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APPROXIMATION BY TRIGONOMETRIC POLYNOMIALS

IN WEIGHTED REARRANGEMENT INVARIANT SPACES

Ali Guven and Daniyal M. Israfilov

Balikesir University, Turkey

Abstract. We investigate the approximation properties of trigono-
metric polynomials and prove some direct and inverse theorems for poly-
nomial approximation in weighted rearrangement invariant spaces.

1. Introduction and the main results

Let (R, µ) be a nonatomic σ−finite measure space, i.e., a measure space
with nonatomic σ−finite measure µ given on a σ−algebra of subsets of R.
Denote by M the set of all µ−measurable complex valued functions on R,
and let M+ be the subset of functions from M whose values lie in [0,∞] .
The characteristic function of a µ−measurable set E ⊂ R will be denoted by
χE .

Let a function ρ : M+ → [0,∞] be given. The function ρ is called a
function norm if it satisfies the following properties for all functions f, g, fn ∈
M+ (n ∈ N) , for all constants a ≥ 0 and for all µ−measurable subsets E ⊂ R:

(1) ρ(f) = 0 ⇔ f = 0 µ− a.e, ρ(af) = aρ(f), ρ(f + g) ≤ ρ(f) + ρ(g),
(2) 0 ≤ g ≤ f µ− a.e ⇒ ρ(g) ≤ ρ(f),
(3) 0 ≤ fn ↑ f µ− a.e ⇒ ρ(fn) ↑ ρ(f),
(4) µ(E) <∞ ⇒ ρ(χE) <∞,

(5) µ(E) <∞ ⇒

∫

E

f dµ ≤ CEρ(f),

where CE is a constant depending on E and ρ but independent of f.
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If ρ is a function norm, its associate function norm ρ′ is defined by

(1.1) ρ′ (g) := sup






∫

R

fgdµ : f ∈ M+, ρ (f) ≤ 1






for g ∈ M+. If ρ is a function norm, then ρ′ is also a function norm [3, pp.
8-9].

Let ρ be a function norm. We denote by X = X (ρ) the linear space of
all functions f ∈ M for which ρ (|f |) < ∞. The space X is called a Banach

function space. If we define the norm of f ∈ X by

‖f‖X := ρ (|f |)

X will be a Banach space [3, pp. 6-7]. By the property (5) , it follows that if
the measure space (R, µ) is finite, i.e., if µ (R) <∞, then X ⊂ L1 (R, µ) .

Let ρ be a function norm and ρ′ be its associate function norm. The
Banach function space determined by ρ′ is called the associate space of X
and denoted by X ′. Every Banach function space coincides with its second
associate space X ′′ = (X ′)

′
and ‖f‖X = ‖f‖X′ for all f ∈ X [3, pp. 10-12].

So we have by (1.1)

(1.2) ‖f‖X = sup






∫

R

|fg|dµ : g ∈ X ′, ‖g‖X′ ≤ 1






and

(1.3) ‖g‖X′ = sup





∫

R

|fg|dµ : f ∈ X, ‖f‖X ≤ 1



 .

For every f ∈ X and g ∈ X ′ the Hölder inequality

(1.4)

∫

R

|fg|dµ ≤ ‖f‖X ‖g‖X′

holds [3, p. 9].
Let M0 and M+

0 be the classes of µ− a.e. finite functions from M and
M+ respectively. The distribution function µf of f ∈ M0 is defined by

µf (λ) := µ {x ∈ R: |f (x)| > λ}

for λ ≥ 0. Two functions f, g ∈ M0 are said to be equimeasurable if µf (λ) =
µg (λ) for all λ ≥ 0.

Definition 1.1 ([3, p. 59]). If ρ (f) = ρ (g) for every pair of equimea-

surable functions f, g ∈ M+
0 , the function norm ρ is called a rearrangement

invariant function norm. In this case, the Banach function space generated

by ρ is called a rearrangement invariant space.
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Let f ∈ M0. The function f∗ defined by

f∗ (t) := inf {λ : µf (λ) ≤ t} , t ≥ 0

is called the decreasing rearrangement of the function f.
LetX be a rearrangement-invariant space over a nonatomic finite measure

space (R, µ) . By the Luxemburg representation theorem [3, pp. 62-64], there
is a (not necessarily unique) rearrangement invariant function norm ρ over
R+ = [0,∞) with the Lebesgue measure m such that

ρ (f) = ρ (f∗)

for every f ∈ M+
0 .

The rearrangement invariant space over (R+,m) generated by ρ is denoted
by X.

Let’s consider the operator Ex, x > 0 defined on M0 (R+,m) by

(Exf)(t) :=

{
f(xt), xt ∈ [0, µ(R)]
0, xt 6∈ [0, µ(R)]

, t > 0.

It is known that [3, pp. 165] E1/x ∈ B
(
X
)

for each x > 0, where B
(
X
)

is the Banach algebra of bounded linear operators on X. Let hX (x) be the
operator norm of E1/x, i.e., hX (x) :=

∥∥E1/x

∥∥
B(X) .

The numbers αX and βX defined by

αX := sup
0<x<1

log hX (x)

log x
, βX := inf

1<x<∞

log hX (x)

log x

are called the lower and upper Boyd indices of X, respectively. It is known
that [3, p. 149] the Boyd indices satisfy

0 ≤ αX ≤ βX ≤ 1.

The Boyd indices are said to be nontrivial if 0 < αX ≤ βX < 1.
Let T be the unit circle

{
eiθ : θ ∈ [−π, π]

}
, or the interval [−π, π], C be the

complex plane and Lp (T) , 1 ≤ p ≤ ∞, be the Lebesgue space of measurable
functions on T. Further, any rearrangement invariant space over T will be
denoted by X (T) .

A measurable function ω : T → [0,∞] is called a weight function if the
set ω−1 ({0,∞}) has Lebesgue measure zero.

Let X (T) be a rearrangement invariant space over T and ω be a weight
function. We denote by X (T, ω) the class of all measurable functions f such
that fω ∈ X (T), which is equipped with the norm

(1.5) ‖f‖X(T,ω) := ‖fω‖X(T) .

The space X (T, ω) is called a weighted rearrangement invariant space.
From the Hölder inequality it follows that if ω ∈ X (T) and 1/ω ∈ X ′ (T)

then L∞ (T) ⊂ X (T, ω) ⊂ L1 (T) .
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Let 1 < p < ∞ and 1/p + 1/q = 1. A weight function ω belongs to the
Muckenhoupt class Ap (T) if



 1

|J |

∫

J

ωp (x) dx




1/p

 1

|J |

∫

J

ω−q (x) dx




1/q

≤ C

with a finite constant C independent of J, where J is any subinterval of T

and |J | denotes the length of J .
Let X (T) be a reflexive rearrangement invariant space with nontrivial

Boyd indices αX and βX , and ω be a weight function such that ω ∈A1/αX
(T)∩

A1/βX
(T) . For a given function f ∈ X (T, ω) we define the shift operator σh

(σhf) (x) :=
1

2h

h∫

−h

f (x+ t) dt, 0 < h < π, x ∈ T,

and later the k−modulus of smoothness ΩkX,ω (·, f) (k = 1, 2, . . .)

ΩkX,ω (δ, f) := sup
0<hi≤δ

1≤i≤k

∥∥∥∥∥

k∏

i=1

(I − σhi
) f

∥∥∥∥∥
X(T,ω)

, δ > 0,

where I is the identity operator. This modulus of smoothness is well defined,
because we will prove (Lemma 2.2) that the operator σh is a bounded linear
operator in X (T, ω).

We define the shift operator σh and the modulus of smoothness ΩkX,ω in

such way since the space X (T, ω) is noninvariant, in general, under the usual
shift f (x) → f (x+ h) .

In the case of k = 0 we assume Ω0
X,ω (δ, f) := ‖f‖X(T,ω) and if k = 1

we write ΩX,ω (δ, f) := Ω1
X,ω (δ, f) . The modulus of smoothness ΩkX,ω (·, f) is

nondecreasing, nonnegative, continuous function and

(1.6) ΩkX,ω (δ, f + g) ≤ ΩkX,ω (δ, f) + ΩkX,ω (δ, g)

for f, g ∈ X (T, ω) .
We denote by En (f)X, ω (n = 0, 1, 2, . . .) the best approximation of f ∈

X (T, ω) by trigonometric polynomials of degree not exceeding n, i. e.,

En (f)X,ω = inf
{
‖f − Tn‖X(T,ω) : Tn ∈ Πn

}
,

where Πn denotes the class of trigonometric polynomials of degree at most n.
Note that the existence of the trigonometric polynomial T ∗

n ∈ Πn such that

En (f)X,ω = ‖f − T ∗
n‖X(T,ω) ,

follows, for example, from Theorem 1.1 in [8, p. 59].
In the literature there are sufficiently many results, where investigated the

approximation problems and obtained, in particular, the direct and inverse



APPROXIMATION BY TRIGONOMETRIC POLYNOMIALS 427

theorems of approximation theory by trigonometric polynomials in weighted
and nonweighted Lebesgue spaces. The elegant representation of the corre-
sponding result in the nonweighted Lebesgue spaces Lp (T) , 1 ≤ p ≤ ∞,
can be found in [8, 34, 35]. The best approximation problem by trigono-
metric polynomials in weighted spaces with weights satisfying the so-called
Ap (T)−condition was investigated in [15, 26, 27]. In particular, using the
Lp (T,ω) version of the k−modulus of smoothness ΩkX,ω (·, f), k = 1, 2, . . .,
some direct and inverse theorems in the weighted Lebesgue spaces were ob-
tained in [15, 27]. The generalizations of the last results for the weighted
Lebesgue spaces, defined on the curves of the complex plane were proved in
[18–20]. The similar results in the nonweighted Lebesgue spaces were obtained
in [1, 7, 25].

For the more general doubling weights, approximation by trigonometric
polynomials in the periodic case and other related problems were studied in
[4, 29–31]. The direct and converse results in case of the exponential weights
given on the real line were obtained in [13, 14]. Some interesting results con-
cerning to the best polynomial approximation in weighted Lebesgue spaces
were also proved in [9,10]. The detailed information on the weighted polyno-
mial approximation can be found in the books: [11, 32]. In the non-weighted
rearrangement invariant spaces the direct theorems can be found in [8]. Some
other aspects of the approximation theory in the more general spaces were
investigated by many authors (see, for example: [28]).

To the best of the authors’ knowledge there are no results, where studied
the approximation problems by trigonometric polynomials in the weighted
rearrangement invariant spaces. These spaces are sufficiently wide; the
Lebesgue, Orlicz, Lorentz spaces are examples of rearrangement invariant
spaces. In this work we prove some direct and inverse theorems of approx-
imation theory in the weighted rearrangement invariant spaces X (T, ω). In
particular, we obtain a result on the constructive characteristic of the gener-
alized Lipschitz classes defined in these spaces.

Let r = 1, 2, . . . . If we denote the space of functions f ∈ X (T, ω) for
which f (r−1) is absolutely continuous and f (r) ∈ X (T, ω) by W r

X (T, ω) , it
become a normed space with respect to the norm

(1.7) ‖f‖W r
X

(T,ω) := ‖f‖X(T,ω) +
∥∥∥f (r)

∥∥∥
X(T,ω)

.

Our main results are the following.

Theorem 1.2. Let X (T) be a reflexive rearrangement invariant space

with nontrivial Boyd indices αX and βX , and ω be a weight function such

that ω ∈ A1/αX
(T)∩A1/βX

(T) . Then for every f ∈W r
X (T, ω) (r = 1, 2, . . .) ,

the inequality

(1.8) En (f)X,ω ≤
c

(n+ 1)r
En

(
f (r)

)

X,ω
, n = 1, 2, . . .
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holds with a constant c > 0 independent of n.

Theorem 1.3. Let X (T) be a reflexive rearrangement invariant space

with nontrivial Boyd indices αX and βX , and ω be a weight function such that

ω ∈ A1/αX
(T) ∩ A1/βX

(T) . Then for every f ∈ X (T, ω) and k = 1, 2, . . . ,
the estimate

(1.9) En (f)X,ω ≤ cΩkX,ω

(
1

n+ 1
, f

)

holds with a positive constant c = c (k) independent of n.

In weighted Lebesgue spaces Lp(T, ω) similar results were proved in [15]
and [27].

Let D be the unit disk in the complex plane andH1 (D) be the Hardy space
of analytic functions in D. It is known that every function f ∈ H1 (D) admits
nontangential boundary limits a. e. on T and the limit function belongs to
L1 (T) [12, p. 23].

Let X (T, ω) be a weighted rearrangement invariant space on T and let
HX (D, ω) be the class of analytic functions in D defined as:

HX (D, ω) := {f ∈ H1 (D) : f ∈ X (T, ω)} .

Then from Theorem 1.3 we obtain the following result.

Theorem 1.4. Let X (T) be a reflexive rearrangement invariant space

with nontrivial Boyd indices αX and βX , ω be a weight function such that

ω ∈ A1/αX
(T) ∩A1/βX

(T) , and f ∈ HX (D, ω) . If
∞∑
j=0

aj (f) zj is the Taylor

series of f at the origin, then

(1.10)

∥∥∥∥∥∥
f (z) −

n∑

j=0

aj (f) zj

∥∥∥∥∥∥
X(T,ω)

≤ cΩkX,ω

(
1

n+ 1
, f

)
, k = 1, 2, . . .

with a constant c = c (k) > 0, which is independent of n.

Theorem 1.5. Let X (T) be a reflexive rearrangement invariant space

with nontrivial Boyd indices αX , βX , and let the ω be a weight function such

that ω ∈ A1/αX
(T) ∩A1/βX

(T) . Then for f ∈ X (T, ω) and k = 1, 2, . . . , the

estimate

(1.11) ΩkX,ω

(
1

n
, f

)
≤

c

n2k




E0 (f)X,ω +

n∑

j=1

j2k−1Ej (f)X,ω






holds with some positive constant c = c (k) independent of n.

From Theorem 1.5 we obtain the following result.
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Corollary 1.6. If

En (f)X,ω = O
(
n−α

)
, α > 0, n = 1, 2, . . . ,

for f ∈ X (T, ω), then for any natural number k and δ > 0

ΩkX,ω (δ, f) =





O (δα) , k > α/2
O (δα log (1/δ)) , k = α/2
O
(
δ2k
)
, k < α/2.

Hence if we define the generalized Lipschitz class Lip∗α (X,ω) for α > 0
and k := [α/2] + 1 as

Lip∗α (X,ω) :=
{
f ∈ X (T, ω) : ΩkX,ω (δ, f) ≤ cδα, δ > 0

}
,

then by virtue of Corollary 1.6 we obtain the following

Corollary 1.7. If

En (f)X,ω = O
(
n−α

)
, α > 0, n = 1, 2, . . . ,

for f ∈ X (T, ω), then f ∈ Lip∗α (X,ω).

Combining this with Direct Theorem we get the following constructive
description of classes Lip∗α (X,ω).

Theorem 1.8. For α > 0 the following assertions are equivalent:

(i) f ∈ Lip∗α (X,ω);
(ii) En (f)X,ω = O (n−α) for all n = 1, 2, . . ..

We use c, c1, c2, . . . to denote constants (which may, in general, differ in
different relations) depending only on numbers that are not important for the
questions of interest.

2. Auxiliary results

The following interpolation theorem was proved in [5].

Theorem 2.1. Let 1 < q < p <∞. If a linear operator is bounded in the

Lebesgue spaces Lp (T) and Lq (T), then it is bounded in every rearrangement

invariant space X (T) whose Boyd indices satisfy 1/p < αX ≤ βX < 1/q.

In the proof of the following lemma, we will use the method used by A.
Yu. Karlovich in [23].

Lemma 2.2. Let X (T) be a rearrangement invariant space with nontrivial

Boyd indices αX and βX , and ω be a weight function. If ω ∈ A1/αX
(T) ∩

A1/βX
(T) , then the operator σh is bounded in the space X (T, ω) .
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Proof. Since 0 < αX ≤ βX < 1, we can find the numbers q and p such
that

1 < q < 1/βX ≤ 1/αX < p <∞

and ω ∈ Ap (T) ∩ Aq (T) [6, p. 58]. As follows from the continuity of the
maximal operator in weighted Lebesgue spaces (see [33]), the operator σh
is bounded in the spaces Lp (T, ω) and Lq (T, ω). In that case the operator
Ah := ωσhω

−1I is bounded in the Lebesgue spaces Lp (T) and Lq (T). Hence
by Theorem 2.1, the operator Ah is bounded in the rearrangement invariant
space X (T). This implies the boundedness of the operator σh in the space
X (T, ω).

From this Lemma and the density of the continuous functions in X (T, ω)
(see [22]) we obtain the following result.

Corollary 2.3. For f ∈ X (T, ω) we have

lim
h→0

‖f − σhf‖X(T,ω) = 0

and hence

lim
δ→0

ΩkX,ω (δ, f) = 0, k = 1, 2, . . .

Moreover

ΩkX,ω (δ, f) ≤ c ‖f‖X(T,ω)

holds with some constant c independent of f.

Let Sn (·, f) (n = 1, 2, . . .) be the nth partial sums of the Fourier series of
the function f ∈ L1 (T ), i. e.

Sn (x, f) =
a0

2
+

n∑

k=1

ak cos kx+ bk sin kx,

where

f (x) ∼
a0

2
+

∞∑

k=1

ak cos kx+ bk sinkx.

Then [2, Vol. 1, pp. 95-96]

Sn (x, f) =
1

π

∫

T

f (t)Dn (x− t) dt

with the Dirichlet kernel

Dn (t) :=
1

2
+

n∑

k=1

cos kt

of order n. Consider the sequence {Kn (·, f)} of the Fejer means defined by

Kn (x, f) :=
S0 (x, f) + S1 (x, f) + · · · + Sn (x, f)

n+ 1
, n = 0, 1, 2, . . .
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with K0 (x, f) = S0 (x, f) := a0/2.
It is known [2, Vol. 1, p. 133] that

Kn (x, f) =
1

π

∫

T

f (t)Fn (x− t) dt,

where the expression

Fn (t) :=
1

n+ 1

n∑

k=0

Dk (t)

is the Fejer kernel of order n (for more information see: [2, vol. 1, pp. 133-
137]).

Lemma 2.4. Let X (T) be a rearrangement invariant space with nontrivial

Boyd indices αX , βX , and ω be a weight function such that ω ∈ A1/αX
(T) ∩

A1/βX
(T) . Then the sequence {Kn} of the Fejer means is uniformly bounded

in the space X (T, ω) , i. e.

(2.1) ‖Kn (·, f)‖X(T,ω) ≤ c ‖f‖X(T,ω) , f ∈ X (T, ω)

with a constant c, independent of n.

The proof of Lemma 2.4 is similar to proof of Lemma 2.2.
Now we can state and prove Bernstein’s inequality for weighted rearrange-

ment invariant spaces.

Lemma 2.5. Let X (T) be a rearrangement invariant space with non-

trivial Boyd indices αX , βX . If ω ∈ A1/αX
(T) ∩ A1/βX

(T) , then for every

trigonometric polynomial Tn of degree n, the inequality

(2.2) ‖T ′
n‖X(T,ω) ≤ cn ‖Tn‖X(T,ω)

holds with a constant c, independent of n.

Proof. We use Zygmund’s method (see [2, Vol 2, pp. 458-460]). Since

Tn (x) = Sn (x, Tn) =
1

π

∫

T

Tn (u)Dn (u− x) du,

by differentiation we get

T ′
n (x) = −

1

π

∫

T

Tn (u)D′
n (u− x) du = −

1

π

∫

T

Tn (u+ x)D′
n (u) du

=
1

π

∫

T

Tn (u+ x)

(
n∑

k=1

k sinku

)
du
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and since Tn is a trigonometric polynomial of degree n,

T ′
n (x) =

1

π

∫

T

Tn (u+ x)

{
n∑

k=1

k sin ku+

n−1∑

k=1

k sin (2n− k)u

}
du

=
1

π

∫

T

Tn (u+ x) 2n sinnu

{
1

2
+

n−1∑

k=1

n− k

n
cos ku

}
du

=
2n

π

∫

T

Tn (u+ x) sinnuFn−1 (u)du.

Since Fn−1 is non-negative, we obtain

|T ′
n (x)| ≤

2n

π

∫

T

|Tn (u+ x)|Fn−1 (u) du =
2n

π

∫

T

|Tn (u)|Fn−1 (u− x) du

= 2nKn−1 (x, |Tn|) ,

and Lemma 2.4 yields (2.2).

Let Sn (·, f) and f̃ be the nth partial sums of the Fourier series and
the conjugate function of f ∈ X (T, ω) , respectively. Since the linear opera-

tors f → Sn (·, f) and f → f̃ are bounded in the weighted Lebesgue spaces
Lp (T, ω) [16, 17], by using the method of proof of Lemma 2.2, one can show
that

(2.3) ‖Sn (·, f)‖X(T,ω) ≤ c ‖f‖X(T,ω) ,
∥∥∥f̃
∥∥∥
X(T,ω)

≤ c ‖f‖X(T,ω)

and as a corollary of these we obtain

(2.4) ‖f − Sn (·, f)‖X(T,ω) ≤ cEn (f)X,ω , En

(
f̃
)

X,ω
≤ cEn (f)X,ω .

Lemma 2.6. Let X (T) be a reflexive rearrangement invariant space with

nontrivial Boyd indices αX and βX . If ω ∈ A1/αX
(T) ∩ A1/βX

(T) , then the

class of trigonometric polynomials is dense in X (T, ω) .

Proof. From the method of proof of Theorem 4.5 in [23] and Lemma
4.2 in [21], can be deduced that the condition ω ∈ A1/αX

(T)∩ ∈ A1/βX
(T)

implies the conditions ω ∈ X (T) and 1/ω ∈ X ′ (T). Then the space X (T, ω)
is also reflexive [24, Corollary 2.8] and by Lemmas 1.2 and 1.3 in [22] the class
of continuous functions C (T) is dense in X (T, ω).

Let f ∈ X (T, ω) and ε > 0. Since C (T) is dense in X (T, ω), there is a
continuous function f0 such that

(2.5) ‖f − f0‖X(T,ω) < ε.

By the Weierstrass theorem, there exists a trigonometric polynomial T0

such that
|f0 (x) − T0 (x)| < ε, x ∈ T.
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Using this and formulas (1.2), (1.5) and Hölder inequality we get

‖f0 − T0‖X(T,ω) = ‖(f0 − T0)ω‖X(T)

= sup






∫

T

|f0 (x) − T0 (x)|ω (x) |g (x)| dx : ‖g‖X′(T) ≤ 1






≤ ε sup






∫

T

ω (x) |g (x)| dx : ‖g‖X′(T) ≤ 1






≤ ε sup
{
‖ω‖X(T) ‖g‖X′(T) : ‖g‖X′(T) ≤ 1

}
≤ ε ‖ω‖X(T) ,

which by (2.5) yields

‖f − T0‖X(T,ω) ≤ ‖f − f0‖X(T,ω) + ‖f0 − T0‖X(T,ω) <
(
1 + ‖ω‖X(T)

)
ε,

and the assertion is proved.

Corollary 2.7. Under the assumptions of Lemma 2.6, the Fourier series

of f ∈ X (T, ω) converges to f in the norm of X (T, ω).

Proof. By Lemma 2.6 we have En (f)X,ω → 0 (n → ∞) and then the

proof follows from (2.4).

Lemma 2.8. Let X (T) be a rearrangement invariant space with nontrivial

Boyd indices αX and βX . If ω ∈ A1/αX
(T)∩A1/βX

(T) , and f ∈ W 2
X (T, ω) ,

then the inequality

ΩkX,ω (δ, f) ≤ cδ2Ωk−1
X,ω (δ, f ′′) , k = 1, 2, . . .

holds with some constant c independent of δ.

Proof. Let’s consider the function

g (x) :=

k∏

i=2

(I − σhi
) f (x) .

Then g ∈ W 2
X (T, ω) and

(I − σh1
) g (x) = (I − σh1

)

(
k∏

i=2

(I − σhi
) f (x)

)
=

k∏

i=1

(I − σhi
) f (x) .
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Hence

k∏

i=1

(I − σhi
) f (x) = g (x) − σh1

g (x) = g (x) −
1

2h1

h1∫

−h1

g (x+ t) dt

=
1

2h1

h1∫

−h1

[g (x) − g (x+ t)] dt

= −
1

4h1

h1∫

−h1

[g (x+ t) − 2g (x) + g (x− t)] dt

= −
1

8h1

h1∫

0

t∫

0

u∫

−u

g′′ (x+ s) dsdudt.

Now, according to (1.2), (1.5) and Fubini’s theorem and getting the supremum
under the integral sign we have

∥∥∥∥∥

k∏

i=1

(I − σhi
) f

∥∥∥∥∥
X(T,ω)

=
1

8h1

∥∥∥∥∥∥

h1∫

0

t∫

0

u∫

−u

g′′ (· + s) dsdudt

∥∥∥∥∥∥
X(T,ω)

=
1

8h1
sup

∫

T

∣∣∣∣∣∣

h1∫

0

t∫

0

u∫

−u

g′′ (x+ s) dsdudt

∣∣∣∣∣∣
ω (x) |l (x)| dx

≤
1

8h1
sup

∫

T



h1∫

0

t∫

0

∣∣∣∣∣∣

u∫

−u

g′′ (x+ s) ds

∣∣∣∣∣∣
dudt


ω (x) |l (x)| dx

=
1

8h1
sup

h1∫

0

t∫

0



∫

T

∣∣∣∣∣∣

u∫

−u

g′′ (x+ s) ds

∣∣∣∣∣∣
ω (x) |l (x)| dx


 dudt

≤
1

8h1

h1∫

0

t∫

0


sup

∫

T

∣∣∣∣∣∣

u∫

−u

g′′ (x+ s) ds

∣∣∣∣∣∣
ω (x) |l (x)| dx


 dudt

=
1

8h1

h1∫

0

t∫

0

∥∥∥∥∥∥

u∫

−u

g′′ (· + s) ds

∥∥∥∥∥∥
X(T,ω)

dudt

=
1

8h1

h1∫

0

t∫

0

2u

∥∥∥∥∥∥
1

2u

u∫

−u

g′′ (· + s) ds

∥∥∥∥∥∥
X(T,ω)

dudt,
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where the suprema above are taken over all functions l ∈ X ′ (T) with
‖l‖X′(T) ≤ 1. Taking into account the boundedness of σu we see that

∥∥∥∥∥

k∏

i=1

(I − σhi
) f

∥∥∥∥∥
X(T,ω)

≤
1

8h1

h1∫

0

t∫

0

2u ‖σug
′′‖X(T,ω) dudt

≤ c
1

8h1

h1∫

0

t∫

0

2u ‖g′′‖X(T,ω) dudt = ch2
1 ‖g

′′‖X(T,ω) .

On the other hand, by the definitions of g and σhi
we have g′′ =

k∏
i=2

(I − σhi
) f ′′. Then from the last inequality we conclude that

ΩkX,ω (δ, f) = sup
0<hi≤δ

1≤i≤k

∥∥∥∥∥

k∏

i=1

(I − σhi
) f

∥∥∥∥∥
X(T,ω)

≤ sup
0<hi≤δ

1≤i≤k

ch2
1 ‖g

′′‖X(T,ω)

= cδ2 sup
0<hi≤δ

2≤i≤k

∥∥∥∥∥

k∏

i=2

(I − σhi
) f ′′

∥∥∥∥∥
X(T,ω)

= cδ2Ωk−1
X,ω (δ, f ′′)

and this finished the proof.

Corollary 2.9. If f ∈W 2k
X (T, ω) (k = 1, 2, . . .) , then

ΩkX,ω (δ, f) ≤ cδ2k
∥∥∥f (2k)

∥∥∥
X(T,ω)

with some constant c independent of δ.

For an f ∈ X (T, ω) the K−functional is defined as

K (δ, f ;X (T, ω) ,W r
X (T, ω)) := inf

ψ∈W r
X

(T,ω)
‖f − ψ‖X(T,ω) + δ

∥∥∥ψ(r)
∥∥∥
X(T,ω)

for δ > 0.

Theorem 2.10. Let X (T) be a rearrangement invariant space with non-

trivial Boyd indices αX and βX , and ω ∈ A1/αX
(T) ∩ A1/βX

(T) . Then for

f ∈ X (T, ω) and k = 1, 2, . . . , the equivalence

(2.6) K
(
δ2k, f ;X (T, ω) ,W 2k

X (T, ω)
)
∼ ΩkX,ω (δ, f)

holds, where the constants in this relation are independent of δ.
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Proof. Let ψ be an arbitrary function in W 2k
X (T, ω). By (1.6), Corol-

laries 3 and 5 we obtain

ΩkX,ω (δ, f) = ΩkX,ω (δ, f − ψ + ψ)

≤ ΩkX,ω (δ, f − ψ) + ΩkX,ω (δ, ψ)

≤ c1 ‖f − ψ‖X(T,ω) + c2δ
2k
∥∥∥ψ(2k)

∥∥∥
X(T,ω)

.

Taking the infimum over all ψ ∈ W 2k
X (T, ω) , by definition of theK−functional

we get

ΩkX,ω (δ, f) ≤ cK
(
δ2k, f ;X (T, ω) ,W 2k

X (T, ω)
)
.

For the proof of the reverse estimation consider an operator Lδ on X (T, ω) ,

(Lδf) (x) :=
3

δ3

δ∫

0

u∫

0

t∫

−t

f (x+ s) dsdtdu, x ∈ T.

Then
d2

dx2
(Lδf) =

c

δ2
(I − σδ) f

and hence

(2.7)
d2k

dx2k
Lkδ =

c

δ2k
(I − σδ)

k
, k = 1, 2, . . . .

The operator Lδ is bounded in X (T, ω). Indeed, using (1.5), (1.2) and the
boundedness of σt in X (T, ω) we get

‖Lδf‖X(T,ω) ≤
3

δ3

δ∫

0

u∫

0

∥∥∥∥∥∥

t∫

−t

f (· + s) ds

∥∥∥∥∥∥
X(T,ω)

dtdu

=
3

δ3

δ∫

0

u∫

0

2t ‖σtf‖X(T,ω) dtdu

≤ c
3

δ3
‖f‖X(T,ω)

δ∫

0

u∫

0

2tdtdu = c ‖f‖X(T,ω) .

Consider the operator

Akδ := I −
(
I − Lkδ

)k
.

Then we have Akδf ∈ W 2k
X (T, ω) for f ∈ X (T, ω) and furthermore by (2.7)

the inequality
∥∥∥∥
d2k

dx2k
Akδf

∥∥∥∥
X(T,ω)

≤ c

∥∥∥∥
d2k

dx2k
Lkδf

∥∥∥∥
X(T,ω)

≤
c

δ2k

∥∥∥(I − σδ)
k
f
∥∥∥
X(T,ω)
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holds. This inequality and the definition of ΩkX,ω (δ, f) yield

(2.8) δ2k
∥∥∥∥
d2k

dx2k
Akδf

∥∥∥∥
X(T,ω)

≤ cΩkX,ω (δ, f) .

Since

I − Lkδ = (I − Lδ)




k−1∑

j=0

Ljδ





and Lδ is bounded in X (T, ω), we have

∥∥(I − Lkδ
)
g
∥∥
X(T,ω)

=

∥∥∥∥∥∥




k−1∑

j=0

Ljδ



 (I − Lδ) g

∥∥∥∥∥∥
X(T,ω)

≤ c ‖(I − Lδ) g‖X(T,ω)

= c

∥∥∥∥∥∥
3

δ3

δ∫

0

u∫

0

t∫

−t

[g − g (· + s)] dsdtdu

∥∥∥∥∥∥
X(T,ω)

≤
3c

δ3

δ∫

0

u∫

0

2t

∥∥∥∥∥∥
1

2t

t∫

−t

[g − g (· + s)]ds

∥∥∥∥∥∥
X(T,ω)

dtdu

=
3c

δ3

δ∫

0

u∫

0

2t ‖(I − σt) g‖X(T,ω) dtdu

≤
3c

δ3
sup

0<t≤δ
‖(I − σt) g‖X(T,ω)

δ∫

0

u∫

0

2tdtdu

= c sup
0<t≤δ

‖(I − σt) g‖X(T,ω)

for every g ∈ X (T, ω). Applying this inequality k−times in
∥∥f −Akδf

∥∥
X(T,ω)

=
∥∥∥
(
I − Lkδ

)k
f
∥∥∥
X(T,ω)

=
∥∥∥
(
I − Lkδ

) (
I − Lkδ

)k−1
f
∥∥∥
X(T,ω)

,

we obtain
∥∥f −Akδf

∥∥
X(T,ω)

≤ c1 sup
0<t1≤δ

∥∥∥(I − σt1)
(
I − Lkδ

)k−1
f
∥∥∥
X(T,ω)

≤ c2 sup
0<t1≤δ

sup
0<t2≤δ

∥∥∥(I − σt1) (I − σt2)
(
I − Lkδ

)k−2
f
∥∥∥
X(T,ω)

≤ . . . ≤ c sup
0<tj≤δ

1≤j≤k

∥∥∥∥∥∥

k∏

j=1

(
I − σtj

)
f

∥∥∥∥∥∥
X(T,ω)

= cΩkX,ω (δ, f) .
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Since Akδf ∈W 2k
X (T, ω) , from the last inequality, the inequality (2.8) and the

definition of the K−functional, we conclude that

K
(
δ2k, f ;X (T, ω) ,W 2k

X (T, ω)
)

≤
∥∥f −Akδf

∥∥
X(T,ω)

+ δ2k
∥∥∥∥
d2k

dx2k
Akδf

∥∥∥∥
X(T,ω)

≤ cΩkX,ω (δ, f) ,

which gives the reverse estimation and hence the proof is completed.

3. Proofs of the main results

Proof of Theorem 1.2. Let
∞∑
k=0

(ak cos kx+ bk sin kx) be the Fourier

series of f and Sn (x, f) be its nth partial sum i.e.,

Sn (x, f) =

n∑

k=0

(ak cos kx+ bk sin kx) .

It is known that the conjugate function f̃ has the Fourier expansion
∞∑

k=1

(ak sin kx− bk cos kx) .

If we denote

Ak (x, f) := ak coskx+ bk sinkx,

then by Corollary 2.7 we have

f (x) =

∞∑

k=0

Ak (x, f)

in the norm of X (T, ω).
Since for k = 1, 2, . . . ,

Ak (x, f) = ak coskx+ bk sinkx

= ak cosk
(
x+

rπ

2k
−
rπ

2k

)
+ bk sin k

(
x+

rπ

2k
−
rπ

2k

)

= ak cos
(
kx+

rπ

2
−
rπ

2

)
+ bk sin

(
kx+

rπ

2
−
rπ

2

)

= ak

[
cos
(
kx+

rπ

2

)
cos

rπ

2
+ sin

(
kx+

rπ

2

)
sin

rπ

2

]

+bk

[
sin
(
kx+

rπ

2

)
cos

rπ

2
− cos

(
kx+

rπ

2

)
sin

rπ

2

]

= cos
rπ

2

[
ak cos k

(
x+

rπ

2k

)
+ bk sin k

(
x+

rπ

2k

)]

+ sin
rπ

2

[
ak sink

(
x+

rπ

2k

)
− bk cos k

(
x+

rπ

2k

)]

= Ak

(
x+

rπ

2k
, f
)

cos
rπ

2
+Ak

(
x+

rπ

2k
, f̃
)

sin
rπ

2
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and

Ak

(
x, f (r)

)
= krAk

(
x+

rπ

2k
, f
)

,

we get

∞∑

k=0

Ak (x, f) = A0 (x, f) + cos
rπ

2

∞∑

k=1

Ak

(
x+

rπ

2k
, f
)

+ sin
rπ

2

∞∑

k=1

Ak

(
x+

rπ

2k
, f̃
)

= A0 (x, f) + cos
rπ

2

∞∑

k=1

1

kr
krAk

(
x+

rπ

2k
, f
)

+ sin
rπ

2

∞∑

k=1

1

kr
krAk

(
x+

rπ

2k
, f̃
)

= A0 (x, f) + cos
rπ

2

∞∑

k=1

1

kr
Ak

(
x, f (r)

)

+ sin
rπ

2

∞∑

k=1

1

kr
Ak

(
x, f̃ (r)

)
.

Then

f (x) − Sn (x, f) =

∞∑

k=n+1

Ak (x, f)

= cos
rπ

2

∞∑

k=n+1

1

kr
Ak

(
x, f (r)

)
+ sin

rπ

2

∞∑

k=n+1

1

kr
Ak

(
x, f̃ (r)

)
.

Take into account that

∞∑

k=n+1

1

kr
Ak

(
x, f (r)

)
=

∞∑

k=n+1

1

kr

[
Sk

(
x, f (r)

)
− Sk−1

(
x, f (r)

)]

=
∞∑

k=n+1

1

kr

{[
Sk

(
x, f (r)

)
− f (r) (x)

]
−
[
Sk−1

(
x, f (r)

)
− f (r) (x)

]}

=

∞∑

k=n+1

(
1

kr
−

1

(k + 1)r

)[
Sk

(
x, f (r)

)
− f (r) (x)

]

−
1

(n+ 1)r

[
Sn

(
x, f (r)

)
− f (r) (x)

]
,
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and
∞∑

k=n+1

1

kr
Ak

(
x, f̃ (r)

)
=

∞∑

k=n+1

(
1

kr
−

1

(k + 1)
r

)[
Sk

(
x, f̃ (r)

)
− f̃ (r) (x)

]

−
1

(n+ 1)
r

[
Sn

(
x, f̃ (r)

)
− f̃ (r) (x)

]
,

by (2.4) we have

‖f − Sn (·, f)‖X(T,ω)

≤

∞∑

k=n+1

(
1

kr
−

1

(k + 1)
r

)∥∥∥Sk
(
·, f (r)

)
− f (r)

∥∥∥
X(T,ω)

+
1

(n+ 1)
r

∥∥∥Sn
(
·, f (r)

)
− f (r)

∥∥∥
X(T,ω)

+

∞∑

k=n+1

(
1

kr
−

1

(k + 1)
r

)∥∥∥Sk
(
·, f̃ (r)

)
− f̃ (r)

∥∥∥
X(T,ω)

+
1

(n+ 1)r

∥∥∥Sn
(
·, f̃ (r)

)
− f̃ (r)

∥∥∥
X(T,ω)

≤ c1

{
∞∑

k=n+1

(
1

kr
−

1

(k + 1)r

)
Ek

(
f (r)

)

X,ω
+

1

(n+ 1)r
En

(
f (r)

)

X,ω

}

+c2

{
∞∑

k=n+1

(
1

kr
−

1

(k + 1)
r

)
Ek

(
f̃ (r)

)

X,ω
+

1

(n+ 1)
rEn

(
f̃ (r)

)

X,ω

}
.

Since the sequence
{
En
(
f (r)

)
X,ω

}
is decreasing, we finally conclude that

‖f − Sn (., f)‖X(T,ω)

≤ c1En

(
f (r)

)

X,ω

{
∞∑

k=n+1

(
1

kr
−

1

(k + 1)r

)
+

1

(n+ 1)r

}

+c2En

(
f̃ (r)

)

X,ω

{
∞∑

k=n+1

(
1

kr
−

1

(k + 1)
r

)
+

1

(n+ 1)
r

}

≤ c3En

(
f (r)

)

X,ω

{
∞∑

k=n+1

(
1

kr
−

1

(k + 1)r

)
+

1

(n+ 1)r

}
En

(
f (r)

)

X,ω

=
2c3

(n+ 1)r
En

(
f (r)

)

X,ω
.

This by the relation

En (f)X,ω ≤ ‖f − Sn (., f)‖X(T,ω)
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gives (1.8) and completes the proof of Theorem 1.2.

Corollary 3.1. For f ∈W r
X (T, ω) the inequality

En (f)X,ω ≤
c

(n+ 1)
r

∥∥∥f (r)
∥∥∥
X(T,ω)

holds with a constant c independent of n.

Proof of Theorem 1.3. Let ψ ∈ W 2k
X (T, ω). Then by subadditivity

of the best approximation and Corollary 3.1 we have

En (f)X,ω = En (f − ψ + ψ)X,ω ≤ En (f − ψ)X,ω + En (ψ)X,ω

≤ c

{
‖f − ψ‖X(T,ω) +

1

(n+ 1)
2k

∥∥∥ψ(2k)
∥∥∥
X(T,ω)

}
.

Since this inequality holds for every ψ ∈ W 2k
X (T, ω), by the definition of the

K−functional we get

En (f)X,ω ≤ cK

(
1

(n+ 1)
2k
, f ;X (T, ω) ,W 2k

X (T, ω)

)
.

According to Theorem 2.10 this implies

En (f)X,ω ≤ cΩkX,ω

(
1

n+ 1
, f

)
,

which completes the proof.

Proof of Theorem 1.4. Let
∞∑

j=−∞

γj (f) eijx be the exponential Fourier

series of the boundary function of f and Sn (x, f) be its nth partial sum, i.e.,

Sn (x, f) =

n∑

j=−n

γj (f) eijx.

Then for f ∈ H1 (D) , by Theorem 3.4 in [12] we have

γj (f) =

{
aj (f) , j ≥ 0
0, j < 0

.

Let T ∗
n (x) be the polynomial of the best approximation to f from the class

Πn in the space X (T, ω) . Then the relation (2.3) and Theorem 1.3 for every



442 A. GUVEN AND D. M. ISRAFILOV

natural number n yield

∥∥∥∥∥∥
f (z) −

n∑

j=0

aj (f) zj

∥∥∥∥∥∥
X(T,ω)

=

∥∥∥∥∥∥
f
(
eix
)
−

n∑

j=0

γj (f) eijx

∥∥∥∥∥∥
X(T,ω)

= ‖f − Sn (·, f)‖X(T,ω) = ‖f − T ∗
n + T ∗

n − Sn (·, f)‖X(T,ω)

≤ ‖f − T ∗
n‖X(T,ω) + ‖Sn (·, T ∗

n − f)‖X(T,ω)

≤ c ‖f − T ∗
n‖X(T,ω) = cEn (f)X,ω ≤ cΩkX,ω

(
1

n+ 1
, f

)

and the theorem is proved.

Proof of Theorem 1.5. Let f ∈ X (T, ω) and Tn (n = 0, 1, 2, . . .) be
the polynomials of best approximation to f in the class Πn.

Let n = 1, 2, . . . and δ := 1/n. For any m = 1, 2, . . .

(3.1) ΩkX,ω (δ, f) ≤ ΩkX,ω (δ, f − T2m+1) + ΩkX,ω (δ, T2m+1) .

We have

(3.2) ΩkX,ω (δ, f − T2m+1) ≤ c1 ‖f − T2m+1‖X(T,ω) = c1E2m+1 (f)X,ω .

On the other hand, using (2.2) and (2.3) we obtain

ΩkX,ω (δ, T2m+1) ≤ c2δ
2k
∥∥∥T (2k)

2m+1

∥∥∥
X(T,ω)

≤ c2δ
2k

{∥∥∥T (2k)
1 − T

(2k)
0

∥∥∥
X(T,ω)

+

m∑

i=0

∥∥∥T (2k)
2i+1 − T

(2k)
2i

∥∥∥
X(T,ω)

}

≤ c3δ
2k

{
‖T1 − T0‖X(T,ω) +

m∑

i=0

2(i+1)2k ‖T2i+1 − T2i‖X(T,ω)

}

≤ c3δ
2k

{
E1 (f)X,ω + E0 (f)X,ω +

m∑

i=0

2(i+1)2k
(
E2i+1 (f)X,ω + E2i (f)X,ω

)}

≤ c4δ
2k

{
E0 (f)X,ω +

m∑

i=0

2(i+1)2kE2i (f)X,ω

}

= c4δ
2k

{
E0 (f)X,ω + 22kE1 (f)X,ω +

m∑

i=1

2(i+1)2kE2i (f)X,ω

}
,
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because the sequence of best approximations
{
En (f)X,ω

}
is monotone de-

creasing. By monotonicity of
{
En (f)X,ω

}
,

2i∑

l=2i−1+1

l2k−1El (f)X,ω ≥

2i∑

l=2i−1+1

l2k−1E2i (f)X,ω

≥ E2i (f)X,ω

2i∑

l=2i−1+1

(
2i−1

)2k−1

= E2i (f)X,ω 2(i−1)2k,

and hence

(3.3) 2(i+1)2kE2i (f)X,ω ≤ 24k
2i∑

l=2i−1+1

l2k−1El (f)X,ω

holds for i ≥ 1. So, we get the estimate

(3.4) ΩkX,ω (δ, T2m+1) ≤ c5δ
2k

{
E0 (f)X,ω +

2m∑

l=1

l2k−1El (f)X,ω

}
.

If we select m such that 2m ≤ n < 2m+1, then by (3.3)

E2m+1 (f)X,ω =
2(m+1)2kE2m+1 (f)X,ω

2(m+1)2k
≤

2(m+1)2kE2m (f)X,ω
n2k

≤
24k

n2k

2m∑

l=2m−1+1

l2k−1El (f)X,ω .

Combining (3.1), (3.2), (3.4) and using the last inequality completes the proof
of Theorem 1.5.

Proof of Corollary 1.6. Let

En (f)X,ω = O
(
n−α

)
, α > 0, n = 1, 2, . . . ,

for f ∈ X (T, ω) .
Let δ > 0. If we choose the natural number n as the integral part of 1/δ,

we get by Theorem 1.5

ΩkX,ω (δ, f) ≤ ΩkX,ω

(
1

n
, f

)
≤

c1
n2k

{
E0 (f)X,ω +

n∑

m=1

m2k−1Em (f)X,ω

}

≤ c2δ
2k

{
E0 (f)X,ω +

n∑

m=1

m2k−1−α

}
,

since
n ≤ 1/δ < n+ 1.
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Hence, if 2k > α, then simple calculations yield ΩkX,ω (δ, f) = O (δα) . If
α = 2k, then

n∑

m=1

m2k−1−α =

n∑

m=1

m−1 ≤ 1 + log (1/δ) ,

and from this inequality we obtain

ΩkX,ω (δ, f) = O (δα log (1/δ)) .

Finally if α > 2k, then the series
∞∑

m=1

m2k−1−α

is convergent, hence the estimate

ΩkX,ω (δ, f) ≤ c2δ
2k

{
E0 (f)X,ω +

∞∑

m=1

m2k−1−α

}
= O

(
δ2k
)

holds.
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[6] A. Böttcher and Yuri I. Karlovich, Carleson curves, Muckenhoupt weights and

Toeplitz operators, Birkhauser-Verlag, Basel, 1997.
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