε−βs, s + (j − 1)εβ)χF M
ã,ε

(s),



416 A. RAGUŽ

where aM (ξ1, ξ2) := min{a(ξ1, ξ2), M}. Then for every sequence (wε) such
that wε ∈ H2

per〈0, 1〉 and ‖wε‖L∞(R) ≤ Mηε1/3 there holds

ε−2/3J ε
a,β(wε) ≤ −

∫ 1

0

(

ε2w′′2
ε (s) + W (w′

ε(s))
)

ds

+

N∗
∑

j=1

∫ εβ

0

a(ε−βs, s + (j − 1)εβ)w2
ε,j(s)ds

≤ ε−2/3J ε
aM ,β(wε) +

∫ ρ−1

ε,∗

1

aM (ε−βs, s)w2
ε(s)ds + ρ−1

ε,∗M
2

η

∫

F M
ã

ã(σ)dσ

≤ ε−2/3J ε
aM ,β(wε) + |1 − ρ−1

ε,∗|MM
2

η + ρ−1
ε,∗M

2

η

∫

F M
ã

ã(σ)dσ,

where ρε,∗ := N−1
∗ ε−β ∈ 〈0, 1〉, wε,j(s) := w(s + (j − 1)εβ), s ∈ 〈0, εβ〉,

j = 1, . . . , N∗. As we pass to the limit as ε −→ 0, it results

lim sup
ε−→0

ε−2/3J ε
a,β(wε) ≤ lim sup

ε−→0
ε−2/3J ε

aM ,β(wε) + M
2

η

∫

F M
ã

ã(σ)dσ.

In particular, estimates above show that computation of upper bound for
a ∈ L1

per(〈0, 1〉 × 〈0, 1〉) (which satisfies boundedness condition as above) can
be reduced to computation of upper bound for aM ∈ L∞

per(〈0, 1〉 × 〈0, 1〉).
Therefore, by Proposition 3.8 for a suitable choice of wε (as we finally pass to
the limit as M −→ +∞) we obtain the desired upper bound.

Remark 3.12. Thanks to Proposition 3.8, it is easy to verify that (3.12)
also holds if a ∈ C+(〈0, 1〉×〈0, 1〉)∩L1

per(〈0, 1〉×〈0, 1〉) (or if a ∈ L1
per(〈0, 1〉×

〈0, 1〉) such that the mapping ξ2 7→ a(ξ1, ξ2) is upper semicontinuous for a.e.
ξ1 ∈ 〈0, 1〉).

3.3. Computation of Macroscopic Energy. We combine Theorem 3.5 and Re-
mark 3.12 to get the following two results:

Theorem 3.13. If a ∈ L1
per(〈0, 1〉 × 〈0, 1〉) is Carathéodory function on

〈0, 1〉 × 〈0, 1〉, then (3.3) holds.

Corollary 3.14. Consider a ∈ L1
per(〈0, 1〉×〈0, 1〉) such that the mapping

ξ2 7→ a(ξ1, ξ2) is lower-semicontinuous for a.e. ξ1 ∈ 〈0, 1〉. If there exists
ã ∈ L1〈0, 1〉 with the property ess supξ2

a(ξ1, ξ2) ≤ ã(ξ1) (a.e. ξ1 ∈ 〈0, 1〉),
then (3.3) holds.

We mention here two more subsets of L1
per(〈0, 1〉 × 〈0, 1〉) closely resem-

bling the Carathéodory class for which it is possible to compute energies
Ea,per(β, 0) and Ea(β, 0). If p, q ∈ [1, +∞], pk, qk ∈ [1, +∞], k ∈ N, we set

X := span
[

Lp
per〈0, 1〉 ⊗

(

C−〈0, 1〉 ∩ Lq
per〈0, 1〉

)]

, where 1/p + 1/q = 1,
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Y := conv
[

Lpk
per〈0, 1〉⊗

(

C−〈0, 1〉∩Lqk
per〈0, 1〉

)

: k ∈ N

]

, where 1/pk + 1/qk = 1.

Corollary 3.15. If a ∈ X (a ∈ Y , resp.), then (3.3) holds.

Proof. The claim follows since it is easy to verify that the proof of
Corollary 3.6 (Corollary 3.9, resp.) actually can be completed for a which

belongs to the linear hull of Lp
per〈0, 1〉 ⊗

(

C−〈0, 1〉 ∩ Lq
per〈0, 1〉

)

(see also [18,

Corollary 4.10]). Similar conclusion is valid for the convex hull Y .

4. Case γ > 0

Consider β, γ ≥ 0 and the functional J ε
a,β,γ : H2〈0, 1〉 −→ [0, +∞〉 defined

by

(4.1) J ε
a,β,γ(v) := −

∫ 1

0

(

ε2v′′2(s) + W (v′(s)) + a(ε−βs, ε−γs)v2(s)
)

ds.

We expect that the minimizers of J ε
a,β,γ develop fine hierarchy of small scales

(roughly of size ε1/3, εβ and εγ). To justify this, we determine which small
scale is relevant to computation of minimal asymptotic energy of J ε

a,β,γ . By
the formulas below we can extract desired information. In particular, formu-
las (4.2)-(4.5) show that characteristic scale is ε1/3 and that all shorter scales
can be eliminated, i.e. replaced with the corresponding limits (in our case,
the average of a). Oscillations on longer scales do not change the value in the
limit as ε −→ 0, which means that the latter scales are not relevant.

Theorem 4.1. Let us assume that a ∈ L1
per(〈0, 1〉×〈0, 1〉) is Carathéodory

function on 〈0, 1〉 × 〈0, 1〉. Set

Ea(β, γ) := lim
ε−→0

Eε
a(β, γ), Ea,per(β, γ) := lim

ε−→0
Eε

a,per(β, γ).

Then there holds:

• If 0 < γ < β < 1/3 or 0 < β < γ < 1/3, then

(4.2) Ea,per(β, γ) = Ea(β, γ) = E0 −

∫ 1

0

−

∫ 1

0

a1/3(ξ1, ξ2)dξ1dξ2.

• If 0 < β < 1/3, γ > 1/3, then

(4.3) Ea,per(β, γ) = Ea(β, γ) = E0 −

∫ 1

0

(

−

∫ 1

0

a(ξ1, ξ2)dξ2

)1/3

dξ1.

• If 0 < γ < 1/3, β > 1/3, then

(4.4) Ea,per(β, γ) = Ea(β, γ) = E0 −

∫ 1

0

(

−

∫ 1

0

a(ξ1, ξ2)dξ1

)1/3

dξ2.
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• If γ > 1/3, β > 1/3, then
(4.5)

Ea,per(β, γ) = Ea(β, γ) = E0a
1/3, where a := −

∫ 1

0

−

∫ 1

0

a(ξ1, ξ2)dξ1dξ2.

Proof. We only sketch main points in the proof of (4.2) (the remaining
claims (4.3), (4.4) and (4.5) are in fact consequence of the McShanne Lemma
and we leave the details to the interested reader). Essential ingredients are
already contained in the proof of lower and upper bound when γ = 0. Let
0 < γ < β < 1

3 .

Step 1. (the lower bound) We set ε∗∗,γ := ⌊ε−γ⌋−
1

γ , ρε,∗∗,γ := εγ
∗∗,γε−γ >

1. Set Aε
1(σ) := a(εγ−βσ, σ) Aε,N

1 (σ) := aε
N (εγ−βσ, σ), where for N ∈ N we

define aε
N ∈ L1(〈0, ε−γ

∗∗,γ〉 × 〈0, 1〉) by

(4.6) aε
N (ξ1, ξ2) :=

ε−γ
∗∗,γ
∑

i=1

N
∑

k=1

bε,N
k,i (ξ1)χρ−1

ε,∗∗(Ik+i−1)(ξ2),

(4.7) bε,N
k,i (ξ2) := min

ξ2∈ρ−1

ε,∗∗(Ik+i−1)
a(ξ1, ξ2), ξ1 ∈ 〈0, 1〉,

bε,N
k,i ∈ L1

per〈0, 1〉, i = 1, . . . , ε−γ
∗∗,γ , χρ−1

ε,∗∗(Ik+i−1)(ξ2) := χρ−1

ε,∗∗(Ik+i−1)(ξ2),

i = 1, . . . , ε−γ
∗∗,γ − 1, and

χρ−1

ε,∗∗(Ik+ε−γ
∗∗,γ−1)(ξ2) :=

{

1, if ξ2 ∈ 〈ε−γ
∗∗,γ − 1, ρ−1

ε,∗∗ε
−γ
∗∗,γ〉

0, if ξ2 ∈ 〈ρ−1
ε,∗∗ε

−γ
∗∗,γ , ε−γ

∗∗,γ〉.

Let v∗∗(σ) := ε−γv(εγσ), σ ∈ 〈0, ε−γ〉. Since ε−γ ≥ ε−γ
∗∗,γ , we estimate

ε−2/3 −

∫ 1

0

(

ε2v′′2(s) + W (v′(s)) + a(ε−βs, ε−γs, )v2(s)
)

ds

≥ εγε−γ
∗,γε−2/3 −

∫ ε−γ
∗∗,γ

0

(

ε2−2γv′′2∗∗ + W (v′∗∗) + Aε
1ε

2γv2
∗∗

)

≥ ρ−1
ε,∗∗,γε−2/3 −

∫ ε−γ
∗∗,γ

0

(

ε2−2γv′′2∗∗ + W (v′∗∗) + Aε,N
1 ε2γv2

∗∗

)

.

At this point we consider εN,∗∗ := ⌊εγ−βN−1⌋−
1

β−γ , ε∗∗ := (εγ−β
N,∗∗N)−

1

β−γ ,

ρε,∗∗ := εβ−γ
∗∗ εγ−β > 1. Then εγ−β

∗∗ N−1 ∈ N, and aε
N ր a as in Propo-

sition 3.4 and Theorem 3.5. Now we pass to the limit as ε −→ 0 and as
N −→ +∞, which gives the lower bound.

Step 2. (the upper bound) For simplicity we assume that a is continuous
and bounded. Consider a sequence (aN ) of piecewise constant functions with
N pieces (length of every piece equals exactly 1

N ) such that a ≤ aN , aN −→

a. For a given N, m ∈ N we set ε∗,N,m := ⌈εγ−βN−1m−1⌉−
1

β−γ , ε∗ :=
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(εγ−β
∗,N,mNm)−

1

β−γ , ρε,∗ := εβ−γ
∗ εγ−β ∈ 〈0, 1〉, ε∗,γ := [ρε,∗ε

−γ ]−
1

γ . Then there

holds ε−γ
∗,γ ∈ N and ε−γ

∗,γ ≥ ε−γ . We define aε : R −→ R by

aε(ξ1, ξ2) :=

{

a(ρε,∗ξ1, ξ2), if ξ2 ∈ 〈0, ε−γ
∗,γ〉

by periodicity, otherwise,

so that there holds aε(ρ−1
ε,∗ξ1, ξ2) = a(ξ1, ξ2) (a.e. ξ2 ∈ 〈0, ε−γ

∗,γ〉), ξ1 ∈ R.
Moreover, continuity of a with respect to ξ2 implies

(4.8) aε(ξ1, ξ2) −→ a(ξ1, ξ2) (a.e. ξ1).

(4.8) is due to the fact that aε can be represented as composition of Pε−γ
∗,γ

periodic operator and affine transformation in ξ2. Both of these operators
converge to identic operator as ε −→ 0, hence (4.8) holds. By the dominated
convergence theorem it results aε −→ a in L1〈0, 1〉. In the first step we
prove the upper bound for J ε

aε,β,γ. Consider v ∈ H2
per〈0, 1〉. Set v∗(s) :=

ε−γρε,∗v(εγρ−1
ε,∗s), s ∈ R. Since εγ−β

∗ ∈ N, we calculate

ε−2/3 −

∫ 1

0

(

ε2v′′2 + W (v′) + Aε
2v

2
)

ds

≤ θ1(ε)

∫ ε−γ
∗,γ

0

(

ε2−2γρ2
ε,∗v

′′2
∗ + W (v′

∗) + Aε
3ε

2γρ−2
ε,∗v

2
∗

)

= θ2(ε)

∫ 1

0

(

ε2−2γρ2
ε,∗v

′′2
∗ + W (v′

∗) + Aε
4ε

2γρ−2
ε,∗v

2
∗

)

,

where θ1(ε) := ρ−1
ε,∗ε

γε−2/3, θ2(ε) := ε−γ
∗,γρ−1

ε,∗ε
γε−2/3, Aε

2(s) := aε(ε−βs, ε−γs),

Aε
3(σ) := aε(εγ−β

∗ σ, ρ−1
ε,∗σ) Aε

4(σ) := a(εγ−β
∗ σ, σ). Let us approximate 1-

periodic continuous function ξ2 7→ a(ξ1, ξ2) by a piecewise constant 1-periodic
function aN as in Proposition 3.8. Hence, it follows

ε−2/3 −

∫ 1

0

(

ε2v′′2 + W (v′) + Aε
2v

2
)

≤ θ3(ε) −

∫ 1

0

(

ε2−2γρ2
ε,∗v

′′2
∗ + W (v′∗) + Aε,N

5 ε2γρ−2
ε,∗v

2
∗

)

,

where θ3(ε) := ε−γ
∗,γρ−1

ε,∗ε
γε−2/3, Aε,N

5 (σ) := aN (εγ−β
∗ σ, σ). By using the fact

that εγ−β
∗ N−1 ∈ N, we continue as in the proof of Proposition 3.8 (with

almost no modification: roughly speaking, the only distinction in the proof
comes from the fact that the scale of order εβ is now replaced by the scale
of order εβ−γ). In the second step we compare minimal values of J ε

a,β,γ and

J ε
aε,β,γ as ε −→ 0. If we consider a sequence (wε) such that wε ∈ H2

per〈0, 1〉,

‖wε‖L∞(R) ≤ Mηε1/3,

lim sup
ε−→0

ε−2/3J ε
aε,β,γ(wε) ≤ E0a1/3 + M

2

η

∫

FM

a + η,
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we eventually arrive at the conclusion that there holds

lim sup
ε−→0

ε−2/3J ε
a,β,γ(wε) ≤ lim sup

ε−→0
ε−2/3J ε

aε,β,γ(wε) + O(M
2

η)

∫

FM

a

+ lim sup
ε−→0

O(M
2

η) −

∫ 1

0

−

∫ 1

0

|a − aε|

≤ E0a1/3 + M
2

η

∫

FM

a + η.

At last, we state (without the proof) the result which corresponds to the case
β = 1/3 and γ > 0:

Corollary 4.2. Set C0 := (3/4)2/3. If a ∈ L1
per(〈0, 1〉 × 〈0, 1〉) is

Carathéodory function on 〈0, 1〉 × 〈0, 1〉, then there holds:

• If 0 < γ < 1/3, then

lim
A0−→0

A
−2/3
0 Ea,per(1/3, γ) = C0 −

∫ 1

0

−

∫ 1

0

a1/3(ξ1, ξ2)dξ1dξ2,

lim
A0−→+∞

A
−2/3
0 Ea,per(1/3, γ) = C0 −

∫ 1

0

(

−

∫ 1

0

a(ξ1, ξ2)dξ1

)1/3

dξ2.

• If γ > 1/3, then

lim
A0−→0

A
−2/3
0 Ea,per(1/3, γ) = C0 −

∫ 1

0

(

−

∫ 1

0

a(ξ1, ξ2)dξ2

)1/3

dξ1,

lim
A0−→+∞

A
−2/3
0 Ea,per(1/3, γ) = C0a

1/3,

Besides, there holds

lim
A0−→0

A
−2/3
0 Ea,per(1/3, γ) = lim

A0−→0
A

−2/3
0 Ea(1/3, γ),

lim
A0−→+∞

A
−2/3
0 Ea,per(1/3, γ) = lim

A0−→+∞
A

−2/3
0 Ea(1/3, γ).
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