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Abstract. Given a metric continuum X, Fn(X) denotes the hyper-
space of nonempty subsets of X with at most n elements. In this paper we
show the following result. Suppose that X is a metric compactification of
[0,∞), Y is a continuum and Fn(X) is homemorphic to Fn(Y ). Then: (a)
if n 6= 3, then X is homeomorphic to Y , (b) if n = 3 and the remainder of
X is an ANR, then X is homeomorphic to Y . The question if the result
in (a) is valid for n = 3 remains open.

1. Introduction

A continuum is a compact connected metric space with more than one
point. Given a continuum X , we consider the following hyperspaces of X :

2X = {A ⊂ X : A is closed and nonempty},

C(X) = {A ∈ 2X : A is connected}, and for each n ∈ N,

Cn(X) = {A ∈ 2X : A has at most n components},

Fn(X) = {A ∈ 2X : A has at most n points}.

All these hyperspaces are considered with the Hausdorff metric H ([9, Theo-
rem 2.2, p. 11]).

The continuum X is said to have unique hyperspace Fn(X) provided that
the following implication holds: if Y is a continuum and Fn(X) is homeomor-
phic to Fn(Y ), then X is homeomorphic to Y .
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It is known that if X is either a finite graph or a dendrite (locally con-
nected continuum containing no simple closed curves) with closed set of end
points, then X has unique hyperspace Fn(X) (see [1] and [7]).

A lot of work has been done on determining continua X for which some
of the hyperspaces 2X , Cn(X) and C(X) is unique (see, for example [3] and
[8]).

The subspace of the real line [0,∞) is called the ray. In this paper we
prove:

Theorems 3.1 and 4.1 If X is a metric compactification of the ray and
n 6= 3, then X has unique hyperspace Fn(X).

Theorem 5.6. If X is a metric compactification of the ray and the
remainder of X is an ANR, then X has unique hyperspace F3(X).

We do not know if in Theorem 5.6 the hypothesis that the remainder of
X is an ANR can be removed.

2. Auxiliary Results

An n-cell is a space homeomorphic to [0, 1]n. The manifold boundary of
an n-cell M is denoted by ∂(M). A map is a continuous function. A simple
triod is a continuum T which is the union of three arcs α1, α2 and α3 and T
contains a point p, called the vertex of T , such that p is an end point of each
αi and αi ∩αj = {p}, if i 6= j. Given a continuum X and a subset C of X , let

Fn(C) = {A ∈ Fn(X) : A ⊂ C}

and

En(C) = {A ∈ Fn(C) : A has a neighborhood in Fn(X) which is an n-cell}.

For each p ∈ X and ε > 0, let B(ε, p) be the open ε-neighborhood in X
around p and let N(ε, C) =

⋃

{B(ε, x) : x ∈ C}. Given subsets A1, . . . , Am

of X let 〈A1, . . . , Am〉n = {A ∈ Fn(X) : A ⊂ A1 ∪ · · · ∪ Am and A ∩ Ai 6= ∅
for each i ∈ {1, . . . , m}}. It is easy to prove that if the sets A1, . . . , Am

are closed (resp., open) in X , then 〈A1, . . . , Am〉n is closed (resp., open) in
Fn(X). If the sets A1, . . . , An are closed (or open) and pairwise disjoint,
then A1 × · · · ×An is homeomorphic to 〈A1, . . . , An〉n by the map that sends
(a1, . . . , an) to {a1, . . . , an}.

Given a topological space Z and n ∈ N, define

∆n(Z) = {z ∈ Z : z has a neighborhood M in Z such that M is an n-cell

and z ∈ ∂(M)}.

Given a metric compactification X , of the ray [0,∞), we denote by SX ⊂
X the topological copy of [0,∞), we call 0X to the end point of SX and we
denote the remainder X − SX of X by RX .

The proof of the following lemma can be made with similar arguments as
those in Lemmas 4.2, 4.3 and 4.5 of [3].
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Lemma 2.1. Let X be a metric compactification of the ray and n ∈ N.
Then:

(a) Fn(SX) − Fn−1(SX) ⊂ En(SX).
(b) If A ∈ Fn−1(SX) and n ≥ 4, then no neighborhood of A in Fn(X) can

be embedded in [0, 1]n.
(c) If A ∈ Fn(SX) and n ≥ 4, then A ∈ F1(X) if and only if A /∈ En(SX)

and A has a basis of neighborhoods B in Fn(X) such that U ∩ En(SX)
is arcwise connected for each U ∈ B.

Theorem 2.2. Suppose that X is a metric compactification of the ray
and Fn(X) is homeomorphic to Fn(Y ), where Y is a continuum. Then Y is
a metric compactification of the ray.

Proof. Define U = Fn(SX)−Fn−1(SX). By Lemma 2.1(a), U ⊂ En(SX).
We prove some properties of U .

A. U is a locally arcwise connected open subset of Fn(X).
Let A = {x1, . . . , xn} ∈ U and let V be an open subset of Fn(X)

such that A ∈ V . Since A ⊂ SX , we can choose pairwise disjoint arcs
J1, . . . , Jn in SX such that xi ∈ intX(Ji), for each i ∈ {1, . . . , n}, and A ∈
〈intX(J1), . . . , intX(Jn)〉n ⊂ V . Notice that A ∈ 〈intX(J1), . . . , intX(Jn)〉n ⊂
U . Thus U is open in Fn(X). Now we prove that 〈intX(J1), . . . , intX(Jn)〉n is
pathwise connected. Take B = {y1, . . . , yn} ∈ 〈intX(J1), . . . , intX(Jn)〉n. We
may assume that yi ∈ intX(Ji), for each i ∈ {1, . . . , n}. Given i ∈ {1, . . . , n},
since intX(Ji) is homeomorphic to an interval of the real line, there ex-
ists a map αi : [0, 1] → intX(Ji) such that αi(0) = xi and αi(1) = yi.
So, the function α : [0, 1] → 〈intX(J1), . . . , intX(Jn)〉n given by α(t) =
{α1(t), . . . , αn(t)} is continuous, α(0) = A and α(1) = B. We have shown that
〈intX(J1), . . . , intX(Jn)〉n is pathwise connected. This completes the proof of
property A.

B. U is a connected and dense subset of Fn(X).
It is easy to show that any two elements of U can be joined by an arc inside

U . In order to show that U is dense in Fn(X), take a nonempty open set V in
Fn(X). Then there exists m ≤ n and nonempty open subsets U1, . . . , Um of X
such that 〈U1, . . . , Um〉n ⊂ V . Since SX is dense in X , for each i ∈ {1, . . . , m}
we can choose a point xi ∈ Ui ∩SX . Choose points xm+1, , . . . , xn in Um ∩SX

such that the points x1, . . . , xn are pairwise different. Thus {x1, . . . , xn} ∈
〈U1, . . . , Um〉n ∩ U . Hence U is dense in Fn(X).

Let h : Fn(X) → Fn(Y ) be a homeomorphism. Define W = h(U). So, W
is a connected, locally arcwise connected, dense open subset of Fn(Y ). Define
W =

⋃

W . We prove some properties of W .
C. W is a connected, locally arcwise connected, dense open subset of Y .
It is easy to prove that W is open. By [4, Theorem 6.3], W is locally

arcwise connected. In order to show that W is dense, let V be a nonempty
subset of Y . Then 〈V 〉n is a nonempty open subset of Fn(Y ). By the density
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of W , there exists an element A ∈ 〈V 〉n ∩ W. Take x ∈ A. Thus x ∈
V ∩ W . Therefore W is dense in Y . We show that W is connected. By
([4, Lemma 2.1]), W has at most n components. Since W is open in Y and
it has a finite number of components, each component of W is open in Y .
Let C be a component of W . Then D = W − C is open in Y . Note that
W ⊂ 〈C〉n ∪ 〈D, W 〉n, the sets 〈C〉n and 〈D, W 〉n are disjoint open subsets
of Fn(Y ). Since 〈C〉n is a nonempty open subset of Fn(Y ) and W is dense
in Fn(Y ), 〈C〉n ∩ W 6= ∅. The connectedness of W implies that W ⊂ 〈C〉n.
This implies that W ⊂ C. Thus W = C. Therefore, W is connected. This
completes the proof of property C.

D. W contains no simple triods.
Suppose, to the contrary, that W contains a simple triod T , with vertex

p. Then there exists an element B ∈ W such that p ∈ B. Let A ∈ U be
such that h(A) = B. Suppose that B = {p1, . . . , pm}, where p1, . . . , pm are
pairwise different, p1 = p and m ≤ n. Since U is open in Fn(X), there exists
ε > 0 such that, if C ∈ Fn(Y ) and H(B, C) < ε, then C ∈ W. Let dY be a
metric for Y . Since W is connected, dense in Y and locally arcwise connected,
we can construct pairwise disjoint arcs β2, . . . , βm in W such that pi ∈ βi, for
each i ∈ {1, . . . , m}. Shortening T if it were necessary, we can assume that
T ∩ (β2 ∪ · · · ∪ βm) = ∅ and each one of the sets T, β2, . . . , βm is of diameter
less than ε. Choose pairwise different points pm+1, . . . , pn in T − {p}. Let
T1 ⊂ T be a simple triod such that p1 ∈ T1 ⊂ T − {pm+1, . . . , pn}. Choose
pairwise disjoint arcs βm+1, . . . , βn in T − T1 such that pi ∈ βi, for each
i ∈ {m + 1, . . . , n}. Thus h−1({p1, . . . , pn}) ∈ h−1(〈T1, β2, . . . , βn〉n) ⊂ U .
Notice that each neighborhood of {p1, . . . , pn} in Fn(Y ) contains a copy of
the space T1 × β2 × · · · × βn and the same happens for h−1({p1, . . . , pn}) (in
Fn(X)). Using the Invariance Domain Theorem ([11, Theorem 16, Sec. 7,
Ch. 4]), it can be shown that T1 × β2 × · · · × βn cannot be embedded in
[0, 1]n. This implies that h−1({p1, . . . , pn}) /∈ U , a contradiction. Therefore,
W contains no simple triods.

E. Y is a compactification of the ray.
First we show that each element p in W has a basis of neighborhoods D

in W such that each element of D is an arc. Let V be an open subset of W
such that p ∈ V . By property C there exists an arc α in W such that p ∈ α.
In the case that there exists an arc β ⊂ V , with end points a and b such that
p ∈ β−{a, b}, by property C, there exists an arcwise connected neighborhood
Z of p in W such that p ∈ Z ⊂ V − {a, b}. Given a point z ∈ Z − {p}, by
property D, each arc in Z connecting z and p is contained in β. Thus Z ⊂ β.
Thus, β is a neighborhood of p. Now, suppose that there are no arcs β ⊂ V ,
with end points a and b such that p ∈ β−{a, b}. We may assume that α ⊂ V .
In this case p is an end point of α. Let q be the other end point of α. By
property C, there exists an arcwise connected neighborhood R of p in W such
that p ∈ R ⊂ V −{q}. Given a point r ∈ R−{p}, by property D, each arc in
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R connecting r and p is contained in α. Thus R ⊂ α. This ends the proof of
the claim. So, we have proved that W is a connected 1-dimensional manifold.
By the Theorem of Classification of 1-dimensional manifolds ([6, Appendix 2,
p. 208]), W is homeomorphic to one of the following spaces: [0, 1], the unitary
circle S1 in R2, [0,∞) or R.

In the case that W is compact, we obtain W = Y . If W is homeomorphic
to S1, by [3, Corollary 5.8], X is also homeomorphic to S1, a contradiction.
If W is homeomorphic to [0, 1], then Y = W is a compactification of the ray
and we are done. If W is homemorphic to [0,∞), then Y is a compactification
of the ray and we are done. Thus we suppose that W is homeomorphic to
R. We identify W with the interval (−∞,∞). Let R = clY ([0,∞)) − [0,∞)
and L = clY ((−∞, 0]) − (−∞, 0]. Then R and L are nonempty and compact
and Y = L ∪ (−∞,∞) ∪ R. In the case that L is degenerate and L ∩ R = ∅,
we have that L ∪ (−∞,∞) is open in Y , Y is a compactification of this set
and this set is homeomorphic to [0,∞). Thus, in this case, we are done. In
the case that both sets R and L are degenerate, Y is homeomorphic either to
[0, 1] or to S1. Therefore, we may assume that either both sets L and R are
nondegenerate or one of them is nondegenerate and L∩R 6= ∅. In both cases
W coincides with the set of points of local connectedness of Y . We are going
to obtain a contradiction. We analyze three cases.

Case 1. n ≥ 4.
Fix an element A ∈ Fn(SX) such that A contains exactly n elements and

0X ∈ A. Let A = {p1, . . . , pn}, where p1 = 0X . Choose pairwise disjoint sub-
arcs α1, . . . , αn of SX such that pi ∈ intX(αi) ⊂ SX , for each i ∈ {1, . . . , n}.
Notice that p1 is an end point of α1, 〈α1, . . . , αn〉n is a neighborhood of A
in Fn(X), 〈α1, . . . , αn〉n is an n-cell (it is homeomorphic to α1 × · · · × αn)
and A ∈ ∂(〈α1, . . . , αn〉n). Since A ∈ U ⊂ En(X) and h is a homeomorphism,
h(A) ∈ En(Y ). By definition h(A) ⊂ W .

Then there exists an arc β in W such that h(A) ⊂ intY (β) ⊂ W . If
h(A) ∈ Fn−1(Y ), by the arguments given in [3, Lemma 4.3], no neighborhood
of h(A) in Fn(Y ) can be embedded in Rn, this is a contradiction with the fact
that h(A) ∈ En(Y ). Therefore, h(A) contains exactly n elements q1, . . . , qn.
Since W is open in Y and h is a homeomorphism, there are pairwise disjoint
arcs γ1, . . . , γn in W such that, for each i ∈ {1, . . . , n}, qi ∈ intY (γi) ⊂ W
and 〈γ1, . . . , γn〉n ⊂ h(〈α1, . . . , αn〉n). Notice that qi is not an end point of
γi, for each i ∈ {1, . . . , n}, 〈γ1, . . . , γn〉n is an n-cell containing h(A) and
h(A) /∈ ∂(〈γ1, . . . , γn〉n). Thus A ∈ h−1(〈γ1, . . . , γn〉n − ∂(〈γ1, . . . , γn〉n)) ⊂
〈α1, . . . , αn〉n. This contradicts the Invariance Domain Theorem ([11, Theo-
rem 16, Sec. 7, Ch. 4]) and completes the analysis for this case.

Case 2. n = 3.
It is known (see [2, pp. 264 and 265]) that F3([0, 1]) is a 3-cell and

∂(F3([0, 1])) = {A ∈ F3([0, 1]) : A∩{0, 1} 6= ∅}. Given an element B ∈ F3(W ),
there exists an arc β in W such that B ⊂ intY (β) ⊂ W and B does not contain
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any of the end points of β. Then F3(β) is a 3-cell, F3(β) is a neighborhood
of B in F3(Y ) and B ∈ F3(β) − ∂(F3(β)). This implies that B has a basis
of neighborhoods B in F3(Y ) such that, for each R ∈ B, R is a 3-cell and
B /∈ ∂(R). Proceeding as in the first paragraph of the previous case, there
exists an element A ∈ U such that there exists a 3-cell S that is a neighborhood
of A in F3(X) and A ∈ ∂(S). Making B = h(A) we obtain a contradiction
with the Invariance Domain Theorem ([11, Theorem 16, Sec. 7, Ch. 4]).

Case 3. n = 2.
First we show that h(F2(SX)) = F2(W ). By [4, Theorem 6.3], the set of el-

ements of local connectedness of F2(X) is F2(SX) and the set of elements of lo-
cal connectedness of F2(Y ) is F2(W ). Thus F2(W ) = h(F2(SX)). It is easy to
see that ∆2(F2(SX)) = F1(SX)∪〈{0X}, SX〉2 and ∆2(F2(W )) = F1(W ). Note
that ∆2(F2(W )) = h(∆2(F2(SX))). Hence, we may assume that h({0X}) =
{0}, h(F1(SX)) = F1((−∞, 0]) and h(〈{0X}, SX〉2) = F1([0,∞)). Note that
clF2(X)(〈{0X}, SX〉2) − 〈{0X}, SX〉2 = 〈{0X}, RX〉2. Then h(F1(RX)) =
h(clF2(X)(F1(SX)) − F1(SX)) = clF2(Y )(F1((−∞, 0])) − F1((−∞, 0]) = F1(L)
and h(〈{0X}, RX〉2) = h(clF2(X)(〈{0X}, SX〉2)−〈{0X}, SX〉2) = F1(R). Since
F1(RX) and 〈{0X}, RX〉2 are disjoint and homeomorphic, L and R are disjoint
and homeomorphic (and nondegenerate).

Fix a point p ∈ RX and a sequence of different points {pk}∞k=1 in SX such
that lim pk = p and p1 = 0X . For each k ∈ N, let Lk be the unique arc in SX

that joins 0X and pk.
We claim that, for each k ∈ N, h({p, pk}) ⊂ R. In order to do this, it is

enough to show that, for each x ∈ Lk, h({p, x}) ⊂ R. Note that h({p, 0X}) ∈
h(〈{0X}, RX〉2) ⊂ F1(R). Let h({p, 0X}) = {y0}. Consider the arc in F2(Y ),
L = {h({p, x}) : x ∈ Lk}. By [5, Lemma 2.2] and [4, Lemma 2.1], the
set G =

⋃

{K : K ∈ L} is a locally connected subcontinuum of Y . Since
y0 ∈ G ∩ R and G is arcwise connected, we obtain that G ⊂ R. Thus
h({p, pk}) ⊂ R.

Hence h({p}) = limh({p, pk}) ⊂ R. On the other hand h({p}) ∈ F1(L).
This is a contradiction since three paragraphs above we obtained that L∩R =
∅.

With this, we finish the proof of property E. So the theorem is proved.

3. The case n = 2

Theorem 3.1. If X is a metric compactification of the ray, then X has
unique hyperspace F2(X).

Proof. Let X = RX ∪ SX be a compactification of the ray and let Y
be a continuum such that F2(X) is homeomorphic to F2(Y ). By Theorem
2.2, Y is a compactification of the ray. Since [0, 1] has unique hyperspace
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F2([0, 1]), we suppose that X (and Y ) is not an arc. Thus RX and RY are
nondegenerate continua.

The following facts are easy to show.
A. The set of points of local connectedness of X is SX .
B. The set of elements of local connectedness of F2(X) is F2(SX) (see [4,

Lemma 6.3]).
C. ∆2(F2(X)) = F1(SX) ∪ 〈{0X}, SX〉2.
D. clF2(X)(∆2(F2(X))) − ∆2(F2(X)) = F1(RX) ∪ 〈{0X}, RX〉2, the sets

F1(RX) and 〈{0X}, RX〉2 are disjoint and they are homeomorphic to RX .
E. clF2(X)(F1(SX)) = F1(SX) ∪ F1(RX) is homeomorphic to X .
F. clF2(X)(〈{0X}, SX〉2) = 〈{0X}, SX〉2 ∪ 〈{0X}, RX〉2 is homeomorphic

to X .
G. clF2(X)(∆2(F2(X))) is a compactification of the real line (−∞,∞) and,

if we identify ∆2(F2(X)) with the line (−∞,∞), then each one of the spaces
clF2(X)((−∞, 0]) and clF2(X)([0,∞)) is homeomorphic to X .

Let h : F2(X) → F2(Y ) be a homeomorphism. Then

h(clF2(X)(∆2(F2(X)))) = clF2(Y )(∆2(F2(Y ))).

Since Y and ∆2(F2(Y )) satisfy the corresponding properties A-G, we conclude
that X and Y are homeomorphic.

4. The case n ≥ 4

Theorem 4.1. If X is a metric compactification of the ray and n ≥ 4,
then X has unique hyperspace Fn(X).

Proof. Let X = RX ∪SX be a compactification of the ray and let Y be
a continuum such that Fn(X) is homeomorphic to Fn(Y ). By Theorem 2.2, Y
is a compactification of the ray. Since [0, 1] has unique hyperspace Fn([0, 1])
([3, Corollary 5.8]), we suppose that RX and RY are nondegenerate continua.

Let h : Fn(X) → Fn(Y ) be a homeomorphism. Since the set of elements
of local connectedness of Fn(X) (resp., Fn(Y )) is Fn(SX) (resp., Fn(SY )),
we have that h(Fn(SX)) = Fn(SY ). This implies that h(En(Fn(SX))) =
En(Fn(SY )). By Lemma 2.1(c), h(F1(SX)) = F1(SY ). So, F1(X) =
clFn(X)(F1(SX)) is homeomorphic to F1(Y ) = clFn(Y )(F1(SY )) and X is
homeomorphic to Y .

5. The case n = 3

Given a topological space Z, define

LC(Z) = {z ∈ Z : Z is locally connected at z}

and

N(Z) = ClF3(Z)(∆3(F3(Z))) − ∆3(F3(Z)).
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Given a subset A of Z and p ∈ Z, we say that p is arcwise accessible from
A provided that p /∈ A and there exists an arc α in Z such that p ∈ α and
α − {p} ⊂ A.

A subcontinuum A of a continuum Z is said to be terminal provided that
for each subcontinuum B of Z satisfying B ∩ A 6= ∅ we have that A ⊂ B or
B ⊂ A. It is easy to prove that, if Z = RZ ∪ SZ is a compactification of the
ray, then RZ is a terminal subcontinuum of Z.

In [2, pp. 264 and 265] it is shown that [0, 1]3 is a model for F3([0, 1])
([0, 1]3 is homeomorphic to F3([0, 1])). In the following lemma we show models
for some subsets of F3([0, 1]).

Lemma 5.1. (a) F3([0, 1)) is homeomorphic to [0, 1) × [0, 1]2.
(b) ∆3(F3([0, 1))) = {A ∈ F3([0, 1)) : 0 ∈ A} = 〈{0}, [0, 1)〉3 and

∆3(F3([0, 1))) is homeomorphic to an open disc in the Euclidean plane.

Proof. Let R be the solid triangle in R3 with vertices (0, 0, 0), (1, 0, 0)
and (1

2 , 1, 0). Let S be R − (convex segment in R3 joining the points

(1, 0, 0) and (1
2 , 0, 0)). Let T = (convex segment in R3 joining (0, 0, 0)

and (1
2 , 1, 0)) − {(1

2 , 1, 0)}. Define g : F3([0, 1]) → R be given by g(A) =

(max(A)+min(A)
2 , max(A) − min(A), 0). It is easy to prove that g is continu-

ous, g({A ∈ F3([0, 1]) : 0 ∈ A and 1 /∈ A}) = T and g({A ∈ F3([0, 1]) :
1 /∈ A}) = S. Let R and S be the solids of revolution obtained by
rotating the triangles R and S, respectively, around the x-axis. Define
f : F3([0, 1]) → R as follows, given A = {p, q, r} ∈ F3([0, 1]), with p ≤ q ≤ r,
define f(A) = (p+r

2 , (r − p) cos(2π( q−p
r−p

)), (r − p) sin(2π( q−p
r−p

))), if p < r,

and f(A) = (p, 0, 0), if p = r. It is easy to prove that f is a homeomor-
phism and f(F3([0, 1))) = S. So F3([0, 1)) is homeomorphic to [0, 1)× [0, 1]2.
Moreover, f(∆3(F3([0, 1)))) = ∆3(S). Notice that ∆3(S) is the surface of
revolution in R3 obtained by rotating the set T around the x-axis. Thus
∆3(F3([0, 1))) is homeomorphic to an open disc in the Euclidean plane and
∆3(F3([0, 1))) = {A ∈ F3([0, 1)) : 0 ∈ A} = 〈{0}, [0, 1)〉3.

Lemma 5.2. Let Z = SZ ∪ RZ be a compactification of the ray with
nondegenerate remainder. Then

(a) LC(F3(Z)) = F3(SZ),
(b) ∆3(F3(Z)) = 〈{0Z}, SZ〉3,
(c) ClF3(Z)(F3(SZ)) = F3(Z),
(d) N(Z) = 〈{0Z}, RZ , Z〉3.

Proof. Since LC(Z) = SZ , by [4, Lemma 6.3], we obtain that
LC(F3(Z)) = F3(SZ). Let A ∈ F3(Z) be such that A ∩ RZ 6= ∅. Notice
that each small neighborhood of A in F3(Z) is disconnected. This implies
∆3(F3(Z)) ⊂ F3(SZ). Thus ∆3(F3(Z)) = ∆3(F3(SZ)). By Lemma 5.1(b),
∆3(F3(SZ)) = 〈{0Z}, SZ〉3. Therefore, ∆3(F3(Z)) = 〈{0Z}, SZ〉3. Property
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(c) is immediate from the density of SZ in Z and property (d) follows from
(b).

Lemma 5.3. Let Z = SZ ∪RZ be a compactification of the ray where RZ

is nondegenerate. Then

(a) LC(N(Z)) = {{p, q, 0Z} ∈ F3(Z) : q ∈ SZ − {0Z}, p ∈ RZ and RZ is
locally connected at p}.

(b) An element A ∈ F3(Z) is in the set of elements in N(Z) that are
arcwise accessible from LC(N(Z)) if and only if A is of one of the
following two forms: (1) A = {p, 0Z}, where p ∈ RZ and either RZ

is locally connected at p or p is arcwise accessible from LC(RZ) or
(2) A = {p, q, 0Z}, where p ∈ RZ , q ∈ SZ − {0Z} and p is arcwise
accessible from LC(RZ).

(c) N(Z) is arcwise connected if and only if RZ is arcwise connected.

Proof. (a) Let A ∈ LC(N(Z)) ⊂ 〈{0Z}, RZ , Z〉3 (Lemma 5.2(d)). Let
A = {p, q, 0Z}, where p ∈ RZ and q 6= 0Z could be equal to p. First we show
that q /∈ RZ . Suppose to the contrary that q ∈ RZ .

Let 0 < ε < diameter(RZ)
2 be such that B(2ε, 0Z)∩RZ = ∅ and, in the case

that p 6= q, B(ε, p) ∩ B(ε, q) = ∅. Let U be a connected open subset of N(Z)
such that A ∈ U and H(A, B) < ε

2 for each B ∈ U . Let C =
⋃

{B : B ∈
clF3(Z)(U)}. Since A ∈ U , by [4, Lemma 2.1] C is compact and it has at most
three components (C has at most two components when p = q). For each B
∈ clF3(Z)(U), H(A, B) < ε. Thus C ⊂ N(ε, A) = B(ε, p) ∪B(ε, q) ∪B(ε, 0Z).
Since B(ε, p) ∪ B(ε, q) and B(ε, 0Z) are disjoint, we have that the sets C1 =
C ∩ B(ε, p), C2 = C ∩ B(ε, q) and C3 = C ∩ B(ε, 0Z) are the components of
C and they are subcontinua of Z (C1 = C2, if p = q). Notice that p ∈ C1 and
diameter(C1) ≤ 2ε, so RZ * C1. Since U is open in N(Z), there exists δ > 0
such that δ < ε and, if B ∈ N(Z) and H(A, B) < δ, then B ∈ U . By the
density of SZ in Z, we can take an element x ∈ B(δ, p) ∩ SZ . Then the set
B = {q, x, 0Z} ∈ U , so x ∈ C1. Thus C1 ∩ RZ 6= ∅, RZ * C1 and C1 * RZ .
This contradicts the fact that RZ is terminal in Z and proves that q /∈ RZ .
Thus q ∈ SZ − {0Z}.

Now we check that RZ is locally connected at p. Let ε > 0 be such
that the sets B(ε, p), B(ε, q) and B(ε, 0Z) are pairwise disjoint and RZ ∩
(B(ε, q) ∪ B(ε, 0Z)) = ∅. Let U be a connected open subset of N(Z) such
that A ∈ U and H(A, B) < ε for each B ∈ U . Let U =

⋃

{D : D ∈ U}. By
[4, Lemma 2.1], U has at most three components, so the components of U
are U ∩ B(ε, p), U ∩ B(ε, q) and U ∩ B(ε, 0Z). Let z ∈ U ∩ B(ε, p). Let D ∈
U ⊂ N(Z) = 〈{0Z}, RZ , Z〉3 be such that z ∈ D. Then 0Z ∈ D. Notice that
U ⊂ 〈B(ε, p), B(ε, q), B(ε, 0Z)〉3. Thus there exists a point w ∈ D ∩B(ε, q) ⊂
D − (RZ ∪ {0Z}). Since D ∈ 〈{0Z}, RZ , Z〉3, we have that z ∈ RZ . Since U
is open in N(Z), there exists δ > 0 such that δ < ε, B(δ, z) ⊂ B(ε, p) and, if
B ∈ N(Z) and H(D, B) < δ, then B ∈ U . Given a point x ∈ RZ ∩ B(δ, z),
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the set B = {x, w, 0Z} belongs to N(Z) and H(B, D) < δ, so B ∈ U and
x ∈ U ∩B(ε, p). This shows that RZ ∩B(δ, z) ⊂ U ∩B(ε, p). We have shown
that U ∩ B(ε, p) is a connected open subset of RZ containing p. This proves
that RZ is locally connected at p.

In order to prove the opposite inclusion in (a), let A = {p, q, 0Z}, where
q ∈ SZ − {0Z}, p ∈ RZ and RZ is locally connected at p. Let ε > 0 be
such that B(ε, p), B(ε, q) and B(ε, 0Z) are pairwise disjoint. Let U and V
be open connected subsets of RZ and SZ − {0Z}, respectively, such that
p ∈ U ⊂ B(ε, p) and q ∈ V ⊂ B(ε, q). Let U = 〈U, V, {0Z}〉3. Clearly, U is a
connected subset of N(Z), A ∈ U and H(A, B) < ε for each B ∈ U . In order
to show that U is open in N(Z). Let B = {x, y, 0Z} ∈ U , where x ∈ U and
y ∈ V . Let δ > 0 be such that δ < ε, B(δ, x) ⊂ B(ε, p), B(δ, y) ⊂ B(ε, q),
B(δ, x) ∩ RZ ⊂ U and B(δ, y) ⊂ V (SZ − {0Z} is open in Z). Let C ∈ N(Z)
be such that H(B, C) < δ. Then 0Z ∈ C and there exist points u, v ∈ C such
that u ∈ B(δ, x) and v ∈ B(δ, y). Since C ∈ N(Z), C ∩ RZ 6= ∅. Notice that
v ∈ SZ − {0Z}, so u ∈ RZ and u ∈ U . Hence C ∈ U . This completes the
proof that U is open in N(Z). Therefore N(Z) is locally connected at A. We
have proved (a).

(b) Let A ∈ N(Z) be such that A is arcwise accessible from LC(N(Z)) ⊂
〈{0Z}, RZ , SZ − {0Z}〉3 ⊂ 〈{0Z}, RZ , Z〉3. Since 〈{0Z}, RZ , Z〉3 is closed in
F3(Z), A ∈ 〈{0Z}, RZ , Z〉3. Let α : [0, 1] → F3(Z) be a one-to-one map such
that α(1) = A and α([0, 1)) ⊂ LC(N(Z)). First, we show that A ∩ RZ is
a one-point set. Suppose to the contrary that A = {0Z , x, y}, where x 6= y
and x, y ∈ RZ . Let U, V be open subsets of Z such that x ∈ U , y ∈ V ,
clZ(U) ∩ clZ(V ) = ∅ and 0Z /∈ clZ(U) ∪ clZ(V ). Since α(1) = A, there
exists t1 < 1 such that α([t1, 1)) ⊂ 〈U, V, SZ〉3 ∩ LC(N(Z)) ⊂ 〈U, V, {0Z}〉3.
Since α(t1) ∈ LC(N(Z)), we may assume that α(t1) = {0Z , p1, q1}, where
p1 ∈ RZ ∩ U and q1 ∈ (SZ − {0Z}) ∩ V . Let E =

⋃

{α(s) : s ∈ [t1, 1]}. Then
E ∈ 〈U, V, {0Z}〉3 and, by [4, Lemma 2.1], E is closed and it has at most three
components. Thus the components of E are E ∩ U , E ∩ V and {0Z}. So,
E ∩V is a subcontinuum of Z with the following properties: E ∩V ∩RZ 6= ∅,
E∩V ∩SZ 6= ∅ and RZ * E∩V . This contradicts the fact that RZ is terminal
in Z. Therefore, A ∩ RZ is a one-point set. Suppose that A ∩ RZ = {p}. We
analyze two cases.

Case 1. A = {p, 0Z}.
Let ε > 0 be such that (B(ε, p) ∪RZ) ∩ B(ε, 0Z) = ∅ and RZ * B(2ε, p).

Let t0 ∈ [0, 1) be such that H(A, α(t)) < ε for each t ∈ [t0, 1]. Let G =
⋃

{α(s) : s ∈ [t0, 1]}. Notice that G ⊂ B(ε, p) ∪ B(ε, 0Z). Since A = α(1), by
[4, Lemma 2.1], G is a compact subset of Z and it has at most two components.
Therefore, the components of G are the sets G1 = G ∩ B(ε, p) and G2 =
G ∩ B(ε, 0Z). Hence G1 is a subcontinuum of Z such that G1 ∩ RZ 6= ∅
and RZ * G1. Since RZ is terminal in Z, we obtain that G1 ⊂ RZ . Given
t ∈ [t0, 1], by (a), α(t) = {pt, qt, 0Z}, where pt ∈ RZ , qt ∈ SZ − {0Z} and RZ
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is locally connected at pt. Since G1 ⊂ RZ , qt ∈ B(ε, 0Z). Now it is easy to
show that the function β : [t0, 1] → RZ be given by β(t) = pt is continuous.
Thus, if RZ is not locally connected at p, then p is arcwise accessible from
LC(RZ). This proves that A is of the form described in (1).

Case 2. A = {p, q, 0Z}, where q /∈ {p, 0Z}.
In this case q ∈ SZ − {0Z}. Since A /∈ LC(N(Z)), by (a), RZ is not

locally connected at p. Thus, proceeding as in Case 1, it is possible to prove
that p is arcwise accessible from LC(RZ).

This completes the proof that, if A ∈ N(Z) and A is arcwise accessible
from LC(N(Z)), then A is of one of the forms described in (1) and (2).

Now take an element A = {p, 0Z}, where p ∈ RZ and either RZ is
locally connected at p or p is arcwise accessible from LC(RZ). By (a),
A /∈ LC(N(Z)). Fix a point q ∈ SZ − {0Z} and take a one-to-one map
α : [0, 1] → SZ such that α(0) = q and α(1) = 0Z . In the case that RZ

is locally connected at p. Define γ : [0, 1] → N(Z) = 〈{0Z}, RZ, Z〉3 by
γ(t) = {p, 0Z, α(t)}. Then γ is continuous, Im γ is an arc, γ(1) = A and, by
(a), γ([0, 1)) ⊂ LC(N(Z)). Hence A is arcwise accessible from LC(N(Z)).
In the case that p is arcwise accessible from LC(RZ), let β : [0, 1] → RZ be
a one-to-one map such that β(1) = p and β([0, 1)) ⊂ LC(RZ). In this case
define λ : [0, 1] → N(Z) by λ(t) = {β(t), α(t), 0Z}. Then λ is continuous, Imλ
is an arc, λ(1) = A and, by (a), λ([0, 1)) ⊂ LC(N(Z)). Thus A is arcwise
accessible from LC(N(Z)).

Finally, let A = {p, q, 0Z}, where p ∈ RZ , q ∈ SZ −{0Z} and p is arcwise
accessible from LC(RZ). Since RZ is not locally connected at p, by (a), A /∈
LC(N(Z)). Let β : [0, 1] → RZ be a one-to-one map such that β(1) = p and
β([0, 1)) ⊂ LC(RZ). Define σ : [0, 1] → N(Z) by σ(t) = {β(t), q, 0Z}. Then
σ is continuous, Imσ is an arc, σ(1) = A and, by (a), σ([0, 1)) ⊂ LC(N(Z)).
This proves that A is arcwise accessible from LC(N(Z)) and ends the proof
of (b).

(c) By Lemma 5.2(d), N(Z) = 〈{0Z}, RZ , Z〉3. First, suppose that RZ

is arcwise connected. Fix a point p0 ∈ RZ . Let A0 = {0Z, p0}. Let A =
{0Z, p, q} ∈ 〈{0Z}, RZ , Z〉3, where p ∈ RZ and it could be that p = q. Let
α : [0, 1] → RZ be a map such that α(0) = p0 and α(1) = p. We show
that there exists a map γ : [0, 1] → 〈{0Z}, RZ , Z〉3 such that γ(0) = A0 and
γ(1) = A. We consider two cases. If q ∈ SZ , then let β : [0, 1] → SZ be a
map such that β(0) = 0Z and β(1) = q. Then define γ(t) = {0Z, α(t), β(t)}.
If q ∈ RZ , let λ : [0, 1] → RZ be such that λ(0) = p0 and λ(1) = q. In this
case, define γ(t) = {0Z , α(t), λ(t)}. Hence, N(Z) is arcwise connected.

Now suppose that 〈{0Z}, RZ, Z〉3 is arcwise connected. Fix a point
p0 ∈ RZ and let p ∈ RZ . By hypothesis there exists a map γ : [0, 1] →
〈{0Z}, RZ , Z〉3 such that γ(0) = {p0, 0Z} and γ(1) = {p, 0Z}. By [5, Lemma
2.2] and [4, Lemma 2.1], the set B =

⋃

{γ(t) : t ∈ [0, 1]} is a compact, locally
connected subspace of Z, with at most two components C1 and C2. Then C1



468 A. ILLANES AND J. M. MARTÍNEZ-MONTEJANO

and C2 are locally connected subcontinua of Z. Suppose that 0Z ∈ C2, since
C2 is an arcwise connected subset of Z and RZ is terminal in Z, p0, p ∈ C1.
Thus there exists a map σ : [0, 1] → C1 ⊂ Z such that σ(0) = p0 and σ(1) = p.
Since RZ is terminal in Z, Im σ ⊂ RZ . Therefore, RZ is arcwise connected.

Theorem 5.4. Let X = RX ∪ SX be a metric compactification of the
ray such that RX is a locally connected nondegenerate continuum. Let Y be
a continuum such that there exists a homeomorphism h : F3(X) → F3(Y ).
Then:

(a) The set of elements A ∈ N(X) that are arcwise accessible from
LC(N(X)) is {{0Z, p} : p ∈ RX}, so this set is homeomorphic to
RX and it is compact.

(b) Y is a compactification of the ray, h({{0Z, p} : p ∈ RX}) = {{0Z, q} :
q ∈ RY } and the function that assigns, to each p ∈ RX , the unique
point in RY satisfying h({0Z, p}) = {0Y , q}, is a homeomorphism. In
particular, RX and RY are homeomorphic.

Proof. By Theorem 2.2, Y is a compactification of the ray. By [3,
Corollary 5.9], RY is nondegenerate. Given a continuum Z, the definition of
∆3(Z) involves only topological properties, so h(N(X)) = N(Y ). By Lemma
5.3(c), RY is arcwise connected. Since RX is locally connected, the set of
points in RX that are arcwise accessible from LC(RX) is empty, so Lemma
5.3(b), implies that (a) holds.

(b) Since h is a homeomorphism, h(LC(N(X))) = LC(N(Y )). Let
A(X) = {A ∈ N(X) : A is arcwise accessible from LC(N(X))} and
A(Y ) = {B ∈ N(Y ) : B is arcwise accessible from LC(N(Y ))}. Notice
that h(A(X)) = A(Y ). By (a), A(Y ) is compact. Now we show that there is
no point q in RY such that q is arcwise accessible from LC(RY ). Suppose to
the contrary that there exists q ∈ RY such that q is arcwise accessible from
LC(RY ). By Lemma 5.3(b), for each y ∈ SY − {0Y }, the set Ay = {q, y, 0Z}
belongs to A(Y ). Fix a point q0 ∈ RY − {q} and choose a sequence {yn}∞n=1

in SY −{0Y } such that lim yn = q0. Then limAyn
= {q, q0, 0Z}. By the com-

pactness of A(Y ), {q, q0, 0Z} ∈ A(Y ). This contradicts Lemma 5.3(b) and
completes the proof that no point in RY is arcwise accessible from LC(RY ).
By Lemma 5.3(b), we conclude that A(Y ) = {{q, 0Y } : q ∈ RY and RY is
locally connected at q}.

We check that LC(RY ) is open in RY . Let q ∈ LC(RY ). Fix a point
q0 ∈ SY − {0Y }. By Lemma 5.3(a), the set B = {q, q0, 0Y } belongs to
LC(N(Y )). Since h(LC(N(X))) = LC(N(Y )), there exist p ∈ LC(RX)
and p0 ∈ SX − {0X} such that, if A = {p, p0, 0X}, then h(A) = B.
Let ε > 0 be such that the sets B(p, ε), B(p0, ε) and B(0X , ε) are pair-
wise disjoint and (B(p0, ε) ∪ B(0X , ε)) ∩ RX = ∅. Since the set G =
h(〈B(p, ε), B(p0, ε), B(0X , ε)〉3) is an open subset of F3(Y ) containing h(A) =
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B, there exists δ > 0 such that, if D ∈ F3(Y ) and H(D, B) < δ, then D ∈ G.
Given a point y ∈ RY ∩B(δ, q), H({y, q0, 0Y }, B) < δ and {y, q0, 0Y } ∈ N(Y )
(Lemma 5.2(d)), so there exist x ∈ B(p, ε), q1 ∈ B(p0, ε) and u ∈ B(0X , ε)
such that h({x, q1, u}) = {y, q0, 0Y } and {x, q1, u} ∈ N(X). This implies (see
Lemma 5.2(d)) that x ∈ RX and u = 0X . Since RX is locally connected,
by Lemma 5.3(a), {x, q1, u} ∈ LC(N(X)). Thus {y, q0, 0Y } ∈ LC(N(Y )).
Applying again Lemma 5.3(a), we obtain that RY is locally connected at y.
We have shown that RY ∩ B(δ, q) ⊂ LC(RY ). Therefore, LC(RY ) is open in
RY .

Now, we show that RY is locally connected. Since A(X) is nonempty,
A(Y ) is nonempty. This implies that LC(RY ) is nonempty. If RY is not
locally connected, choose points q, y ∈ RY such that q ∈ LC(RY ) and y /∈
LC(RY ). Since RY is arcwise connected, there exists a one-to-one map α :
[0, 1] → RY such that α(0) = q and α(1) = y. Let t0 = min α−1(RY −
LC(RY )). Then 0 < t0 and α(t0) is arcwise accessible from LC(RY ). This is
a contradiction since we proved before that no point in RY is arcwise accessible
from LC(RY ). Therefore, RY is locally connected.

Hence A(Y ) = {{q, 0Y } : q ∈ RY } and A(X) = {{p, 0X} : p ∈ RX}.
Thus h({{0X, p} : p ∈ RX}) = {{0Y , q} : q ∈ RY }. For each p ∈ RX , define
f(p) as the unique point in RY such that h({0X , p}) = {0Y , f(p)}. Clearly, f
is a homeomorphism from RX onto RY .

Lemma 5.5. Let f : [0,∞) → [0,∞) be a map such that f(0) = 0 and
limx→∞ f(x) = ∞ and let t = {tn}∞n=1 be a sequence in [0,∞) such that
0 = t1 < t2 < · · · and lim tn = ∞. Define, recursively,

m1 = min(f−1(t2)), M1 = max(f−1(t2)),

mn+1 = min([Mn,∞) ∩ f−1(tn+2)) and Mn+1 = max(f−1(tn+2)).

Then there exists a continuous function k(t, f) : [0,∞) → [0,∞) with the
following properties:

(a) k(t, f)(0) = 0 and limx→∞ k(t, f)(x) = ∞.
(b) For each n ∈ N, (k(t, f))−1(tn+1) = [mn, Mn], (k(t, f))−1([0, tn+1)) =

[0, mn) and (k(t, f))−1((tn+1,∞)) = (Mn,∞).

Proof. Note that 0 < m1 ≤ M1 < m2 ≤ M2 < m3 ≤ M3 < · · · .
We show that lim Mn = ∞ = lim mn. Take K ∈ R. Then there exists
N ∈ N such that, for each n ≥ N , tn > max(f([0, K])). Given n ≥ N ,
f(Mn+1) = tn+2 > max(f([0, K])). Hence, Mn+1 > K for each n ≥ N .
Therefore, lim Mn = ∞ and limmn = ∞.

Define k(t, f) : [0,∞) → [0,∞) as follows

k(t, f)(x) =

{

tn+1, if x ∈ [mn, Mn] for some n ∈ N,
f(x), if x /∈ [mn, Mn] for every n ∈ N.
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Note that, for each n ∈ N, f(mn) = k(t, f)(mn) and f(Mn) = k(t, f)(Mn).
Since limMn = ∞ = limmn and 0 < m1 ≤ M1 < m2 ≤ M2 < m3 ≤ M3 <
· · · , the family {[mn, Mn] : n ∈ N} is locally finite and the boundary of the
set

⋃

{[mn, Mn] : n ∈ N} is the set {mn : n ∈ N}∪{Mn : n ∈ N}. This implies
that k(t, f) is continuous.

We show property (a). Note that k(t, f)(0) = 0. Given K ∈ R, let
L ∈ N and R ∈ R be such that, if R ≤ x and L ≤ n, then K ≤ f(x) and
K ≤ tn. Given x ∈ [0,∞) such that max{R, ML} < x, we have that either
x ∈ [mn, Mn], for some n ≥ L or x /∈

⋃

{[mn, Mn] : n ∈ N}. In the first case,
K ≤ tn+1 = k(t, f)(x) and, in the second case, K ≤ f(x) = k(t, f)(x). We
have shown that limx→∞ k(t, f)(x) = ∞. Therefore, property (a) holds.

Now, we show property (b). Take n ∈ N. If x ∈ (Mn,∞) and x /∈
⋃

{[mr, Mr] : r ∈ N}, then k(t, f)(x) = f(x). If f(x) ≤ tn+1, then by the In-
termediate Value Theorem, there would be u ∈ [x,∞) such that f(u) = tn+1;
which is impossible given the fact that max(f−1(tn+1)) = Mn < u. Hence
k(t, f)(x) = f(x) > tn+1. We have proved that (Mn,∞) − (

⋃

{[mr, Mr] : r ∈
N}) ⊂ (k(t, f))−1((tn+1,∞)). If x ∈ (Mn,∞) ∩ (

⋃

{[mr, Mr] : r ∈ N}), then
there is r > n such that x ∈ [mr, Mr]. Hence, k(t, f)(x) = tr+1 > tn+1. This
completes the proof that (Mn,∞) ⊂ (k(t, f))−1((tn+1,∞)).

Let x ∈ [0, mn). Put M0 = 0. Then there exists 1 ≤ r ≤ n such that
x ∈ [Mr−1, Mr]. If x ∈ [Mr−1, mr), since mr = min([Mr−1,∞) ∩ f−1(tr+1))
and f(Mr−1) = tr < tr+1, by the Intermediate Value Theorem, f(x) <
tr+1. Since k(t, f)(x) = f(x), we obtain that k(t, f)(x) < tr+1 ≤ tn+1.
If x ∈ [mr, Mr], then k(t, f)(x) = tr+1. Since x /∈ [mn, Mn], r < n, so
tr+1 < tn+1. In any case, k(t, f)(x) < tn+1. We have shown that [0, mn) ⊂
(k(t, f)(x))−1([0, tn+1)).

Finally, since [mn, Mn] ⊂ (k(t, f))−1(tn+1), we conclude that property
(b) holds.

Theorem 5.6. Let X = RX ∪ SX be a compactification of the ray such
that RX is an ANR. If Y is a continuum such that F3(X) is homeomorphic
to F3(Y ), then X is homeomorphic to Y .

Proof. By Theorem 2.2, Y is a compactification of the ray. By [3,
Corollary 5.9] we may assume that RX and RY are nondegenerate. Let
h : F3(X) → F3(Y ) be a homeomorphism. We identify SX (resp., SY ) with
the interval [0X ,∞) (resp., [0Y ,∞)). First we show that RX is a retract of X .
Since RX is an ANR, there exist an open subset U of X , with RX ⊂ U , and a
retraction r1 : U → RX . Then there exists a ∈ [0X ,∞) such that [a,∞) ⊂ U .
To obtain the desired retraction, define r : X → RX by

r(p) =

{

r1(p), if p ∈ [a,∞) ∪ RX ,
r1(a), if p ∈ [0X , a].
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We are going to define a map f : X → Y which will be the base to define a
homeomorphism from X onto Y .

By Theorem 5.4(b), h({{0Z, p} : p ∈ RX}) = {{0Z, q} : q ∈ RY } and the
function f1 : RX → RY that assigns, to each p ∈ RX , the unique point f1(p)
in RY satisfying h({0Z , p}) = {0Y , f1(p)}, is a homeomorphism.

Since h is a homeomorphism, h(LC(N(X))) = LC(N(Y )). Thus, Lemma
5.3(a) implies that h({{p, x, 0Z} ∈ F3(X) : p ∈ (0X ,∞) and x ∈ RX}) =
{{q, y, 0Y } ∈ F3(Y ) : q ∈ (0Y ,∞) and y ∈ RY }. So, given p ∈ (0X ,∞),
define f(p) ∈ (0Y ,∞) and f0(p) ∈ RY to be the unique points that satisfy
that h({p, r(p), 0X}) = {f(p), f0(p), 0Y }.

We show that the function f : (0X ,∞) → (0Y ,∞) is continuous. Take
a sequence {pn}∞n=1 in (0X ,∞) such that lim pn = p ∈ (0X ,∞). Since r
is continuous, lim r(pn) = r(p). Since h is continuous, {f(p), f0(p), 0Y } =
h({p, r(p), 0X}) = limh({pn, r(pn), 0X}) = lim{f(pn), f0(pn), 0Y }. Since
each f0(pn) belongs to RY and RY is closed, we conclude that lim f(pn) =
f(p). Therefore, f is continuous.

Extend the function f by defining f(0X) = 0Y . We show that f is
continuous at 0X . Let ε > 0 be such that B(ε, 0Y )∩B(ε, f1(r(0X))) = ∅ and
RY * B(ε, f1(r(0X))). Since h is a homeomorphism, there exists δ > 0 such
that H(A, B) < δ implies H(h(A), h(B)) < ε. Fix an element p ∈ (0X ,∞)
such that diameter([0X , p]) < δ and, for each x ∈ [0X , p], r(x) ∈ B(δ, r(0X)).
Given x ∈ [0X , p], we have that H({x, r(x), 0X}, {r(0X), 0X}) < δ. This
implies that H(h({x, r(x), 0X}), h({r(0X), 0X})) < ε. So,

H(h({x, r(x), 0X}), {f1(r(0X)), 0Y }) < ε.

Thus h({x, r(x), 0X}) ∈ 〈B(ε, 0Y ), B(ε, f1(r(0X)))〉3 . Let

G =
⋃

{h({x, r(x), 0X}) : x ∈ [0X , p]}.

Then G ∈ 〈B(ε, 0Y ), B(ε, f1(r(0X)))〉3. Since

h({0X , r(0X), 0X}) = {f1(r(0X)), 0Y },

by [4, Lemma 2.1], G has at most two components. Therefore, the components
of G are the sets G1 = G ∩ B(ε, f1(r(0X))) and G2 = G ∩ B(ε, 0Y ). Hence,
G1 is a subcontinuum of Y such that G1 ∩ RY 6= ∅ and RY * G1. Since
RY is terminal in Y , G1 ⊂ RY . Given x ∈ (0X , p], {f(x), f0(x), 0Y } =
h({x, r(x), 0X}) ∈ G1 ∪ G2. Since f(x) ∈ SY , f(x) /∈ G1. Thus f(x) ∈
G2 ⊂ B(ε, 0Y ). Hence, f(x) ∈ B(ε, 0Y ) for each x ∈ (0X , p]. Therefore, f is
continuous at 0X .

We have defined a homeomorphism f1 : RX → RY ⊂ Y and a map
f : [0X ,∞) → [0Y ,∞) ⊂ Y . Since RX and [0X ,∞) are disjoint, there exists
a well defined common extension of the functions f1 and f . This common
extension will be denoted by f : X → Y .
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In order to complete the proof that f is continuous, take a sequence
{pn}∞n=1 in [0X ,∞) such that lim pn = p, for some p ∈ RX . Note that
lim{pn, r(pn), 0X} = {p, r(p), 0X} = {p, 0X}. Thus, lim{0Y , f(pn), f0(pn)} =
limh({pn, r(pn), 0X}) = h({p, 0X}) = {0Y , f1(p)} = {0Y , f(p)}. This implies
that the only limit points that the sequences {f(pn)}∞n=1 and {f0(pn)}∞n=1

can have are 0Y and f(p). Since f0(pn) ∈ RY for each n ∈ N, we have that
lim f0(pn) = f(p). We need to prove that lim f(pn) = f(p). Suppose to the
contrary that 0Y is an accumulation point of this sequence. We may assume
that lim f(pn) = 0Y . Let ε > 0 be such that B(ε, 0X)∩B(ε, p) = ∅ and RX *
B(ε, p). Let δ > 0 be such that H(A, B) < δ implies H(h−1(A), h−1(B)) < ε.
By Theorem 5.4(b), RY is locally connected. Let S be a connected and
compact neighborhood of f(p) in the space RY such that diameter(S) < δ. Fix
m ∈ N such that diameter ([0Y , f(pm)]) < δ, pm ∈ B(ε, p) and f0(pm) ∈ S.
Given points z ∈ S and w ∈ [0Y , f(pm)], H({z, w, 0Y }, {f(p), 0Y }) < δ, so
H(h−1({z, w, 0Y }), {p, 0X}) < ε. Let K =

⋃

{h−1({z, w, 0Y }) : z ∈ S and
w ∈ [0Y , f(pm)]}. Then K is a compact subset of X . Since h−1({f(p), 0Y }) =
{p, 0X} has two elements, by [4, Lemma 2.1], K has at most two components.
Note that K ⊂ B(ε, 0X) ∪ B(ε, p). Thus the components of K are the sets
K1 = K ∩B(ε, 0X) and K2 = K ∩B(ε, p). Since RX is terminal in X and K2

is a continuum containing p ∈ RX and RX * K2, we obtain that K2 ⊂ RX .
Note that {pm, r(pm), 0X} = h−1({0Y , f(pm), f0(pm)}) ⊂ K. So, pm ∈ K2.
Thus pm ∈ RX . This contradicts the choice of the sequence {pn}∞n=1 and
proves that lim fn(p) = f(p). Therefore, f is continuous.

Now we prove an important property of the function f which will help us
to ”straighten it out” to obtain a homeomorphism from X onto Y .

Claim 1. Let {xn}∞n=1 and {pn}∞n=1 be sequences in [0X ,∞). Suppose
that limxn = ∞ = lim pn (as sequences in [0X ,∞)) and, for each n ∈ N,
0X < xn ≤ pn and f(xn) = f(pn). Then lim(diameter([xn, pn])) = 0 and
lim(diameter(f([xn, pn]))) = 0, where the diameters are taken in the spaces
X and Y , respectively.

To prove Claim 1. Suppose to the contrary that {diameter([xn, pn])}∞n=1

does not converge to 0. Then there exists ε0 > 0 such that B(4ε0, 0X)∩RX =
∅, diameter(RX) > 2ε0 and 2ε0 < diameter([xn, pn]), for infinitely many
numbers n. Thus, we may assume that 2ε0 < diameter([xn, pn]) for every
n ∈ N. By the compactness of X , we also may assume that lim xn = x and
lim pn = p, for some x, p ∈ RX . Since f(xn) = f(pn), for each n ∈ N, we have
that f(x) = f(p). Since lim{0Y , f(pn), f0(pn)} = limh({pn, r(pn), 0X}) =
h({p, 0X}) = {f(p), 0Y } and each point f0(pn) belongs to RY , we obtain that
lim f0(pn) = f(p). Similarly, lim f0(xn) = f(x).

Let µ : C(Y ) → [0, 1] be a Whitney map, where µ(Y ) = 1 (see [9, Theorem
13.4]). For each n ∈ N, let An, Bn ∈ C(RY ) be such that f(p), f0(pn) ∈ An,
f(p), f0(xn) ∈ Bn, µ(An) = min{µ(A) : A ∈ C(RY ) and f(p), f0(pn) ∈ A}
and µ(Bn) = min{µ(B) : B ∈ C(RY ) and f(p), f0(xn) ∈ B}. By Theorem
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5.4(b), RY is locally connected. This implies that limAn = lim Bn = {f(p)}
(in C(RY )). Thus lim 〈An ∪ Bn, {f(pn)}, {0Y }〉3 = {{f(p), 0Y }} (in the space
C(F3(Y ))). So, we have that {h−1(〈An ∪ Bn, {f(pn)}, {0Y }〉3)}

∞

n=1 is a se-
quence of subcontinua of F3(X) that converges to {{p, 0X}} (in C(F3(X))).
Then there exists m ∈ N such that xm ∈ B(ε0, x), pm ∈ B(ε0, p) and, if
Cm = h−1(〈Am ∪ Bm, {f(pn)}, {0Y }〉3), then the set Cm =

⋃

{C : C ∈ Cm} is
contained in N(ε0, {p, 0X}) = B(ε0, p) ∪ B(ε0, 0X). By [4, Lemma 2.1], Cm

has at most three components. Note that the set 〈Am ∪ Bm, {f(pm)}, {0Y }〉3
is contained in N(Y ) (Lemma 5.2(d)). Thus Cm ⊂ N(X). Also note that
{f0(xm), f(xm), 0Y } ∈ 〈Am ∪ Bm, {f(pm)}, {0Y }〉3. Hence {xm, r(xm), 0X} ∈
Cm and xm, 0X ∈ Cm. Similarly, pm ∈ Cm.

Since xm, pm /∈ B(ε0, 0X), we have that xm, pm ∈ B(ε0, p). Let A and
B be the components of Cm such that xm ∈ A and pm ∈ B. Then A ∪
B ⊂ B(ε0, p). Let C be the component of Cm such that 0X ∈ C. The
connectedness of C implies that C ⊂ B(ε0, 0X). This implies that C∩RX = ∅
and xm, pm /∈ C. Since Cm ⊂ N(X), Cm ∩ RX 6= ∅. Hence there exists a
component D of Cm such that D ∩ RX 6= ∅. Since RX is terminal in X ,
D ⊂ RX or RX ⊂ D. If RX ⊂ D, then 2ε0 < diameter(RX) ≤ diameter(D).
Since D is connected, we have that D ⊂ B(ε0, p), so diameter(D) ≤ 2ε0,
a contradiction. Thus D ⊂ RX . Hence pm, xm /∈ D. Thus C and D are
different components of Cm and {xm, pm} ∩ (C ∪ D) = ∅. Since Cm has at
most three components, A = B.

We have that A is a connected subset of X containing both xm and
pm. Hence [xm, pm] ⊂ A ⊂ B(ε0, p). So, 2ε0 < diameter([xm, pm]) ≤
diameter(A) ≤ 2ε0. This contradiction establishes the proof that

lim(diameter([xn, pn])) = 0.

Since f is uniformly continuous, lim(diameter(f([xn, pn]))) = 0.
We define a sequence {gm}∞m=0 of maps from [0X ,∞) onto [0Y ,∞). For

each m ∈ N∪{0}, consider the sequence t(m) = {t
(m)
i }∞i=1 given by t

(m)
i = i−1

2m .
Define, recursively, g0 = f and, for each m ≥ 0,

gm+1 = k(t(m), gm),

where k(t(m), gm) is the map defined in Lemma 5.5.
For each m ∈ N, define M(0, m − 1) = 0X and, for each n ∈ N, define

M(n, m − 1) = max(g−1
m−1(t

(m−1)
n+1 ))

and

m(n, m − 1) = min([M(n − 1, m − 1),∞) ∩ g−1
m−1(t

(m−1)
n+1 )).

That is, m(n, m− 1) and M(n, m− 1) are the numbers used in Lemma 5.5 to
define gm = k(t(m−1), gm−1).

Claim 2. For each m, n ∈ N, M(n, m − 1) = M(2n, m) and m(n, m) =
m(2n, m + 1).
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We prove Claim 2. Let m, n ∈ N. By Lemma 5.5(b), we have

M(n, m − 1) = max(g−1
m (t

(m−1)
n+1 )). So M(n, m − 1) = max(g−1

m (t
(m−1)
n+1 )) =

max(g−1
m ( n

2m−1 )) = max(g−1
m ( 2n

2m )) = max(g−1
m (t

(m)
2n+1)) = M(2n, m). So,

M(n, m − 1) = M(2n, m). We prove the other equality, by Lemma 5.5(b),

we have that g−1
m+1(t

(m)
n+1) = (k(t(m), gm))−1(t

(m)
n+1) = [m(n, m), M(n, m)], we

have shown that g−1
m+1(

n
2m ) = [m(n, m), M(n, m)]. Also, by Lemma 5.5(b),

g−1
m+1([0Y , n

2m )) = g−1
m+1([0Y , t

(m)
n+1)) = [0X , m(n, m)). Since

g−1
m+1(t

(m+1)
2n ) = g−1

m+1(
2n − 1

2m+1
) ⊂ g−1

m+1([0Y ,
n

2m
)),

we have that M(2n − 1, m + 1) < m(n, m). Since g−1
m+1(t

(m+1)
2n+1 ) =

g−1
m+1(

2n
2m+1 ) = g−1

m+1(
n

2m ) = g−1
m+1(t

(m)
n+1) = (k(t(m), gm))−1(t

(m)
n+1). By Lemma

5.5(b), g−1
m+1(t

(m+1)
2n+1 ) = [m(n, m), M(n, m)]. Since M(2n−1, m+1) < m(n, m),

[m(n, m), M(n, m)] ⊂ [M(2n − 1, m + 1),∞). Hence, m(2n, m + 1) =
min([m(n, m), M(n, m)]) = m(n, m). This completes the proof of Claim 2.

Claim 3. |gm(x) − gm+1(x)| ≤ 1
2m−1 for every x ∈ [0X ,∞) and m ∈ N.

We prove Claim 3. Let x ∈ [0X ,∞) and m ∈ N. Let n ∈ N be
such that x ∈ [M(n − 1, m − 1), M(n, m − 1)]. By Claim 2, [M(n −
1, m − 1), M(n, m − 1)] = [M(2(n − 1), m), M(2n, m)]. By Lemma 5.5(b),

we have that gm(x) = k(t(m−1), gm−1)(x) ∈ [t
(m−1)
n , t

(m−1)
n+1 ] = [ n−1

2m−1 , n
2m−1 ]

and gm+1(x) ∈ [t
(m)
2n−1, t

(m)
2n+1] = [2n−2

2m , 2n
2m ] = [ n−1

2m−1 , n
2m−1 ]. Therefore,

|gm(x) − gm+1(x)| ≤ 1
2m−1 and Claim 3 has been proved.

By Claim 3, we have that the sequence {gm}∞m=0 is uniformly Cauchy.
Thus this sequence converges uniformly to a (hence, continuous) function
g : [0X ,∞) → [0Y ,∞). Note that g(0X) = 0Y .

Claim 4. g is increasing.
Take u, x ∈ [0X ,∞) such that u < x. In the case that there exist n, m ∈ N

such that u ≤ M(n, m) ≤ x, by Lemma 5.5(b), gm+1(u) = k(t(m), gm)(u) ≤

t
(m)
n+1 ≤ k(t(m), gm)(x) = gm+1(x). Similarly, since by Claim 2, u ≤ M(2n, m+

1) ≤ x, we have that gm+2(u) ≤ t
(m+1)
2n+1 ≤ gm+2(x). Following this process,

we obtain that gr(u) ≤ gr(x) for each r ≥ m + 1. Therefore, g(u) ≤ g(x).
Now, suppose that there are no n, m ∈ N such that u ≤ M(n, m) ≤ x.

Given m ∈ N, let nm ∈ N be such that x ∈ [M(nm − 1, m), M(nm, m)]. Our
assumption gives us that M(nm − 1, m) ≤ u < x ≤ M(nm, m). By Lemma
5.5(b), both numbers gm+1(u) = k(t(m), gm)(u) and gm+1(x) = k(t(m), gm)(x)

are in the interval [t
(m)
nm , t

(m)
nm+1

] = [nm−1
2m , nm

2m ]. Hence |gm+1(u) − gm+1(x)| ≤
1

2m for each m ∈ N. Therefore, g(u) = g(x). This finishes the proof of Claim
4.
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Define G : X → Y by

G(x) =

{

g(x), if x ∈ [0X ,∞),
f(x), if x ∈ RX .

In order to prove that G is continuous, we first prove the following claim.
Claim 5. gr(M(n, m)) = f(M(n, m)) and gr(m(n, m)) = f(m(n, m)), for

every n, m, r ∈ N.
Let n, m, r ∈ N. To prove Claim 5, we only prove that gr(M(n, m)) =

f(M(n, m)), the proof of the other equality is similar. Since g0(M(n, m)) =
f(M(n, m)), we only need to show that gr(M(n, m)) = gr−1(M(n, m)).
By the definition of k(t(r−1), gr−1), in the proof of Lemma 5.5, gr(x) =
k(t(r−1), gr−1)(x) = gr−1(x) for each x ∈ cl[0X ,∞)([0X ,∞) −

⋃

{[m(s, r −
1), M(s, r − 1)] : s ∈ N}). Hence, it is enough to show that M(n, m)
/∈ int[0X ,∞)(

⋃

{[m(s, r − 1), M(s, r − 1)] : s ∈ N}). Since 0 < m(1, r −
1) ≤ M(1, r − 1) < m(2, r − 1) ≤ M(2, r − 1) < · · · , we obtain that
int[0X ,∞)(

⋃

{[m(s, r−1), M(s, r−1)] : s ∈ N}) =
⋃

{(m(s, r−1), M(s, r−1)) :
s ∈ N}. Suppose, by the way of contradiction, that there is s ∈ N such that
M(n, m) ∈ (m(s, r − 1), M(s, r − 1)). We consider two cases.

Case 1. r − 1 ≤ m.
By Claim 2, M(n, m) ∈ (m(s, r−1), M(s, r−1)) = (m(2s, r), M(2s, r)) =

(m(22s, r + 1), M(22s, r + 1)) = · · · = (m(2m−r+1s, m), M(2m−r+1s, m)). But
this is impossible since M(n, m) /∈

⋃

{(m(i, m), M(i, m)) : i ∈ N}.
Case 2. m < r − 1.
In this case, by Claim 2, M(n, m) = M(2n, m + 1) = M(22n, m + 2) =

M(2r−(m+1)n, r − 1). Thus M(2r−(m+1)n, r − 1) ∈ (m(s, r − 1), M(s, r − 1)),
again a contradiction.

This completes the proof of Claim 5.
Claim 6. G is continuous.
Since g is continuous and [0X ,∞) is open in X , we have that G is con-

tinuous at every point of [0X ,∞). Since G|RX
is continuous, we only have

to prove that, if we take a sequence {pm}∞m=1 in [0X ,∞) converging to an
element p ∈ RX , then there exists a subsequence {pmi

}∞i=1 of {pm}∞m=1 such
that limG(pmi

) = G(p). We consider two cases.
Case 1. For infinitely many numbers m, we have

pm ∈
⋃

{[m(i, j), M(i, j)] : i, j ∈ N}.

Here, we can suppose that our assumption holds for all m ∈ N.
Given m ∈ N, let i, j ∈ N, be such that pm ∈ [m(i, j), M(i, j)] =

(k(t(j−1), gj−1))
−1(t

(j−1)
i+1 ). Then gj(pm) = t

(j−1)
i+1 = i

2j−1 . By Claim 2,

pm ∈ [m(2i, j + 1), M(2i, j + 1)] = (k(t(j), gj))
−1(t

(j)
2i+1), so gj+1(pm) =

t
(j)
2i+1 = 2i

2j = i
2j−1 . Repeating this process we obtain that gr(pm) = i

2j−1

for each r ≥ j. Hence, g(pm) = i
2j−1 . Using the same argument, we can
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conclude that gr(m(i, j)) = gr(M(i, j)) = i
2j−1 for each r ≥ j. By Claim

5, gr(M(i, j)) = f(M(i, j)) and gr(m(i, j)) = f(m(i, j)), for each r ∈ N.
Thus f(m(i, j)) = f(M(i, j)) = g(pm). For each m ∈ N, let xm = m(i, j)
and ym = M(i, j) (recall that i and j depend on m). Then 0 < xm,
f(xm) = f(ym) and, since lim pm = p ∈ RX , we have that lim ym = ∞ (as
a sequence in [0X ,∞)). We may assume that lim ym = y, for some y ∈ RX .
Then lim f(ym) = f(y) ∈ RY . Thus lim f(xm) = f(y). We may also as-
sume that limxm = x for some x ∈ X . Since f(x) = lim f(xm) = f(y),
we conclude that f(x) ∈ RY , so x ∈ RX . This implies that limxn = ∞
(as a sequence in [0X ,∞)). Thus, we may apply Claim 1 and obtain that
lim(diameter(f([xn, yn]))) = 0. Since f(pm) ∈ f([xm, ym]), for each m ∈ N,
f(p) = lim f(pm) = lim f(xm) = f(x). Recall that f(xm) = f(m(i, j)) =
g(pm). Thus lim g(pm) = f(p). Since p ∈ RX , G(p) = f(p). Thus
limG(pm) = G(p). This finishes the proof of Case 1.

Case 2. For infinitely many numbers m, we have

pm /∈
⋃

{[m(i, j), M(i, j)] : i, j ∈ N}.

Again, we suppose that our assumption for this case holds for every m ∈
N. Let m ∈ N. Given r ∈ N, pm /∈

⋃

{[m(i, r), M(i, r)] : i ∈ N}. By
definition, gr+1(pm) = gr(pm). This implies that g(pm) = f(pm). Therefore,
limG(pm) = lim g(pm) = lim f(pm) = f(p) = G(p). This finishes the proof
for the Case 2 and then Claim 6 is proved.

Now, we modify the map g to obtain a continuous function e : [0X ,∞) →
[0Y ,∞) that will be not only increasing but strictly increasing, and, also, will
have an extension to X that will be a homeomorphism.

Let dY be a metric for Y . Given n ∈ N, since the metric of the absolute
value induces the same topology that dY on [0Y ,∞), there exists δn ∈ (0, 1)
such that, if v, y ∈ [0Y , n] and |v − y| ≤ 2δn, then dY (v, y) < 1

n
. From

Lemma 5.5(a) and Claim 3, it follows that limx→∞ g(x) = ∞ (as a sequence
in [0Y ,∞)). Let r0 = 0 and, for each n ∈ N, choose rn ∈ [0X ,∞) such that
g(rn) = n. By Claim 4, rn < rn+1 for each n ∈ N and lim rn = ∞. Define
e : [0X ,∞) → [0Y ,∞) by

e(x) = n − 1 + (g(x) − (n − 1))(1 − δn) + δn(
x − rn−1

rn − rn−1
), if x ∈ [rn−1, rn].

It is easy to show that e is well defined, continuous and e(rn) = n, for each
n ∈ N ∪ {0}.

Given n ∈ N and u, x ∈ [rn−1, rn] such that u < x, since g is increasing,

(g(u) − (n − 1))(1 − δn) ≤ (g(x) − (n − 1))(1 − δn). Also δn( u−rn−1

rn−rn−1
) <

δn( x−rn−1

rn−rn−1
). Hence e(u) < e(x). It follows easily that e is strictly increasing.
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Given n ∈ N and x ∈ [rn−1, rn], n − 1 = g(rn−1) ≤ g(x) ≤ g(rn) = n.
Then

e(x) − g(x) = n − 1 + (g(x) − (n − 1))(1 − δn) + δn(
x − rn−1

rn − rn−1
) − g(x)

= δn(n − 1 − g(x)) + δn(
x − rn−1

rn − rn−1
).

Hence, |e(x) − g(x)| ≤ 2δn.
Define E : X → Y by

E(x) =

{

e(x), if x ∈ [0X ,∞),
f(x), if x ∈ RX .

Clearly, E is continuous at every point in [0X ,∞) and E is one-to-one. To see
that E is continuous at a point p ∈ RX , take a sequence of points {pn}

∞

n=1

in [0X ,∞) such that lim pn = p. We show that there exists a subsequence
{pni

}∞i=1 of {pn}∞n=1 such that limE(pni
) = E(p).

Since lim pn = p ∈ RX , we can take a subsequence {pni
}∞i=1 of {pn}∞n=1

such that ri < pni
for each i ∈ N. Given i ∈ N, let ji ∈ N be such that

i ≤ ji and pni
∈ [rji

, rji+1]. Hence, |e(pni
) − g(pni

)| ≤ 2δji+1. By the choice
of δji+1, we have that dY (e(pni

), g(pni
)) < 1

ji+1 ≤ 1
i
. Hence lim e(pni

) =

lim g(pni
) = limG(pni

) = G(p) = f(p) = E(p).
We have shown that E is continuous. Since E(0X) = e(r0) = 0Y , the

image of E is Y . Therefore X and Y are homeomorphic.

Question 5.1. Is Theorem 5.6 still true if we remove the assumption
that RX is an ANR?
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México, 04510
D.F. Mexico
E-mail : illanes@matem.unam.mx

J. M. Mart́ınez-Montejano
Universidad Nacional Autónoma de México
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