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Abstract. We continue our study of n-fold hyperspaces and n-fold
hyperspace suspensions.We present more properties of these hyperspaces.

1. Introduction

The notion of n-fold hyperspace suspension was introduced in [16]. This
concept is a natural extension of the notion of hyperspace suspension intro-
duced by Nadler [24].

Our purpose is to continue the study of the properties of the n-fold hy-
perspaces and n-fold hyperspace suspensions. For example:

In [6, Example 4.5] the authors present two continua X and Y such that
X is indecomposable, Y is decomposable and the hyperspace of subcontinua
of X is homeomorphic to the hyperspace of subcontinua of Y ; we prove that
this does not happen, even for n-fold hyperspaces, if X has the property
of Kelley. With the same techinque, it may be shown that the hyperspace
of nonempty closed subsets of X is not homeomorphic to the hyperspace of
nonempty closed subsets of Y , for these continua X and Y . We characterize
n-fold hyperspaces which are homogeneous. We prove that for n ≥ 2 the n-
fold hyperspace of a finite-dimensional continuum X is not homeomorphic to
its topological suspension. If n ≥ 2 and the n-fold hyperspace of a continuum
X is homeomorphic to the topological suspension of a finite-dimensional con-
tinuum Z, then X is hereditarily decomposable and does not contain terminal
subcontinua. Also, we show that the n-fold hyperspace of a continuum X is
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not homeomorphic to the n-fold symmetric product of X . If X is an indecom-
posable continuum, then the n-fold hyperspace of X is not homeomorphic to
the n-fold hyperspace suspension of X .

Regarding n-fold hyperspace suspensions, we prove that if n ≥ 2 then
the n-fold hyperspace suspension of a finite-dimensional continuum X is not
homeomorphic to its topological cone. If n ≥ 2 and the n-fold hyperspace
suspension of a continuum X is homeomorphic to the topological cone of
a finite-dimensional continuum Z, then X is hereditarily decomposable and
does not contain terminal subcontinua. If X is a finite-dimensional continuum
and the 1-fold hyperspace suspension of X is homeomorphic to the 2-fold
symmetric product of X , then X is homeomorphic to [0, 1]. If X is a finite-
dimensional continuum and n is an integer greater than two, then the 1-fold
hyperspace suspension of X is not homeomorphic to n-fold symmetric product
of X . If X is an absolute retract, then the n-fold hyperspace suspension of X
is an absolute retract.

2. Definitions

If (Z, d) is a metric space, then given A ⊂ Z and ε > 0, the open ball
about A of radius ε is denoted by Vd

ε (A), the interior of A is denoted by
IntZ(A).

A map means a continuous function. Let X and Z be metric spaces and
let ε > 0 be given. A map f : X → Z is an ε-map if diam(

(

f−1(f(x))
)

< ε
for each x ∈ X .

Given a metric space Z, Cone(Z) denotes the topological cone over Z,
and Σ(Z) denotes the topological suspension over Z; also, v1 and v2 denote
the vertexes of Σ(Z).

A continuum is a nonempty compact, connected metric space. A sub-

continuum is a continuum contained in a space Z. A continuum X is said
to be indecomposable provided that it cannot be written as the union of two
of its proper subcontinua. A continuum is hereditarily indecomposable if all
of its subcontinua are indecomposable. A continuum is decomposable if it is
not indecomposable. A continuum is hereditarily decomposable provided that
each of its nondegenerate subcontinuum is decomposable.

A continuum X is acyclic if Ȟ1(X, ZZ) = 0; i.e., the first Čech cohomology
group with integer coefficients is trivial. The continuum X has property (b)
provided that each map f : X → S1 is homotopic to a constant map, where
S1 is the unit circle in the plane.

A subcontinuum A of a continuum X is terminal, if for any subcontinuum
Y of X such that Y ∩ A 6= ∅, we have that either A ⊂ Y or Y ⊂ A.

A subcontinnuum A is a retract of the continuum X provided that there
exists a map r : X→→A such that r(a) = a for each a ∈ A, the map r is called
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a retraction. A continuum X is an absolute retract provided that whenever X
is embedded as a subset X ′ of a space Z, X ′ is a retract of Z.

A dendroid is an arcwise connected continuum such that the intersection
of any two of its subcontinua is connected. A graph is a continuum which
can be written as the union of finitely many arcs any two of which are either
disjoint or intersect in one or both of their endpoints. A tree is a graph without
simple closed curves.

An arc is any space homeomorphic to [0, 1]. The countable product of
intervals,

∏∞

n=1
[0, 1], with the product topology, is called the Hilbert cube.

The symbol Q denotes the Hilbert cube.
A continuum X is arc-like (circle-like) if for each ε > 0, there exists a

surjective ε-map f : X→→[0, 1] (f : X→→S1, respectively).
Given a continuum X , we consider the following hyperspaces:

2X = {A ⊂ X | A is nonempty and closed}

and

Cn(X) = {A ∈ 2X | A has at most n components},

where n is a positive integer. Cn(X) is called the n-fold hyperspace of X .
These spaces are topologized with the Hausdorff metric defined as follows:

H(A, B) = inf{ε > 0 | A ⊂ Vd
ε (B) and B ⊂ Vd

ε (A)},

H always denotes the Hausdorff metric on 2X . When n = 1, we write C(X)
instead of C1(X).

The symbol Fn(X) denotes the n-fold symmetric product of X ; that is:

Fn(X) = {A ∈ Cn(X) | A has at most n points}.

Note that, by definition, Fn(X) ⊂ Cn(X). It is known that Cn(X) is an
arcwise connected continuum (for n = 1, see [23, (1.12)]; for n ≥ 2, see
[14, 3.1]).

By the n-fold hyperspace suspension of a continuum X , which is denoted
by HSn(X), we mean the quotient space:

HSn(X) = Cn(X)/Fn(X)

with the quotient topology. The fact that HSn(X) is a continuum follows
from [26, 3.10]. Note that HS1(X) corresponds to the hyperspace suspension
HS(X) defined by Nadler in [24].

Given a continuum X , qn
X : Cn(X)→→HSn(X) denotes the quotient map.

Also, let Fn
X and T n

X denote the points qn
X(Fn(X)) and qn

X(X), respectively.

Remark 2.1. Note that the sets HSn(X)\{Fn
X} and HSn(X)\{T n

X, Fn
X}

are homeomorphic to Cn(X)\Fn(X) and Cn(X)\({X}∪Fn(X)), respectively,
using the appropriate restriction of qn

X .
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A continuum X has the property of Kelley provided that for each ε > 0,
there exists a δ > 0 such that if x, x′ ∈ X , d(x, x′) < δ, and x ∈ A ∈ C(X),
then there exists B ∈ C(X) such that x′ ∈ B and H(A, B) < ε.

3. n-fold Hyperspaces

In [6, Example 4.5] the authors present two continua X and Y such that
X is indecomposable, Y is decomposable and C(X) is homeomorphic to C(Y ).
The following theorem shows that this cannot happen when X has the prop-
erty of Kelley.

Theorem 3.1. Let X and Y be continua, where X is indecomposable with

the property of Kelley, and let n be a positive integer. If Cn(X) is homeomor-

phic to Cn(Y ), then Y is indecomposable.

Proof. Let h : Cn(X)→→Cn(Y ) be a homeomorphism. Since X is inde-
composable and has the property of Kelley, X is the only point at which Cn(X)
is locally connected ([15, 3.7]). Thus, h(X) is the only point at which Cn(Y )
is locally connected. Since Cn(Y ) is always locally connected at Y ([21, 2.3]),
we have that h(X) = Y .

Now, since X is indecomposable, Cn(X) \ {X} is not arcwise connected
([14, 6.3]). Hence, Cn(Y ) \ {Y } is not arcwise connected. Therefore, Y is
indecomposable ([14, 6.3]).

Using [23, (1.139)], [23, (1.136)] and [23, (11.4)] instead of [15, 3.7], [21,
2.3] and [14, 6.3], respectively, in the proof of Theorem 3.1, we obtain:

Theorem 3.2. Let X and Y be continua, where X is indecomposable. If

2X is homeomorphic to 2Y , then Y is indecomposable.

Remark 3.3. Note that in Theorem 3.2, X is not required to have the
property of Kelley. Let us also observe that even though the hyperspaces of
subcontinua of the continua X and Y of [6, Example 4.5] are homeomorphic,
by Theorem 3.2, 2X is not homeomorphic to 2Y .

The following theorem shows that the converse of [14, 7.1] is true:

Theorem 3.4. Let X be a continuum, and let n be a positive integer. If

Cn(X) is homeomorphic to the Hilbert cube Q, then X is locally connected

and does not contain free arcs.

Proof. Since Q is locally connected, Cn(X) is locally connected. Hence,
X is locally connected ([14, 3.2]). Suppose X contains a free arc α. Let
a ∈ IntX(α). Then {a} has arbitrary small neighborhoods in Cn(X) home-
omorphic to Cn([0, 1]). Thus, since Cn(X) is homogeneous ([22, 6.1.6]),
dim(Cn(X)) = 2n ([15, 5.3]). A contradiction to the fact that dim(Q) = ∞.
Therefore, X does not contain free arcs.
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Using the technique of the proof of [14, 3.4], the following lemma is easy
to prove.

Lemma 3.5. If X is a graph topologically different from an arc and a

simple closed curve, and n is a positive integer, then dim(Cn(X)) ≥ 2n + 1.

Lemma 3.6. Let n be a positive integer. Then neither Cn([0, 1]) nor

Cn(S1) is homogeneous.

Proof. The lemma follows from the facts that there are points of
Cn([0, 1]) and of Cn(S1) which have open 2n-cell neighborhoods in Cn([0, 1])
and Cn(S1) ([19, 4.2 and 4.3]), respectively, and points, like any element of
Cn(X) with less that n components, which do not have that property, apply
the Brouwer Invariance of Domain Theorem ([9, Theorem VI 9, p. 95]).

The following theorem extends ([23, (17.2)]) to n-fold hyperspaces.

Theorem 3.7. If X is a continuum and n is a positive integer, then the

following are equivalent:

(1) Cn(X) is homogeneous;

(2) X is locally connected and does not contain free arcs;

(3) Cn(X) is homeomorphic to the Hilbert cube Q.

Proof. Suppose Cn(X) is homogeneous. Since Cn(X) is homogeneous
and locally connected at X ([21, 2.3]), Cn(X) is locally connected. Hence,
X is locally connected ([14, 3.2]). Suppose X contains a free arc. With the
same argument as the one given in the proof of Theorem 3.4, we conclude that
dim(Cn(X)) = 2n. Thus, X is a graph ([15, 5.1]). Then, by Lemma 3.5, X
must be an arc or a simple closed curve. But, by Lemma 3.6, neither Cn([0, 1])
nor Cn(S1) is homogeneous, a contradiction. Therefore, X does not contain
a free arc.

Now, if X is a locally connected continuum without free arcs, then Cn(X)
is homeomorphic to Q ([14, 7.1]).

Finally, since Q is homogeneous ([22, 6.1.6]), if Cn(X) is homeomorphic
to Q, then Cn(X) is homogeneous.

Now we turn our attention to the comparison of n-fold hyperspaces and
suspensions.

Theorem 3.8. If X is a finite-dimensional continuum, then Cn(X) is not

homeomorphic to Σ(X) for any integer n greater than one.

Proof. Suppose Cn(X) is homeomorphic to Σ(X). Since X is finite-
dimensional, Σ(X) is finite-dimensional; in fact, dim(Σ(X)) = dim(X)+1 ([9,
p. 34]). Since Cn(X) is finite-dimensional, C(X) is finite-dimensional. Hence,
dim(X) = 1 ([12, 2.1]). Thus, 2 = dim(Σ(X)) = dim(Cn(X)). Therefore,
since Cn(X) contains n-cells ([19, 3.4]), we have that n = 2. We consider two
cases.
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Case (1). X contains a proper decomposable subcontinuum.

Note that, by [17, 4.1.11], dim(C2(X)) ≥ 3, a contradiction to the fact
that dim(C2(X)) = 2.

Case (2). Every proper subcontinuum of X is indecomposable.

In this case, X is hereditarily indecomposable ([19, 3.1]). It is well known
that Σ(X) is not arcwise disconnected by any of its points. On the other
hand, since X is hereditarily indecomposable, for each A ∈ C(X) \ F1(X),
C2(X) \ {A} is not arcwise connected ([14, 6.9]), a contradiction.

Therefore, Cn(X) is not homeomorphic to Σ(X).

Let us recall that R. Schori proved that C2([0, 1]) is homeomorphic to
[0, 1]4 (a proof of this fact may be found in [17, 6.8.11]). Note that [0, 1]4 is
homeomorphic to Σ([0, 1]3). In connection with this we have the following:

Theorem 3.9. Let X be a continuum and let n ≥ 2 be an integer. If Z
is a finite-dimensional continuum such that Σ(Z) is homeomorphic to Cn(X),
then X is hereditarily decomposable, and X does not contain nondegenerate

proper terminal subcontinua. Also, Z is arcwise connected.

Proof. Let h : Cn(X)→→Σ(Z) be a homeomorphism. Suppose X contains
a nondegenerate indecomposable subcontinuum A. Since Z is finite dimen-
sional, with a similar argument to the one given in the proof of Theorem 3.8,
we have that C(X) is finite-dimensional. Then Cn(X) \ {A} is not arcwise
connected ([19, 3.4]). Hence, Σ(Z) \ {h(A)} is not arcwise connected. A
contradiction to the fact that Σ(Z) is not arcwise disconnected by any of its
points. Therefore, X is hereditarily decomposable.

Now, suppose X contains a nondegenerate proper terminal subcontinuum
B. Then Cn(X) \ {B} is not arcwise connected ([14, 6.4]). Hence, like in the
previous paragraph, we obtain a contradiction. Therefore, X does not contain
nondegenerate proper terminal subcontinua.

To show that Z is arcwise connected, it is enough to prove that Σ(Z) \
{v1, v2} is arcwise connected.

Let Aj = h−1(vj), j ∈ {1, 2}. We prove that Cn(X) \ {A1, A2} is arcwise
connected. Since X does not contain nondegenerate proper terminal subcon-
tinua, Cn(X) \ {Aj}, j ∈ {1, 2}, is arcwise connected ([14, 6.2 and 6.4]). We
consider three cases.

Case (1). A1, A2 ∈ C(X).

Observe that, by [14, 6.4], C(X) \ {Aj} is arcwise connected, j ∈ {1, 2}.
Hence, C(X) \ {A1, A2} is arcwise connected ([23, (9.2)]). Therefore, Cn(X) \
{A1, A2} is arcwise connected.

Case (2). A1, A2 ∈ Cn(X) \ C(X).

Given B ∈ Cn(X) \ {A1, A2}, it is easy to construct an arc from B to X
in Cn(X) \ {A1, A2}. Therefore, Cn(X) \ {A1, A1} is arcwise connected.
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Case (3). A1 ∈ Cn(X) \ C(X) and A2 ∈ C(X).

Suppose A2 6= X . Let B ∈ Cn(X) \ {A1, A2}. Since X is decomposable
and does not contain nondegenerate proper terminal subcontinua, C(X)\{A2}
is arcwise connected ([14, 6.3 and 6.4]). Now, it is easy to construct an arc
from B to X . Hence, in this case, Cn(X) \ {A1, A2} is arcwise connected.

Assume that A2 = X . Let B0, B1 ∈ Cn(X) \ {A1, X}. Since X is decom-
posable, Cn(X) \ {X} is arcwise connected ([14, 6.3]). Thus, there exists an
arc α : [0, 1] → Cn(X) \ {X} such that α(0) = B0 and α(1) = B1. Suppose
that A1 ∈ α([0, 1]). Let k be the number of components of A1. Note that
k ≥ 2. Then there exists a k-cell, K, in Cn(X) \ C(X) such that A1 ∈ K (see
the proof of [14, 3.4]). Now it is easy to find an arc β : [0, 1] → Cn(X)\{A1, X}
such that β(0) = B0 and β(1) = B1. Therefore, Cn(X) \ {A1, X} is arcwise
connected.

Therefore, Z is arcwise connected.

Remark 3.10. The statement of [19, 4.1] is incorrect. In order to apply
[23, (v), p. 312], we need to know that the hyperspace of subcontinua of the
continuum X is finite-dimensional. This is not guaranteed by the hypothesis
stated. A correct statement is: “Let X be a continuum and let n be an integer

greater than one. If Cn(X) is homeomorphic to the product of two nondegener-

ate and finite-dimensional continua, then X is hereditarily decomposable and

X has no nondegenerate proper terminal continua”. With this statement, the
proof given for [19, 4.1] is correct.

Next, we compare n-fold hyperspaces with products of continua.

Theorem 3.11. Let X be an acyclic continuum. If X is homeomorphic

to the product of two nondegenerate continua Y and Z, then Y and Z are

acyclic.

Proof. Since X is acyclic, X has property (b) ([3, 8.1]). Also, since the
projection maps πY and πZ are monotone, Y and Z both have property (b)
([11, Theorem 2, p. 434]). Therefore, Y and Z are both acyclic ([3, 8.1]).

Lemma 3.12. Let X be a dendroid and let n be an integer greater than

one. Then Cn(X) is finite-dimensional if and only if X is a graph.

Proof. If Cn(X) is finite-dimensional, then C(X) is finite-dimensional.
Hence, X is a graph ([25, (2.6)]). If X is a graph, then Cn(X) is finite-
dimensional ([15, 5.1]).

Professor Sam Nadler proved that if dim(C(X)) < ∞ and if C(X) is
homeomorphic to X × Z, then X must be an arc ([25, (2.7)]). We present a
partial extension to this result to n-fold hyperspaces:
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Theorem 3.13. Let X and Z be finite-dimensional continua and let n be

an integer greater than one. If Cn(X) is homeomorphic to X × Z, then X is

a tree.

Proof. Since Cn(X) is arcwise connected ([14, 3.1]), X and Z are arcwise
connected. Since Cn(X) has property (b) ([14, 4.8]), Cn(X) is acyclic ([3,
8.1]). Hence, X and Z are acyclic, by Theorem 3.11. Also, X is hereditarily
decomposable (see [19, 4.1] and Remark 3.10). Since X is finite-dimensional,
X is a dendroid ([25, (1.2)]). Since X × Z is finite-dimensional, Cn(X) is
finite-dimensional. Thus, X is a graph, by Lemma 3.12. Therefore, since X
is acyclic, X is a tree.

The following theorem is an extension of [13, Theorem 12].

Theorem 3.14. If X is a finite-dimensional continuum, then Cn(X) is

not homeomorphic to Fn(X) for any positive integer n.

Proof. Let n be a positive integer. Suppose Cn(X) is homeomorphic
to Fn(X). Since X is finite dimensional, dim(Fn(X)) = dim(Xn) < ∞
([27, 22.12]). Hence, dim(Cn(X)) < ∞ and dim(X) = 1 ([12, 2.1]).

Since dim(C(X)) ≥ 2 ([5, Theorem 1]) and dim(X) = 1, C(X) is not
homeomorphic to F1(X) (F1(X) is homeomorphic to X).

Suppose that n ≥ 2. Note that, by [9, Theorem III 4, p. 33], dim(Xn) ≤
n. On the other hand, since dim(X) = 1, by [8, (a), p. 197], dim(Xn) ≥ n.
Therefore, dim(Xn) = n. Thus, dim(Cn(X)) = n. Hence, X is hereditarily
indecomposable ([17, 6.1.11]). Since Cn(X) is arcwise connected, Fn(X) is
arcwise connected. Thus, X is arcwise connected ([2, 2.2]). A contradiction
to the fact that X is hereditarily indecomposable.

Therefore, Cn(X) is not homeomorphic to Fn(X).

Observe that if X is a smooth fan, then C(X) is homeomorphic to HS(X)
([7, 3.2]). If n ∈ {1, 2}, then Cn([0, 1]) is homeomorphic to HSn([0, 1]) (for n =
1, it is clear; for n = 2, it follows from [17, 6.8.11] and [20, 4.6]). Also, Cn(Q) is
homeomorphic to HSn(Q) for each positive integer n, by [14, 7.1] and [16, 5.4].
This situation does not happen when the continuum is indecomposable:

Theorem 3.15. If X is an indecomposable continuum, then Cn(X) is not

homeomorphic to HSn(X) for any positive integer n.

Proof. Note that if X is an indecomposable continuum, then Cn(X) \
{X} is not arcwise connected ([14, 6.3]). Meanwhile, it is easy to see that no
point arcwise disconnects HSn(X).

Theorem 3.16. If X is either an arc-like or a circle-like continuum and

n is a positive integer, then dim(Cn(X)) ≤ 2n.
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Proof. Let n be a positive integer. Let X be an arc-like continuum
and let ε > 0 be given. Then there exists an ε-map f : X→→[0, 1]. Hence,
the induced map Cn(f) : Cn(X)→→Cn([0, 1]) is an ε-map with respect to the
Hausdorff metric ([1, Lemma 36]). Thus, since dim(Cn([0, 1])) = 2n ([15, 5.3]),
we have that dim(Cn(X)) ≤ 2n ([27, 15.5]).

The proof for the case when X is circle-like is similar. We need to use
[15, 5.6] instead of [15, 5.3].

4. n-fold Hyperspace Suspensions

The proof of the following lemma is similar to the one given for Lemma 3.6.

Lemma 4.1. If n is an integer greater than one, then neither HSn([0, 1])
nor HSn(S1) is homogeneous.

Remark 4.2. With respect to Lemma 4.1, observe that for S1 the result
is not true when n = 1, since HS(S1) is a 2-sphere, which is homogeneous.
The lemma is true for HS([0, 1]), since this is homeomorphic to a 2-cell.

Theorem 4.3. Let X be a continuum and let n be a positive integer

greater than one. If HSn(X) is homogeneous, then X is a locally connected

continuum without free arcs.

Proof. Let n be an integer greater than one. Since Cn(X) is locally
connected at X ([21, 2.3]), HSn(X) is locally connected at T n

X . Hence, since
HSn(X) is homogeneous, HSn(X) is locally connected. Thus, X is locally
connected ([16, 5.2]). Suppose X contains a free arc. Then, since HSn(X) is
homogeneous, dim(HSn(X)) = 2n ([20, 4.1]). Since X is locally connected
and dim(HSn(X)) = 2n, X is a graph, by [16, 3.6] and [15, 5.1]. Since
2n = dim(HSn(X)) = dim(Cn(X)) (the second equality follows from [16,
3.6]), by Lemma 3.5, X is an arc or a simple closed curve. A contradiction,
because, by Lemma 4.1, neither HSn([0, 1]) nor HSn(S1) is homogeneous.
Therefore, X does not contain free arcs.

Remark 4.4. Regarding Theorem 4.3, we note that the case n = 1 was
already proved in [7, 5.6]. Also, it is not clear that the converse of Theorem 4.3
is true, since there exists a locally connected continuum X , without free arcs,
such that HS(X) is not homeomorphic to the Hilbert cube ([7, 5.3]).

Now, we compare n-fold hyperspace suspensions with cones.

Theorem 4.5. If X is a finite-dimensional continuum, then HSn(X) is

not homeomorphic to Cone(X) for any integer n greater than one.

Proof. Let n be an integer greater than one. Suppose HSn(X) is home-
omorphic to Cone(X). With an argument similar to the one given in the proof
of Theorem 3.8, we obtain that n = 2 and no nondegenerate proper subcon-
tinuum of X is decomposable.
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Suppose each proper subcontinuum of X is indecomposable. Then, by [19,
3.1], X is hereditarily indecomposable. Hence, Cone(X) is uniquely arcwise
connected. On the other hand, since HS2(X) contains 2-cells ([16, 3.7]),
HS2(X) is not uniquely arcwise connected.

Therefore, HSn(X) is not homeomorphic to Cone(X) for any integer n
greater than one.

The following lemma is easy to prove.

Lemma 4.6. Let Z be an arcwise connected continuum. If x1, x2 ∈
Cone(Z), then Cone(Z) \ {x1, x2} is arcwise connected.

Observe that HS2([0, 1]) is homeomorphic to [0, 1]4 ([20, 4.6]). Hence,
HS2([0, 1]) is homeomorphic to Cone([0, 1]3). In connection with this we
have:

Theorem 4.7. Let X be a continuum. If Z is a finite-dimensional con-

tinuum such that Cone(Z) is homeomorphic to HSn(X), for some integer n
greater than one, then X is hereditarily decomposable, and X does not contain

nondegenerate proper terminal subcontinua. Also, Z is arcwise connected.

Proof. Let n be an integer greater than one and let h : HSn(X)→→
Cone(Z) be a homeomorphism. Since HSn(X) is not arcwise disconnected
by any of its points, Cone(Z) is not arcwise disconnected by any of its points.
Hence, Z is arcwise connected.

Suppose X contains an indecomposable continuum A. Since Z is finite-
dimensional, we have that HSn(X) is finite-dimensional. This implies that
dim(HSn(X)) = dim(Cn(X)) ([16, 3.6]). Thus, Cn(X) \ {A} is not arcwise
connected ([19, 3.4]). Hence, HSn(X)\{qn

X(A), Fn
X} is not arcwise connected

(compare with [18, 4.3]). This implies that Cone(Z)\{h(qn
X(A)), h(Fn

X )} is not
arcwise connected, a contradiction to Lemma 4.6. Therefore, X is hereditarily
decomposable.

Now, assume X contains a nondegenerate proper terminal subcontinuum
B. Then Cn(X) \ {B} is not arcwise connected ([14, 6.4]). Repeating the
argument of the previous paragraph, we obtain, again, a contradiction to
Lemma 4.6. Therefore, X does not contain nondegenerate proper terminal
subcontinua.

Next, we compare n-fold hyperspace suspensions with n-fold symmetric
products.

Theorem 4.8. If X is a finite-dimensional continuum, then HSn(X) is

not homeomorphic to Fn(X) for any integer n greater than one.

Proof. The proof is similar to the proof of Theorem 3.14. We just need
to mention that dim(HSn(X)) = dim(Cn(X)) ([16, 3.6]) and that HSn(X) is
arcwise connected ([16, 3.3]).
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The proofs of the following two theorems are similar to the ones given
in [13, Theorems 9 and 11], respectively. We include the proofs, a little bit
simplified, of these theorems for the convenience of the reader.

Theorem 4.9. Let X be a finite-dimensional continuum. If HS(X) is

homeomorphic to F2(X), then X is homeomorphic to [0, 1].

Proof. Suppose HS(X) is homeomorphic to F2(X). Since X is finite-
dimensional, by the proof of [2, 3.1], we have that dim(F2(X)) ≤ 2 dim(X).
Since HS(X) is homeomorphic to F2(X), dim(HS(X)) ≤ 2 dim(X). Thus,
dim(X) = 1 ([20, 3.1]). Hence, 2 ≤ dim(C(X)) = dim(HS(X)) =
dim(F2(X)) ≤ 2, the first inequality follows from [6, Theorem 1]. There-
fore, dim(C(X)) = dim(HS(X)) = 2. Now, by [28, Theorem 1], X is atriodic.
Since HS(X) is arcwise connected ([16, 3.3]), F2(X) is arcwise connected.
Thus, X is arcwise connected ([2, 2.2]).

Now, suppose X is not unicoherent. Then by the proof of [10, 1.1], there
exists a map f : F2(X) → S1 such that f is not homotopic to a constant
map. Since HS(X) has property (b) ([24, (2.2)]), F2(X) has property (b), a
contradiction. Therefore, X is unicoherent. Thus, by Sorgenfrey’s Theorem
([26, 11.34]), X is an irreducible continuum. Since X is arcwise connected, X
is an arc.

Theorem 4.10. Let X be a finite-dimensional continuum. If n is an

integer greater than two, then HS(X) is not homeomorphic to Fn(X).

Proof. Let n be an integer greater than two. Suppose HS(X) is home-
morphic to Fn(X). Since X is finite-dimensional, by the proof of [2, 3.1],
we have that dim(Fn(X)) ≤ n dim(X). Since HS(X) is homeomorphic to
Fn(X), dim(HS(X)) < ∞. Hence, dim(X) = 1 ([20, 3.1]). Therefore,
dim(Fn(X)) ≤ n. Since X is finite-dimensional, dim(Fn(X)) = dim(Xn)
([27, 22.12]). Also, since dim(X) = 1, dim(Xn) ≥ n ([8, (a), p. 197]). Thus,
n = dim(Fn(X)) = dim(HS(X)) = dim(C(X)). By [28, Theorem 1], X does
not contain (n+1)-ods. Hence, X contains a free arc ([13, Theorem 11]). This
implies that C(X) and HS(X) contain a 2-dimensional subset with nonempty
interior. But, since n ≥ 3, Fn(X) does not contain 2-dimensional subsets
with nonempty interior. Therefore, HS(X) is not homemorphic to Fn(X).

We turn our attention to the comparison of n-fold hyperspace suspensions
and products of continua.

The following lemma is easy to prove.

Lemma 4.11. If Y and Z are nondegenerate arcwise connected continua,

then Y ×Z \{(y1, z1), (y2, z2)} is arcwise connected for any two points (y1, z1)
and (y2, z2) of Y × Z.
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The proof of the following theorem is similar to the proof of [19, 4.1] (see
Remark 3.10), we need to use Lemma 4.11. To conclude that Y and Z are
acyclic, we apply Theorem 3.11, [3, 8.1] and [16, 4.1].

Theorem 4.12. Let X be a continuum, and let n be a positive integer.

If Y and Z are nondegenerate finite-dimensional continua such that Y × Z
is homeomorphic to HSn(X), then X is hereditarily decomposable and does

not contain nondegenerate proper terminal subcontinua. Also, Y and Z are

arcwise connected an acyclic.

The proof of the following theorem is similar to the one given for Theo-
rem 3.13, we need to use Theorem 4.12, [16, 3.6], [3, 8.1] and [16, 4.1].

Theorem 4.13. Let X and Z be finite-dimensional continua and let n be

an integer greater than one. If HSn(X) is homeomorphic to X × Z, then X
is a tree.

The following theorem shows that the n-fold hyperspace suspension of an
absolute retract is an absolute retract.

Theorem 4.14. If X be an absolute retract and n is a positive integer,

then HSn(X) is an absolute retract.

Proof. Without loss of generality, we assume that X is embedded in
Q (see [17, 1.1.16]). Since X is an absolute retract, there exists a retraction
r : Q→→X . Then it is easy to see that the induced map HSn(r) : HSn(Q)→→
HSn(X), given by:

HSn(r)(χ) =

{

qn
X(Cn(r)((qn

Q)−1(χ))), if χ 6= Fn
Q;

Fn
X , if χ = Fn

Q;

is a retraction (note that, by [4, 4.3, p. 126], HS(r) is continuous). Since
HSn(Q) is homeomorphic to Q ([16, 5.7]), HSn(X) is an absolute retract
([11, Theorem 7, p. 341]).

Since absolute retracts have the fixed point property ([11, Theorem 11,
p. 343]), we have the following:

Corollary 4.15. If X be an absolute retract and n is a positive integer,

then HSn(X) has the fixed point property.

As a consequence of Theorem 3.16 and [16, 3.6], we have:

Theorem 4.16. If X is either an arc-like or a circle-like continuum and

n is a positive integer, then dim(HSn(X)) ≤ 2n.

The proof of the following theorem is similar to the proof of Theorem 3.1.
We include the proof for the convenience of the reader, to present the appro-
priate references needed.
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Theorem 4.17. Let X and Y be continua, where X is indecomposable

with the property of Kelley, and let n be a positive integer. If HSn(X) is

homeomorphic to HSn(Y ), then Y is indecomposable.

Proof. Let h : HSn(X)→→HSn(Y ) be a homeomorphism. Since X is
indecomposable and has the property of Kelley, X is the only point at which
Cn(X) is locally connected ([15, 3.7]). Hence, T n

X and Fn
X are the only two

points at which HSn(X) is locally connected (by Remark 2.1, and [16, 3.2]).
Thus, h(T n

X) and h(Fn
X) are the only two points at which HSn(Y ) is locally

connected. Since HSn(Y ) is always locally connected at T n
Y and Fn

Y (by [21,
2.3], Remark 2.1, and [16, 3.2]), we have that {h(T n

X), h(Fn
X)} = {T n

Y , Fn
Y }.

Since X is indecomposable, HSn(X) \ {T n
X , Fn

X} is not arcwise connected
([16, 6.2]). Hence, HSn(Y ) \ {h(T n

X), h(Fn
X)} = HSn(Y ) \ {T n

Y , Fn
Y } is not

arcwise connected. Therefore, Y is indecomposable ([16, 6.2]).
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