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Abstract. Every pair of inverse systems X, Y in a category A,
where Y is cofinite, admits a complete (ultra)metric structure on the set

pro-A(X, Y ). The corresponding hom-bifunctor is not, generally, an inter-
nal Hom. However, there exists a subcategory of pro-A, containing tow-A,
for which the hom-bifunctor is an invariant Hom into the category of com-
plete metric spaces. Application to the sets tow-HcANR(X, Y ) yields
several new interesting results concerning Borsuk’s quasi-equivalence.

1. Introduction

In the last decade several papers were published seeking a “natural” struc-
ture of the shape morphism sets ([3,4,15–19]). It has become clear that, in
general, there is no unique topological structure on those sets. The original
idea was to consider the shape morphisms as certain classes of Cauchy se-
quences, i.e., to obtain the shape as a Cantor completion process analogous
to the construction of the real numbers (irrationals) from the rationals. It
should be mentioned that their starting point was not a metric (not even a
pseudometric). Although not unique, the obtained (ultra)metric and topolog-
ical structures on the shape morphism sets yield some interesting and useful
results. In the first place, they permit relations between rather distant the-
ories and the shape theory. Further, they admit constructions of some new
shape invariants, in addition to simpler expressions of the old ones by means
of the new technique.

Our main goal is to obtain, by using a metric, a better view into some
classifications of compacta which are strictly coarser than the shape type
classification. Therefore, in this paper the starting point is a pseudometric
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on a set inv-A(X , Y ), where Y is a cofinite inverse system. It induces a
complete (ultra)metric structure on the corresponding pro-set. Then, we are

studying the relevant properties of the complete metric space (Y X , d), where

Y X denotes the set pro-A(X , Y ). This approach, of course, immediately
requires to involve the hom-bifunctor

hom : (pro-A)op × (pro-A)→ Set.

We have found necessary and sufficient conditions for hom to be an internal
Hom, i.e., to be continuous with respect to the category Metc of complete
metric spaces (Lemma 3.5). Especially, hom is (uniformly) continuous for
inverse sequences (Corollary 3.9), i.e., there exists

Hom : (tow-A)op × (tow-A)→Metc.

Moreover, we have found necessary and sufficient conditions for Hom to be
invariant (Theorem 4.1). Especially, Hom is invariant for all inverse sequences
(Theorem 4.2).

Finally, we apply the new technique to compact metric spaces, i.e., to
sequential HcANR- and HcPol-expansions, and obtain results which provide
a deeper insight into Borsuk’s quasi-equivalence ([2]). First, we have proven
that the quasi-equivalence differs from shape if and only if it realizes with-
out a pair of Cauchy sequences (Corollary 5.2). Further, among our new
results, if an FANR is quasi-dominated by a compactum, then it is shape
dominated by the same compactum (Corollary 5.5). It was known (J. M.
R. Sanjurjo, [20]) that, on the class of all FANR’s, the quasi-domination is
equivalent to shape domination. Hereby we have proven that, on the class
of all FANR’s, the quasi-equivalence reduces to shape type (Corollary 5.8).
A slight strengthening of the quasi-equivalence, so-called the q-equivalence,
which admits an appropriate q-shape theory ([21]), is also considered and
several new results are obtained. For instance, the q-equivalence differs from
shape if, and only if, it realizes without any Cauchy sequence (Theorem 5.9).
Further, the semi-stability, movability and strong movability (i.e., being an
FANR) are hereditary q-shape properties (Lemma 5.11), and thus they are
invariants of the q-shape (Corollary 5.13).

2. A complete metric for pro-A(X, Y )

Let A be a category, and let inv-A be the corresponding inv-category
of A, ([13]), i.e., the objects of inv-A are all the inverse systems X =
(Xλ, pλλ′ , Λ) in A, and inv-A(X, Y ) is the set of all morphisms (f, fµ) :
X → Y = (Y µ, qµµ′ , M), defined by the following condition

(∀µ ≤ µ′)(∃λ ≥ f(µ), f(µ′)fµpf(µ)λ = qµµ′fµ′pf(µ′)λ.

The composition is defined by (g, gν)(f, fµ) = (fg, gνfg(ν)), and the identity
on an X is (1Λ, 1Xλ

).
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Two morphisms (f, fµ), (f ′, f ′
µ) : X → Y of inv-A are said to be equiva-

lent (homotopic), denoted by (f, fµ) ≃ (f ′, f ′
µ), provided every µ ∈M admits

a λ ∈ Λ, λ ≥ f(µ), f ′(µ), such that

fµpf(µ)λ = f ′
µpf ′(µ)λ.

This relation is an equivalence relation that is compatible with composition
in inv-A. Therefore, there exists the corresponding quotient category (pro-
category) inv-A/(≃) ≡ pro-A. A morphism [(f, fµ)] of pro-A is denoted by
f .

By following Definition 1 of [22], let us introduce the relation “to be
n-homotopyc” on the morphism sets of inv-A, n ∈ N. First, an auxiliary
definition.

Definition 2.1. Let (f, fµ), (f ′, f ′
µ) : X → Y be morphisms of inv-A,

and let µ ∈ M . Then (f, fµ) is said to be µ-homotopic to (f ′, f ′
µ), denoted

by (f, fµ) ≃µ (f ′, f ′
µ), provided there exists a λ ∈ Λ, λ ≥ f(µ), f ′(µ), such

that
fµpf(µ)λ = f ′

µpf ′(µ)λ.

The next lemma is obviously true by the above definition.

Lemma 2.2. (i) The relation ≃µ is an equivalence relation on each
set inv-A(X , Y ).

(ii) If (f, fµ) ≃µ (f ′, f ′
µ) and µ′ ≤ µ, then (f, fµ) ≃µ′ (f ′, f ′

µ).
(iii) If (f, fµ) ≃µ (f ′, f ′

µ), then (f, fµ)(h, hλ) ≃µ (f ′, f ′
µ)(h, hλ).

(iv) If (f, fµ) ≃µ (f ′, f ′
µ), then (g, gν)(f, fµ) ≃ν (g, gν)(f ′, f ′

µ), whenever
g(ν) ≤ µ.

(v) (f, fµ) ≃ (f ′, f ′
µ) if and only if (f, fµ) ≃µ (f ′, f ′

µ) for every µ ∈M .

Recall that, for any λ ∈ Λ, |λ| denotes the cardinal of the set of all the
predecessors λ′ of λ in Λ, λ′ < λ (i.e., λ′ ≤ λ and λ′ 6= λ). In the case of
a cofinite inverse system (indexing set), for every λ ∈ Λ, |λ| is finite, i.e.,
|λ| = n− 1 for some n ∈ N.

Definition 2.3. Let (f, fµ), (f ′, f ′
µ) : X → Y be morphisms of inv-A,

and let κ be a cardinal. Then (f, fµ) is said to be κ-homotopic to (f ′, f ′
µ),

denoted by (f, fµ) ≃κ (f ′, f ′
µ), provided that for every µ ∈ M , such that

|µ| < κ, (f, fµ) ≃µ (f ′, f ′
µ) holds.

Notice that in the case of a cofinite Y , those cardinals (representatives–
numbers) κ range over the set of positive integers n ∈ N. Furthermore, in
the case of an inverse sequence Y , the relations ≃n and ≃µ coincide (µ =
|µ|+ 1 = n). By Definitions 2.1 and 2.3 and by Lemma 2.2, the next lemma
is obviously true.

Lemma 2.4. (i) The relation ≃κ is an equivalence relation on each
set inv-A(X , Y ).
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(ii) If (f, fµ) ≃κ (f ′, f ′
µ) and κ′ ≤ κ, then (f, fµ) ≃κ′ (f ′, f ′

µ).
(iii) If (f, fµ) ≃κ (f ′, f ′

µ) and (f ′, f ′
µ) ≃κ′ (f ′′, f ′′

µ ), then (f, fµ) ≃κ′′

(f ′′, f ′′
µ ), where κ′′ = min{κ, κ′}.

(iv) If (f, fµ) ≃κ (g, gµ), (f ′, f ′
µ) ≃κ′ (g′, g′µ) and (f, fµ) ≃η (f ′, f ′

µ), then
(g, gµ) ≃η′ (g′, g′µ), where η′ = min{κ, κ′, η}.

(v) If (f, fµ) ≃κ (f ′, f ′
µ), then (f, fµ)(h, hλ) ≃κ (f ′, f ′

µ)(h, hλ).
(vi) If (f, fµ) ≃κ (f ′, f ′

µ), then (g, gν)(f, fµ) ≃κ′ (g, gν)(f ′, f ′
µ), provided,

for every ν ∈ N , | ν |< κ′ implies | g(ν) |< κ.
(vii) If Y is cofinite, then (f, fµ) ≃ (f ′, f ′

µ) if and only if (f, fµ) ≃n (f ′, f ′
µ)

for every n ∈ N.

Given a pair of inverse systems X, Y , where Y is cofinite, let us define
the function

ρ : inv-A(X , Y )× inv-A(X , Y )→ R

by putting

ρ((f, fµ), (f ′, f ′
µ)) =

{

inf{ 1
n+1 | (f, fµ) ≃n (f ′, f ′

µ), n ∈ N}
1, otherwise

.

Lemma 2.5. For every X and every cofinite Y , the ordered pair
(inv-A(X, Y ), ρ) is a pseudo(ultra)metric space.

Proof. Clearly, ρ((f, fµ), (f ′, f ′
µ)) ≥ 0 and

ρ((f, fµ), (f ′, f ′
µ)) = ρ((f ′, f ′

µ), (f, fµ)).

Further, if (f, fµ) = (f ′, f ′
µ), then (f, fµ) ≃ (f ′, f ′

µ), and thus, by
Lemma 2.4 (vii), (f, fµ) ≃n (f ′, f ′

µ) for every n ∈ N, which is equivalent
to ρ((f, fµ), (f ′, f ′

µ)) = 0. It remains to prove that

ρ((f, fµ), (f ′′, f ′′
µ )) ≤ max{ρ((f, fµ), (f ′, f ′

µ)), ρ((f ′, f ′
µ), (f ′′, f ′′

µ ))}.

This obviously holds true whenever

ρ((f, fµ), (f ′, f ′
µ)) = 1 or ρ((f ′, f ′

µ), (f ′′, f ′′
µ )) = 1.

Further, it also holds whenever ρ((f, fµ), (f ′, f ′
µ)) = 0 (i.e., (f, fµ) ≃

(f ′, f ′
µ)) or ρ((f ′, f ′

µ), (f ′′, f ′′
µ )) = 0 (i.e., (f ′, f ′

µ) ≃ (f ′′, f ′′
µ )). Namely, by

Lemma 2.4 (iii) and (vii), (f ′, f ′
µ) ≃ (f ′′, f ′′

µ ) implies ρ((f, fµ), (f ′, f ′
µ)) =

ρ((f, fµ), (f ′′, f ′′
µ )). Let

ρ((f, fµ), (f ′, f ′
µ)) =

1

n + 1
and ρ((f ′, f ′

µ), (f ′′, f ′′
µ )) =

1

n′ + 1
.

Then, by Lemma 2.4 (iii), (f, fµ) ≃n′′ (f ′′, f ′′
µ ), where n′′ = min{n, n′}, and

the conclusion follows.

Let us briefly denote pro-A(X , Y ) ≡ Y X . Observe that, by Lemma 2.4,
(iii) and (vii), if (f, fµ) ≃ (g, gµ) and (f ′, f ′

µ) ≃ (g′, g′µ) (all of X to Y ),
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then ρ((f, fµ), (f ′, f ′
µ)) = ρ((g, gµ), (g′, g′µ)). Thus, for every cofinite Y , the

function
d : Y X × Y X → R

is well defined by putting

d(f , f ′) = ρ((f, fµ), (f ′, f ′
µ)),

where (f, fµ) ∈ f , (f ′, f ′
µ) ∈ f ′ is any pair of representatives.

Theorem 2.6. For every X and every cofinite Y , the ordered pair
(Y X , d) is a complete (ultra)metric space.

Proof. According to Lemma 2.5, it suffices to prove that d(f , f ′) =
0 implies f = f ′, and the completeness. Let d(f , f ′) = 0. Then,
ρ((f, fµ), (f ′, f ′

µ)) = 0 for any pair of the representatives. By definition of

ρ and Lemma 2.4, it is equivalent to (f, fµ) ≃ (f ′, f ′
µ), i.e., f = f

′. Let (fn)

be a Cauchy sequence in (Y X , d). Then, for every k ∈ N, there exists an
nk ∈ N such that, for every pair n, m ∈ N, n, m ≥ nk,

d(fn, fm) ≤
1

k + 1
.

Without loss of generality, one may assume that nk+1 ≥ nk. For each k ∈ N,
put n = nk and consider the sequence (nk). Let us define, for every µ ∈M ,

f0
µ = fnk

µ : Xfnk(µ) → Yµ, k = |µ|+ 1.

In this way we have obtained the family (f0
µ)µ∈M of morphisms f0

µ : Xλ → Yµ,
λ = fn|µ|+1(µ), of A. Notice that it defines an index function

f0 : M → Λ, f0(µ) = fn|µ|+1(µ).

Let us show that the ordered pair (f0, f0
µ) is a morphism of X to Y in

inv-A. Given a pair µ < µ′ in M , we have to prove that there exists a
λ ≥ f0(µ), f0(µ′) such that

f0
µpf0(µ)λ = qµµ′f0

µ′pf0(µ′)λ.

Denote |µ| = k−1 and |µ′| = k′−1. Then k′ > k, and nk′ ≥ nk+1 ≥ nk. Since
(fnk′ , f

nk′
µ ) is a morphism of inv-A and since (fnk , fnk

µ ) ≃k (fnk′ , f
nk′
µ ), we

infer that there exists a λ ∈ Λ, λ ≥ fnk(µ), fnk′ (µ), fnk′ (µ′), such that the
diagram below commutes.

Xλ

ւ ↓ ց
Xfnk (µ) Xf

n
k′ (µ) Xf

n
k′ (µ′)

f0
µ =↓ fnk

µ ւ f
nk′
µ f

nk′

µ′ ↓= f0
µ′

Yµ ← Yµ′

.

This implies that
fnk

µ pfnk (µ)λ = qµµ′f
nk′

µ′ pf
n

k′ (µ′)λ,
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which means that
f0

µpf0(µ)λ = qµµ′f0
µ′pf0(µ′)λ.

This proves that (f0, f0
µ) : X → Y is a morphism of inv-A. Observe that we

have proven even more. Namely, for every k ∈ N and every n ≥ nk,

(fn, fn
µ ) ≃k (f0, f0

µ),

i.e.,

ρ((fn, fn
µ ), (f0, f0

µ)) ≤
1

k + 1
.

Therefore, for every k ∈ N and every n ≥ nk,

d(fn, f0) ≤
1

k + 1
,

which means that lim(fn) = f0, i.e., that the sequence (fn) converges to f0

in (Y X , d).

Remark 2.7. If Y = (Yµ = Y, qµµ′ = 1Y , M) ∈ Ob(pro-A) is cofinite,

then, for every X ∈ Ob(pro-A), the space (Y X , d) is discrete. However,
according to [2] (see also Section 5 below), in the caseA = HcANR there exist
mutually quasi-equivalent metric compacta which are not shape equivalent.
Consequently, by applying the characterization of Borsuk’s quasi-equivalence
in terms of associated compact ANR (or polyhedral) inverse sequences, given

in [22], one readily sees that a space (Y X , d), in general, is not discrete.

Especially, there exist inverse sequences X such that the spaces (XX , d) are
not discrete. An example is given below.

Example 2.8. Let X = (Xλ, [pλλ′ ], N) in HcPol be defined by Xλ =
{x1, . . . , xλ} and [pλλ+1] (= {pλλ+1}) such that the fibre p−1

λλ+1(x1) =

{x1, xλ+1}, while each other fibre p−1
λλ+1(xλ), λ 6= 1, is the singleton {xλ}

(the inverse limit of X is an infinite compact countable space having the only

one nonopen point). Then the space (XX , d) is not discrete. Indeed (see the

proof below), there exists a sequence (fn) in (XX , d) such that, for every
n ∈ N,

d(fn,1X) =
1

n + 1
.

Observe that every homotopy commutative diagram relating X to itself
is strictly commutative. Let, for each n ∈ N, fn : N → N be the identity
function 1N, and let, for every λ ∈ N, the mapping fn

λ : Xλ → Xλ be defined
as follows: If λ ≤ n, then fn

λ = 1Xλ
; if λ > n, then,

fn
λ (xj) =

{

xj , j ∈ {1, . . . , n}
x1, j ∈ {n + 1, . . . , λ}

.

It is readily seen that, for each n and every related pair λ ≤ λ′,

fn
λ pλλ′ = pλλ′fn

λ′ .
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Thus, (fn, [fn
λ ]) : X → X is a morphism of (HcPol)N. By construction, for

every n ∈ N,

(fn, [fn
λ ]) ≃n (1N, [1Xλ

]),

while

(fn, [fn
λ ]) ≃n+1 (1N, [1Xλ

])

does not hold. Therefore, by definition of pseudometric ρ, for every n ∈ N,

ρ((fn, [fn
λ ]), (1N, [1Xλ

])) =
1

n + 1
.

Finally, by this and definition of metric d,

d(fn,1X) =
1

n + 1
,

where f
n = [(fn, [fn

λ ])] ∈XX , n ∈ N.
In some considerations, the next technical lemma could help.

Lemma 2.9. Let (fn) and (f ′n) be sequences in (Y X , d), and let (mn)
be an increasing unbounded sequence in N. Suppose that (fn) is a Cauchy
sequence.

(i) If, for every n, there exists a pair of representatives (fn, fn
µ ) ∈ fn,

(f ′n, f ′n
µ ) ∈ f ′n such that (fn, fn

µ ) ≃mn
((f ′n, f ′n

µ ) for almost all n,

then (f ′n) is a Cauchy sequence too and lim(fn) = lim(f ′n).

(ii) If lim(fn) = f
0, then for every representing sequence ((fn, fn

µ )) of

(fn) and every representative (f0, f0
µ) of f0, the following condition

holds:

(∀µ ∈M)(∃nµ ∈ N)(∀n ≥ nµ)(∃λ ≥ fn(µ), f0(µ)) fn
µ pfn(µ)λ = f0

µpf0(µ)λ.

(iii) There exists a representing sequence ((fn, fn
µ )) of (fn) such that, for

every µ ∈ M , the sequence (fn(µ)) in Λ is stationary. Moreover, for
every (f0, f0

µ) ∈ f0 = lim(fn), there exists a representing sequence
((fn, fn

µ )) such that

(∀µ ∈M)(∃nµ ∈ N)(∀n ≥ nµ) fn
µ = f0

µ.

Proof. By Theorem 2.6, the proof of statement (i) is straightforward.
To prove (ii), let µ0 ∈M be chosen arbitrarily. Then, |µ0| = k0 − 1 for some

k0 ∈ N. Since lim(fn) = f0, for every k ∈ N, there exists an nk ∈ N such
that, for every n ≥ nk,

d(fn, f0) ≤
1

k + 1
.

Let ((fn, fn
µ )) be any representing sequence of (fn), and let (f0, f0

µ) ∈ f0 be
chosen arbitrarily. Then, for every n ≥ nk,

ρ((fn, fn
µ ), (f0, f0

µ)) ≤
1

k + 1
,
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which implies (fn, fn
µ ) ≃k (f0, f0

µ). Especially, (fn, fn
µ ) ≃µ (f0, f0

µ) for every
µ ∈M , |µ| ≤ k− 1. Therefore, if we put nµ0

= nk0
, the relation (fn, fn

µ ) ≃µ0

(f0, f0
µ) holds for every n ≥ nµ0

. This means that, for every n ≥ nµ0
, there

exists a λ ≥ fn(µ0), f
0(µ0) (depending on µ0 and n) such that

fn
µ0

pfn(µ0)λ = f0
µ0

pf0(µ0)λ.

This completes the proof of assertion (ii). The proof of (iii) is by induction
on |µ| ∈ {0} ∪ N, µ ∈M . For each k ∈ N, denote

Mk−1 ≡ {µ ∈M | |µ| = k − 1} ⊆M.

Notice that M is the disjoint union of all Mk−1, k ∈ N (some of them may

be empty). Let (fn, fn
µ ) ∈ fn, n ∈ N, let (f0, f0

µ) ∈ f0, and let, µ ∈M0, i.e.,
|µ| = 0. By (ii), there is an nµ ∈ N such that, for every n ≥ nµ, there is a
λn ≥ fn(µ), f0(µ) satisfying

fn
µ pfn(µ)λn

= f0
µpf0(µ)λn

.

Clearly, for every n ≥ nµ and every µ′ ≥ µ, there exists a λ ≥ λn, fn(µ′),
such that

fn
µ pfn(µ)λ = qµµ′fn

µ′pfn(µ′)λ.

Therefore,
f0

µpf0(µ)λ = qµµ′fn
µ′pfn(µ′)λ.

This shows that, for each µ ∈ M0 and all n ≥ nµ, the values fn(µ) may
be replaced by f0(µ) as well as the morphisms fn

µ by f0
µ. It yields the new

representing sequence ((f ′n, f ′n
µ )) of (fn) that satisfies the stationary condi-

tion for (f ′n(µ)), µ ∈ M0. Let k ∈ N, and let us assume that assertion (iii)
is proved for every µ ∈ Ml, l ≤ k − 1, i.e., for all µ ∈ M , |µ| < k. Let
µ ∈Mk. By (ii), there exists an nµ ∈ N such that, for every n ≥ nµ, there is
a λn ≥ fn(µ), f0(µ) satisfying

fn
µ pfn(µ)λn

= f0
µpf0(µ)λn

.

Again, for every n ≥ nµ and every µ′ ≥ µ, there exists a λ ≥ λn, fn(µ′), such
that

fn
µ pfn(µ)λ = qµµ′fn

µ′pfn(µ′)λ.

Thus,

f0
µpf0(µ)λ = qµµ′fn

µ′pfn(µ′)λ.

This shows that, for each µ ∈ Mk and all n ≥ nµ, the values fn(µ) may be
replaced by f0(µ) as well as the morphisms fn

µ by f0
µ. Observe that, by this

replacement, all the relevant terms not related to Mk remain unchanged. It
implies that the inductive step k − 1 7→ k is correct. Clearly, it yields the
new representing sequence ((f ′n, f ′n

µ )) of (fn) that satisfies the stationary
condition for (f ′n(µ)), µ ∈M0 ∪ · · · ∪Mk. The conclusion follows.

At the end of this section we want to prove the following useful theorem.
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Theorem 2.10. For every X and every cofinite Y , every Cauchy se-
quence in (Y X , d) admits a representing sequence having a unique increasing
index function.

Proof. First, every sequence (fn) in (Y X , d) admits a representing
sequence ((fn, fn

µ )) such that all the index functions are increasing and

f1 ≤ · · · ≤ fn ≤ · · · (this can be achieved by a straightforward inductive
construction). Let (fn) be a Cauchy sequence. Recall the proof of Theo-
rem 2.6, i.e., the construction of the limit f0 = lim(fn): the constructed

representative (f0, f0
µ) ∈ f0 has been defined by means of a subsequence

((fnk , fnk
µ )), where n1 ≤ · · · ≤ nk ≤ · · · , such that

f0(µ) = fn|µ|+1(µ) and f0
µ = f

n|µ|+1

µ .

Notice that, in this case, f0 : M → Λ is an increasing function. Let µ ∈ M ,
|µ| = 0. Since f1 ≤ · · · ≤ fn1 , one can, for every i = 1, . . . , n1, replace f i(µ)
with f ′i(µ) = f0(µ) = fn1(µ) and f i

µ with f ′i
µ = f i

µpfi(µ)f0(µ). In the next
step, since

f1 ≤ · · · ≤ fn1 ≤ fn1+1 ≤ · · · ≤ fn2 ,

given a µ ∈ M , |µ| = 1, one can, for every i = 1, . . . , n2, replace f i(µ) with
f ′i(µ) = f0(µ) = fn2(µ) and f i

µ with f ′i
µ = f i

µpfi(µ)f0(µ). Moreover, for every

µ′ ∈ M , |µ′| = 0, and every i = n1 + 1, . . . , n2, one can replace f i(µ′) with
f ′i(µ′) = f0(µ′) = fn2(µ′) and f i

µ′ with f ′i
µ′ = f i

µ′pfi(µ′)f0(µ′).

The construction proceeds in an obvious way by induction on |µ| + 1 =
k ∈ N through the sequence (nk). Thus, in the inductive step k 7→ k + 1,
one also must correctly move every f i, i = nk + 1, . . . , nk+1, for all µ ∈ M ,
|µ| ≤ k. Observe that, for every n ∈ N, (f ′n, f ′n

µ ) ≃ (fn, fn
µ ). Clearly,

the new representing sequence ((f ′n, f ′n
µ )) has the unique increasing index

function f0 = f ′n for all n.

3. Continuity of the hom-bifunctor

Recall (see [8]) that, for every category K, there exists the hom-bifunctor

hom : Kop ×K → Set

defined by hom(X, Y ) = K(X, Y ) and hom(u, v)(f) = vfu. More precisely,
for each pair of (pairs of) objects

(X, Y ), (X ′, Y ′) ∈ Ob(Kop × K) = ObKop ×ObK = ObK ×ObK,

homX,Y
X′,Y ′ : (Kop ×K)((X, Y ), (X ′, Y ′))

(= Kop(X, X ′)×K(Y, Y ′) = K(X ′, X)×K(Y, Y ′))→

→ Set(K(X, Y ),K(X ′, Y ′)),

(u, v) 7→ (homX,Y
X′,Y ′(u, v) : K(X, Y )→ K(X ′, Y ′)),
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is defined by the composition, i.e., homX,Y
X′,Y ′(u, v)(f) = vfu.

If the sets K(X, Y ) are enriched in a natural way with a structure, and
if the hom-bifunctor preserves the structure, then notation hom is usually
changed into Hom (the “internal” Hom-bifunctor), having an appropriate
codomain category (instead of Set).

Let us now consider the case K = pro-A for an arbitrary category A, i.e.,

hom : (pro-A)op × (pro-A)→ Set,

hom(X , Y ) = pro-A(X , Y ) ≡ Y X

and

homX,Y

X′,Y ′ : XX′

× Y ′Y → Set(Y X , Y ′X′

),

where

homX,Y

X′,Y ′(u, v) : Y X → Y ′X′

is defined by homX,Y

X′,Y ′(u, v)(f ) = vfu, i.e.,

X
u
← X ′

f ↓
hom(u,v)
7→ ↓ vfu

Y →
v

Y ′
.

We assume in the sequel that all inverse systems are cofinite. The natural
question arises: Does the hom-bifunctor preserve the complete (ultra)metric

structure of (Y X , d)? In other words: is the function

hom(u, v) : (Y X , d)→ (Y ′X′

, d)

continuous for all (some) u : X ′ → X and v : Y → Y ′? In general, the
answer is negative (see Theorem 3.4 below). First, recall the notion of semi-
stability (the complementary part of the strong movability ([22, Definition 3
and Lemma 4])) of an inverse sequence X = (Xi, pii′ , N):

(∃i0 ∈ N)(∀i ≥ i0)(∀i
′ ≥ i)(∃r : Xi → Xi′)(∃i1 ≥ i′)(∀i′′ ≥ i1) rpii′′ = pi′i′′ .

It is readily seen that an X of tow-A ⊆ pro-A is semi-stable if and only if every
morphism f : X → Y of pro-A admit an i0 ∈ N such that f = [(ci0 , fµ)].
Clearly, every stable X is semi-stable. Also, every strongly movable X is
semi-stable. For instance, every object X of tow-HcANR (⊆ pro-HcANR ⊆
pro-HTop) associated with an FANR X is semi-stable.

Remark 3.1. Since the quasi-equivalence of compacta is not transitive
(in general, see [10]), but it is transitive on the class of all quasi-stable com-
pacta (including all semi-stable compacta ([22, Definition 5, Theorem 2 and
Corollary 1])), it follows that nonsemi-stable inverse sequences of tow-HcANR
exist. For instance, any compact ANR inverse sequence associated with the
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continuum Y ⊆ R3 constructed in [10] (see Lemma 9 of [22]) is not semi-
stable. Much simpler, any compact ANR inverse sequence associated with
the Hawaiian earring is not semi-stable.

Consider now the following general example.

Example 3.2. Let Y = (Yj , qjj′ , N) be an inverse sequence in a category
A, and let Y ′ = (Y ′

µ, q′µµ′ , M) be the (countable and cofinite) inverse system
associated with Y by the well known “Mardešić trick”, i.e.,

M = F (N) = {µ | µ ⊆ N finite} ⊆ 2N,

µ ≤ µ′ ⇔ µ ⊆ µ′,

Y ′
µ = Yj , j = maxµ,

q′µµ′ = qjj′ : Y ′
µ′ = Yj′ → Yj = Y ′

µ.

Then, clearly, Y ∼= Y ′ in pro-A. However, the following fact occurs:

Lemma 3.3. If Y is not semi-stable, then for every section v : Y → Y ′

(especially, for every isomorphism), every its representative (v, vµ) has the
following property:

(∀j ∈ N)(∃µ ∈M, |µ| = 0) v(µ) > j.

Proof. Let us assume to the contrary. Then there exist a section v :
Y → Y ′, a representative (v, vµ) ∈ v and a j0 ∈ N such that v(µ) ≤ j0,
whenever |µ| = 0. For each k ∈ {0} ∪ N, denote

Mk = {µ | µ ∈M, |µ| = k} ⊆M.

Then M is the (disjoint) union of all Mk, k ≥ 0. More precisely, M0 =
{{j} | j ∈ N}, M1 = ∅, M2 = {{j, j′} | j, j′ ∈ N}, M3 = M4 = M5 = ∅,
M6 = {{j, j′, j′′} | j, j′, j′′ ∈ N}, . . . (for every k ≥ 0, Mk is not empty if and
only if k = 2r − 2, r ∈ N, i.e., µ ∈ Mk if and only if card(µ) = log2(k + 2)).
Notice that, for each k and every pair µ, µ′ ∈ Mk, the elements µ and µ′ are
not related.

At first, our intention is to construct a representative (v′, v′µ) of v, hence
(v′, v′µ) ≃ (v, vµ), such that v′ : M → N is the constant function into j0. For
every µ = {j} ∈M0, let the morphisms v′µ : Yj0 → Y ′

µ be defined by vµqv(µ)j0

(since v(µ) ≤ j0). We now proceed by induction through all the sets Mk,
k > 0. Since M1 = ∅, let µ = {j, j′} ∈ M2, j < j′. Then Y ′

µ = Yj′ , and
q′{j}µ

: Y ′
µ → Y ′

{j}, q′{j′}µ
: Y ′

µ → Y ′
{j′} are qjj′ : Yj′ → Yj , 1 : Yj′ → Yj′

respectively. If v(µ) ≤ j0, then put (as before) v′µ = vµqv(µ)j0 : Yj0 → Y ′
µ.

If v(µ) > j0, then observe that there exists a j1 ≥ v(µ) such that, for every
j′′ ≥ j1,

v{j}qv({j})j′′ = qjj′vµqv(µ)j′′ and v{j′}qv({j′})j′′ = 1Yj′
vµqv(µ)j′′ .
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Thus, we can put v′µ = v{j′} (= v{max µ}) to assure desired commutativity.
Assume that the construction is well done for all Ml, l < k ≥ 2. Given any
µ = {j1, . . . , jr} ∈ Mk, if v(µ) ≤ j0 put, as before, v′µ = vµqv(µ)j0 : Yj0 → Y ′

µ,
while in the case v(µ) > j0 put v′µ = v{max µ}. The needed commutativity
relations go straightforwardly (it suffices to verify them for all µ′ < µ, where
µ′ belongs to the closest nonempty Ml, i.e., for all µ′ = {j′1, . . . , j

′
r−1} ⊆ µ).

Since v is a section, there exists a u : Y ′ → Y such that uv = 1Y . Let
(u, uj) be any representative of u. Then (u, uj)(v

′, v′µ) ≃ (1N, 1Yj
), i.e., for

every j ∈ N, there exists a j1 ≥ j0, j (v′u(j) = j0) such that, for every j′′ ≥ j1,

ujv
′
u(j)qj0j′′ = qjj′′ .

Finally, given a pair j, j′ ∈ N such that j′ ≥ j ≥ j0, put

s = uj′v
′
u(j′)qj0j : Yj → Yj′ ,

and check that

sqjj′′ = uj′v
′
u(j′)qj0jqjj′ = uj′v

′
u(j′)qj0j′′ = qj′j′′ ,

for every large enough j′′. This shows that the inverse sequence Y is semi-
stable, contradicting the assumption.

Theorem 3.4. The hom-bifunctor on pro-A, in general, does not preserve
the metric structure on pro-morphism sets. More precisely, there exist an
inverse sequence Y and an inverse system Y ′ isomorphic to Y , Y ′ ∼= Y in
pro-A, such that, for every inverse system X yielding the nondiscrete space
(Y X , d), every (nontrivial) morphism u : X ′ → X and every section v :
Y → Y ′, the function

hom(u, v) : (Y X , d)→ (Y ′X′

, d)

is not continuous. Especially, for X ′ = X = Y , u = 1Y : Y → Y and every
isomorphism v, the bijection

hom(1Y , v) : (Y Y , d)→ (Y ′Y , d)

is not continuous.

Proof. Let Y be a nonsemi-stable inverse sequence, let Y ′ be associated
with Y by the “Mardešić trick” and let X be any inverse system such that
the space (Y X , d) is not discrete. Let v ∈ pro-A(Y , Y ′) be a section and let

a nontrivial u ∈ pro-A(X ′, X) be chosen arbitrarily. Since (Y X , d) is not

discrete, there exists a nonstationary convergent sequence (fn) in (Y X , d),

lim(fn) = f0. Then, for every k ∈ N, there exists an nk ∈ N such that, for
every n ≥ nk,

d(fn, f0) ≤
1

k + 1
.

By Lemma 2.4 (v), d(fnu, f0u) ≤ 1
k+1 also holds for n ≥ nk. By Lemma 3.3,

for every representative (v, vµ) of v and every k ∈ N, there exists a µ ∈ M ,
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|µ| = 0, such that v(µ) > k. This implies, by definition of the metric, that

d(vfnu, vf0u) � 1
k+1 for any k and n ≥ nk, and thus, d(vfnu, vf0u) = 1

for every n ≥ n1. Consequently, the sequence (vfnu) in (Y ′X′

, d) does not

converge to vf0u. Since hom(u, v)(fn) = vfnu and hom(u, v)(f0) = vf0u,

the function hom(u, v) : (Y X , d) → (Y ′X′

, d) is not continuous. Finally, in
the special case X ′ = X = Y , we have to choose a nonsemi-stable Y such
that the space (Y Y , d) is not discrete (see Remark 2.7).

The next lemma shows that the continuity of hom(u, v) depends only on
the existence of a certain representative of v : Y → Y ′, having a specific
index function.

Lemma 3.5. Let u : X ′ → X and v : Y → Y ′ be morphisms of pro-A,
and suppose that the space (Y X , d) is not discrete. Then the function

hom(u, v) : (Y X , d)→ (Y ′X′

, d)

is (uniformly) continuous if and only if v admits a representative (v, vµ′ )
satisfying the following “uniformity” condition:

(U) (∀k ∈ N)(∃sk ∈ N)(∀µ′ ∈M ′) |µ′| ≤ k − 1⇒ |v(µ′)| ≤ sk − 1.

Proof. First, the sufficiency part. To prove continuity, it is enough
to show that the function hom(u, v) preserves convergent sequences. Let

lim(fn) = f0 in (Y X , d). We are to prove that the sequence

(hom(u, v)(fn)) = (vfnu)

in (Y ′X′

, d) converges to hom(u, v)(f0) = vf
0
u. Let (fn, fn

µ ) ∈ f
n,

n ∈ N, (f0, f0
µ) ∈ f0 and (u, uλ) ∈ u be chosen arbitrarily, and let

(v, vµ′ ) ∈ v be a representative satisfying condition (U). By Lemma 2.4, (v)
and (vi), if (fn, fn

µ ) ≃k (f0, f0
µ), then (fn, fn

µ )(u, uλ) ≃k (f0, f0
µ)(u, uλ), and

(v, vµ′ )(fn, fn
µ ) ≃k′ (v, vµ′ )(f0, f0

µ) provided |µ′| ≤ k′ − 1 implies |v(µ′)| ≤

k − 1. Since lim(fn) = f0,

d(fn, f0) = ρ((fn, fn
µ ), (f0, f0

µ))

becomes arbitrarily small when n increases, i.e., for every k ∈ N, there exists
an nk ∈ N such that, for every n ≥ nk,

ρ((fn, fn
µ ), (f0, f0

µ)) ≤
1

k + 1
.

Hence, (fn, fn
µ ) ≃k (f0, f0

µ), n ≥ nk, and thus,

(v, vµ′)(fn, fn
µ )(u, uλ) ≃k′ (v, vµ′)(f0, f0

µ)(u, uλ), n ≥ nk,

provided |µ′| ≤ k′ − 1 implies |v(µ′)| ≤ k − 1. Since, by assumption, for
every k, there exists an sk such that, for every µ′ ∈ M ′, |µ′| ≤ k − 1 implies
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|v(µ′)| ≤ sk − 1, we infer that, for every k and every n ≥ nsk
,

(v, vµ′ )(fn, fn
µ )(u, uλ) ≃k (v, vµ′ )(f0, f0

µ)(u, uλ)

holds. Thus,

d(vfnu, vf0u) = ρ((v, vµ′ )(fn, fn
µ )(u, uλ), (v, vµ′ )(f0, f0

µ)(u, uλ)) ≤
1

k + 1
,

for every n ≥ nsk
. This means that lim(vfnu) = vf0u, which proves

the continuity of hom(u, v). Finally, notice that a δ > 0 (for continuity

of hom(u, v)) does not depend on any particular point f ∈ Y X . Namely,
given any ε = 1

k+1 > 0, one may put δ = 1
sk+1 > 0. Therefore, hom(u, v) is

uniformly continuous.
Conversely, suppose to the contrary, i.e., that hom(u, v) is continuous and

that, for every representative (v, vµ′ ) of v, the following condition is fulfilled:

(∃k0 ∈ N)(∀s ∈ N)(∃µ′ ∈M ′)(|µ′| ≤ k0 − 1 ∧ |v(µ′)| > s− 1).

Since (Y X , d) is not discrete, there exists a nonstationary sequence (fn) in

Y X converging to a point f0 ∈ Y X . Then the continuity of hom(u, v) implies
that d(vfnu, vf0u) becomes arbitrarily small when n increases. However, by
the above condition and definition of the metric, for every large enough n ∈ N,

d(vfnu, vf0u) >
1

k0 + 1

must hold - a contradiction.

Observe that property (U) of some morphisms of inv-A is preserved by
composition. Since each identity morphism (1Λ, 1Xλ

) obviously satisfies con-
dition (U), there exists a subcategory invU-A ⊆ inv-A such that

Ob(invU-A) = Ob(inv-A)

and

invU-A(X, Y ) = {(f, fµ) | (f, fµ) satisfies (U)} ⊆ inv-A(X , Y ).

Let proU-A ⊆ pro-A be the subcategory on the same object class such that
every morphism f of proU-A admits a representative in invU-A. Let us briefly
denote proU-A(X , Y ) ≡ Y X

U . By assuming the restriction to all cofinite
inverse systems, the following theorem holds.

Theorem 3.6. The hom-bifunctor for the subcategory proU-A is a struc-
ture preserving (continuous) one, i.e., it is

Hom : (proU-A)op × (proU-A)→Metc,

where Metc is the category of complete metric spaces.

Proof. According to Theorem 2.6 and Lemma 3.5, it suffices to prove
that (Y X

U , d) ⊆ (Y X , d) is a closed subspace. Therefore, the proof follows by
the next lemma.
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Lemma 3.7. (Y X
U

, d) ⊆ (Y X , d) is a closed subspace.

Proof. Suppose that a sequence (fn) in Y X
U converges to an f0 in

(Y X , d). We have to prove that f0 ∈ Y X
U . Recall the construction of the

limit morphism f0 in the proof of Theorem 2.6. Given any representing
sequence ((fn, fn

µ )) of (fn), the representing mappings f0
µ, µ ∈ M , have

been defined to be fnk
µ : Xfnk (µ) → Yµ, for all k ∈ N and all µ ∈ M with

|µ| = k−1. In this case one should, in addition, choose a representing sequence
in invU-A(X , Y ). Then the obtained (f0, f0

µ) satisfies condition (U), i.e., it

belongs to invU-A(X, Y ). Indeed, f0(µ) = fnk(µ), for every k ∈ N and every
µ ∈M with |µ| = k − 1. Therefore,

(∀n ∈ N)(∀k ∈ N)(∃snk

k ∈ N)(∀µ ∈M)

|µ| ≤ k − 1⇒
∣

∣f0(µ)
∣

∣ = |fnk(µ)| ≤ snk

k − 1.

(without loss of generality, we may assume that all fn are increasing, and
thus, it suffices to verify condition (U) only for µ ∈M , |µ| = k − 1).

An inverse system X is said to have property (F) provided, for every
k ∈ N, the subset

Λk−1 ≡ {λ ∈ Λ | |λ| = k − 1} ⊆ Λ

is finite. Clearly, every inverse sequence X = (Xi, pii′ , N) has property (F).
Let invF-A ⊆ inv-A be the full subcategory containing all the cofinite objects
which have property (F). Let proF-A ⊆ pro-A be the corresponding pro-
category. Then (for inverse sequences), tow-A ⊆ proF-A is a full subcategory.

Corollary 3.8. The hom-bifunctor for the subcategory proF-A ⊆ pro-A
is structure preserving (continuous), i.e., it is

Hom : (proF-A)op × (proF-A)→Metc.

Proof. Observe that proF-A ⊆ proU-A is a full subcategory, because ev-
ery morphism of invF-A satisfies condition (U). Hence, the conclusion follows
by Theorem 3.6.

Corollary 3.9. The hom-bifunctor for the tower category tow-A is
structure preserving (continuous), i.e., it is

Hom : (tow-A)op × (tow-A)→Metc.

Proof. Every inverse sequence has property (F). Thus, the conclusion
follows by Corollary 3.8.

Let

(Y X ×ZY , d′) = (Y X , d)× (ZY , d)
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be the product space endowed with an appropriate metric d′ (for instance, d2,
d1 or d∞ with respect to the metrics on the factors). Then the function

ω : (Y X ×ZY , d′)→ (ZX , d),

defined by the composition, (f , g) 7→ gf , naturally arises. According to
preceding results, ω cannot be continuous in general. However, the following
fact holds as a consequence of Lemma 3.5 and Theorem 3.6.

Corollary 3.10. The function (restriction)

ω : (Y X ×ZY
U

, d′)→ (ZX , d), ω(f , g) = gf ,

is (uniformly) continuous. Especially, for all inverse sequences X, Y and Z

in A, the function
ω : (Y X ×ZY , d′)→ (ZX , d)

is (uniformly) continuous. Moreover, for every section v : Y → Y ′, the
hom-bifunctor commutes with ω, i.e., the diagram

Y X ×ZY hom(u,v)×hom(v′,w)
→ Y ′X′

×Z ′Y ′

ω ↓ ↓ ω

ZX hom(u,w)
→ Z ′X′

is commutative. More precisely,

ω ◦ (hom(u, v)× hom(v′, w)) = hom(u, w) ◦ ω,

where v′ : Y ′ → Y is a left inverse of v, v′v = 1Y .

Proof. It suffices to prove that lim(fn) = f
0 in (Y X , d) and lim(gn) =

g0 in (ZY
U , d) imply lim(gnfn) = g0f0 = lim(gn) lim(fn) in (ZX , d). By

Lemma 2.4 (v), for each m ∈ N, lim(gnfm) = g0fm. Since g0 ∈ ZY
U ,

the function hom(1X , g0) is (uniformly) continuous. The conclusion follows

(observe that we have only needed g0 ∈ ZY
U . Thus, the sequence (gn) may be

in (ZY , d) as well). The commutativity of the diagram goes straightforwardly.

4. The invariance of the hom-bifunctor

Our intention now is to answer the question concerning invariance of the
hom-bifunctor, i.e., under what conditions, X ∼= X ′ and Y ∼= Y ′ in pro-

A imply that the spaces (Y X , d) and (Y ′X′

, d) are homeomorphic. Clearly,
every pair of isomorphisms u : X ′ → X, v : Y → Y ′ yields a set bijection

Y X → Y ′X′

, f 7→ vfu, having the inverse Y ′X′

→ Y X , f ′ 7→ v−1f ′u−1.
Therefore, for every such a pair of isomorphisms, the function

hom(u, v) : Y X → Y ′X′

is a bijection with the inverse hom(u, v)−1 = hom(u−1, v−1). According to
Lemma 3.5, the following theorem holds.
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Theorem 4.1. Let u : X ′ → X and v : Y → Y ′ be isomorphisms of

pro-A, and suppose that the spaces (Y X , d) and (Y ′X′

, d) are not discrete.
Then,

hom(u, v) : (Y X , d)→ (Y ′X′

, d)

is a (uniform) homeomorphism (of complete (ultra)metric spaces), if and only
if v and v−1 belong to proU-A.

Proof. By Lemma 3.5, hom(u, v) and hom(u, v)−1 = hom(u−1, v−1)
are (uniformly) continuous if and only if v and v−1 admit representatives
(v, vµ′ ) and (v′, v′µ), respectively, both of them satisfying condition (U). The
conclusion follows.

Theorem 4.2. For every category A, the hom-bifunctor for pro-A is
invariant (and continuous into Metc) with respect to the object isomorphisms
in the following (sub)pro-categories: tow-A, proF-A and proU-A.

Proof. Apply Theorem 4.1 together with Corollary 3.9, Corollary 3.8
and Theorem 3.6 respectively.

Remark 4.3. (a) By Theorem 4.1, for every (cofinite) Y and every pair

X ∼= X ′ in pro-A, (Y X , d) ≈ (Y X′

, d) in Metc holds via the hom-bifunctor.
Moreover, it is readily seen that, for every isomorphism u : X ′ → X, the
homeomorphism hom(u,1Y ) is an isometry. On the other hand, by Exam-
ple 3.2 and Theorem 3.4, there exist an inverse sequence Y and a (count-
able and cofinite) inverse system Y ′ isomorphic to Y , Y ∼= Y ′ in pro-A,
such that, for every isomorphism v : Y → Y ′, the bijection hom(1Y , v) :

(Y Y , d) → (Y ′Y , d) is not continuous. Moreover, there is such a pair of
metric spaces which are not homeomorphic (see Example 4.4 below). An im-
portant implication of this fact is that, in general, there is no unique canonical
metrization of the shape morphism sets. Nevertheless, in some special cases
(for instance, compact metrizable spaces, by using only sequential HcANR-
or HcPol-expansions) a unique canonical complete (ultra)metrization of the
shape morphism sets is possible.

(b) In the last decade several papers dealing with (ultra)metric and topol-
ogy structures on the (standard) shape morphism sets were written: [3,4,15–
19], . . . The obtained results are interesting and useful because, in the first
place, they have closely related many rather distant theories to the shape the-
ory. Also, they admit to construct some new shape invariants. Looking for the
basic idea which they exploit (as well as we do), one readily sees that it is the
notion of being µ-homotopic (Definition 2.1). However, we ought to say that
the germ of this idea goes back to 1976 when K. Borsuk [2] introduced the
notion of quasi-equivalence of metric compacta. This is, indeed, quite clear
after seeing the characterization (reinterpretation) of the quasi-equivalence in
terms of sequences of morphisms of inverse sequences ([22]).
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Example 4.4. Let Y = (Yj , qjj′ , N) be an inverse sequence in a category
A, and let Y ′ = (Y ′

µ, q′µµ′ , M) be associated with Y by the “Mardešić trick”

(see Example 3.2). Then the space (Y ′Y , d) is discrete (see the proof below).

Therefore, by choosing a Y in tow-HcANR such that (Y Y , d) is not discrete
(see Remark 2.7 and Example 2.8), one provides an example with Y ∼= Y ′

such that the spaces (Y Y , d) and (Y ′Y , d) are not homeomorphic.

Let us prove that (Y ′Y , d) of Example 4.4 is a discrete space. Since

diam(Y ′Y , d) ≤ 1, let us consider a pair f , f ′ ∈ Y ′Y such that d(f , f ′) < 1,
or equivalently, d(f , f ′) ≤ 1

2 (because d takes its values in { 1
n
| n ∈ N}∪{0}).

We are to prove that d(f , f ′) = 0, i.e., that f = f ′. Let (f, fµ) ∈ f and
(f ′, f ′

µ) ∈ f ′ be any representatives. Then

ρ((f, fµ), (f ′, f ′
µ)) ≤

1

2
,

which implies (f, fµ) ≃1 (f ′, f ′
µ), i.e., (f, fµ) ≃µ (f ′, f ′

µ) for every µ ∈ M ,
|µ| = 0. By construction, |µ| = 0 means µ = {j} ∈M0 ⊆M (= ⊔

k∈N

Mk−1, see

the proof of Lemma 3.3) and Y ′
µ = Yj , j ∈ N. Thus,

(∀j ∈ N)(∃ij ≥ f({j}), f ′({j}))(∀i ≥ ij) f{j}qf({j})i = f ′
{j}qf ′({j})i.

Since M1 = ∅, consider any µ = {j, j′} ∈M2 ⊆ M , j < j′. Then {j}, {j′} <
µ, Y ′

µ = Yj′ , q′{j}µ
= qjj′ and q′{j′}µ

= 1Yj′
. Since q′{j′}µ

= 1Yj′
, the above

relation and properties of morphisms of inv-A imply that there exists an
iµ ≥ ij′ , f(µ), f ′(µ) such that, for every i ≥ iµ, fµqf(µ)i = f ′

µqf ′(µ)i holds.
This shows that (f, fµ) ≃µ (f ′, f ′

µ) for every µ ∈ M , |µ| ≤ 2, i.e., (f, fµ) ≃3

(f ′, f ′
µ), and thus,

ρ((f, fµ), (f ′, f ′
µ)) ≤

1

4
.

Now, by induction on k ∈ N, assuming that

ρ((f, fµ), (f ′, f ′
µ)) ≤

1

k + 1
,

one can prove, in the same way as above, that

ρ((f, fµ), (f ′, f ′
µ)) ≤

1

k + 1 + lk
,

holds, for some lk ∈ N. Therefore, d(f , f ′) = ρ((f, fµ), (f ′, f ′
µ)) = 0, i.e.,

f = f ′. This shows that, for each f ∈ Y ′Y and every 0 < ε ≤ 1, the open
ball B(f , ε) = {f} ⊆ (Y ′Y , d), which completes the proof.

5. Applications

Our aim is to show that the introduced complete metric structure on the
sets Y X admits a much better view into quasi-equivalence ([2]) as well as into
its strengthening, so called q-equivalence ([22]).
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5.1. Borsuk’s quasi-equivalence. Let us briefly recall the quasi equivalence of
metric compacta. It was originally defined and studied in [2] by means of fun-
damental sequences ([1]) and neighborhoods in a pair of AR ambient spaces.
Afterwards, it was characterized by sequences of morphisms of compact ANR
inverse sequences ([22, Section 4]). We are now able to reinterpret it in the
metric terms introduced in this paper:

Two metric compacta X and Y are quasi-equivalent, X
q
≃ Y , if and only if

there is a (equivalently, for every) pair of associated X and Y of tow-HcANR

and there is a pair of sequences (fn) in (Y X , d), (gn) in (XY , d) such that

lim(gnfn) = 1X in (XX , d) and lim(fngn) = 1Y in (Y Y , d), i.e., for every
n ∈ N,

d(gnfn,1X) ≤
1

n + 1
and d(fngn,1Y ) ≤

1

n + 1
.

Notice that our Corollary 3.10 holds true because of the following fact: If
lim(fn) = f0 in (Y X , d) and lim(gn) = g0 in (ZY , d), g0 ∈ ZY

U , then

lim(gnfn) = g0f0 in (ZX , d). Clearly, the converse does not hold, i.e., if
(gnfn) converges, then the sequence (fn) ((gn)) might not converge even if
(gn) ((fn)) converges. It is enough to take for Z (X) the trivial inverse se-
quence, and for X, Y (Y , Z) an appropriate pair. We pay a special attention
to the case lim(gnfn) = 1X and lim(fngn) = 1Y . Then again, in general,
the sequences (fn) and (gn) do not converge. This immediately confirms the
well known fact that the quasi-equivalence is strictly coarser than the shape
type classification. It also indicates the reason why the quasi-equivalence, in
general, is not transitive ([10]). Further, if lim(gnfn) = w, then w, in gen-
eral, does not admit a factorization through Y . Indeed, if this would hold,
then the quasi-equivalence would imply the shape domination, which is not
the case. Namely, if lim(gnfn) = 1X and lim(fngn) = 1Y would imply

1X = g0f0 or 1Y = f ′0g′0, then X ≤ Y or Y ≤ X in tow-HcANR, which
contradicts the known examples ([2,22]).

By the above characterization, the notion of quasi-equivalence can be
defined generally in any category pro-A, especially, in the category tow-A, for
any A. Then we can characterize a pair of isomorphic objects of tow-A as
follows.

Theorem 5.1. (i) Two inverse sequences X, Y in a category A are

isomorphic, X ∼= Y in tow-A, if and only if X
q
≃ Y and there exists a pair

of Cauchy sequences realizing this quasi-equivalence.

(ii) If X
q

≤ Y (X
q
≃ Y ), then X ≤ Y (X ∼= Y ) in tow-A provided the

space (XX , d) (as well as (Y Y , d)) is discrete.

Proof. (i). It is enough to prove the sufficiency part. Let X
q
≃ Y ,

i.e., lim(gnf
n) = 1X and lim(fn

gn) = 1Y , where (fn), (gn) are Cauchy se-

quences in (Y X , d) and (XY , d) respectively. By Theorem 2.6, the sequences
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(fn) and (gn) converge, lim(fn) = f0 and lim(gn) = g0. By Corollary 3.10,

g0f0 = 1X and f0g0 = 1Y . Thus, X ∼= Y in tow-A.

(ii). Let X
q

≤ Y . Then there exists a pair of sequences (fn) in (Y X , d),

(gn) in (XY , d) such that lim(gnfn) = 1X in (XX , d). Since (XX , d) is
discrete, there exists an n0 ∈ N such that, for every n ≥ n0, gnfn = 1X .

Hence, X ≤ Y . In the case X
q
≃ Y , the proof is quite similar.

Corollary 5.2. (i) Two metrizable compacta X and Y have the
same shape, Sh(X) = Sh(Y ), if and only if they are quasi-equivalent,

X
q
≃ Y , and there exists a pair of Cauchy sequences realizing this

quasi-equivalence.

(ii) If X
q

≤ Y (X
q
≃ Y ), then Sh(X) ≤ Sh(Y ) (Sh(X) = Sh(Y )) provided

every/some associated space (XX , d) (as well as every/some (Y Y , d))
is discrete.

Proof. Choose a pair X, Y of compact ANR inverse sequences asso-
ciated with X , Y respectively (lim X = X and limY = Y ), put the new
bonding mappings to be the homotopy classes, and apply Theorem 5.1.

Remark 5.3. Observe that the quasi-equivalence, generally, realizes with-
out any Cauchy sequence. Indeed, if in every case one of (fn), (gn) would be
a Cauchy sequence, then it could be replaced by its limit morphism. However,
then the quasi-equivalence would be transitive ([22, proof of Lemma 9 and
Remark 4]), which contradicts the main result of [10]. Thus, one may say
that Corollary 5.2 shows (measures) how far the quasi-equivalence is from the
shape type.

If we want to study objects of a category by means of inverse systems, we
ought to consider a category pair (C,D), D ⊆ C, such that every C-object X
admits a D-expansion p : X → X = (Xλ, pλλ′ , Λ), X ∈ Ob(pro-D) ([13]). In
some special cases, the sequential subpro-category proN-D ≡ tow-D suffices.
Then one usually says that D is sequentially dense in C. In that case, there
exists the corresponding (abstract) shape category Sh(C,D) realized via tow-D,
i.e.,

Sh(X, Y ) ≈ tow-D(X , Y ).

Especially, if Y ∈ ObD, then every shape morphism φ : X → Y , i.e., every
f : X → Y of tow-D, admits a unique representative f : X → Y of C. The
most interesting example is C = HcM (the homotopy category of metrizable
compacta) and D = HcANR (the homotopy category of compact ANR’s)
or D = HcPol (the homotopy category of compact polyhedra). We hereby
also want to involve in our considerations the S-equivalence ([11,12]) and S∗-
equivalence ([14]) (as well as the Sn- and S+

n -equivalence of [23] and [5]).
These equivalences and corresponding dominations are well defined in every
category tow-A.
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Theorem 5.4. Let X and Y be inverse sequences in a category A.

(i) Let X be semi-stable. Then, X is dominated by Y in tow-A if and
only if X is quasi-dominated by Y , i.e.,

X ≤ Y ⇔X
q

≤ Y .

Consequently, X
q

≤ Y implies S+
0 (X) ≤ S+

0 (Y ), whenever X is semi-
stable.

(ii) If X and Y are regularly movable or they both are stable, then

S+
0 (X) ≤ S+

0 (Y ) implies X
q

≤ Y .

Proof. First, we will show that, for every semi-stable X and every Z =
(Zν , sνν′ , N), the space (XZ , d) is discrete. It suffices to prove that there
exists a kX ∈ N such that, for every pair h, h′ : Z →X,

d(h, h′) ≤
1

kX + 1
⇒ h = h′.

Since X is semi-stable, there exists an i0 ∈ N such that

(∀i ≥ i0)(∀i
′ ≥ i)(∃r : Xi → Xi′)(∃i1 ≥ i′)(∀i′′ ≥ i1) rpii′′ = pi′i′′ .

Put kX = i0, and let h, h′ : Z → X be given such that d(h, h′) ≤ 1
kX+1 .

This means that, for every pair of representatives (h, hi) ∈ h, (h′, h′
i) ∈ h′,

(h, hi) ≃k (h′, h′
i),

whenever k ≤ kX = i0. Without loss of generality, we may suppose that
h ≤ h′. Let k ≡ i′ > i0. Then, for i = i0 and i′ > i, there exist an
r : Xi0 → Xi′ and an i1 ≥ i′ such that, for every i′′ ≥ i1, rpi0i′′ = pi′i′′ holds.
Choose a ν′′ ∈ N to be a commutativity index for (h, hi) and (h′, h′

i) with
respect to i ≤ i′ ≤ i′′ = i1. It is readily seen, by chasing the diagram

ν0 ← ν′
0 ←− ν ← ν′ ←− ν1 ← ν′

1 ← ν′′

h. ↓ւ h′
. h. ↓ւ h′

. h. ↓ւ h′
.

i = i0
←−
−→r

i′ = k ←− i′′ = i1

,

that hi′sνν′′ = h′
i′sν′ν′′ , which implies that (h, hi) ≃k (h′, h′

i). This proves
that (h, hi) ≃k (h′, h′

i) for all k ∈ N. Thus, by Lemma 2.2 (v), (h, hi) ≃
(h′, h′

i), i.e., h = h′.
To prove the first assertion, we need to prove the sufficiency part only.

Consider a pair of sequences (fn) in (Y X , d), (gn) in (XY , d) such that

lim(gnfn) = 1X in (XX , d). Since the space (XX , d) is discrete, the sequence
(gnfn) must be a stationary one. It implies that there exists an n0 ∈ N such
that, for every n ≥ n0, gnfn = 1X . Therefore, X ≤ Y in tow-A. The second
assertion of (i) follows now by [23, Theorem 2.15] (a general case; the notation
according to [5, Definition 1]).
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Let S+
0 (X) ≤ S+

0 (Y ), where X and Y are regularly movable, i.e., all
pii+1 and qjj+1 are retractions of A. Then condition S+

0 (Y , X) holds, which
means

(∀i1 ∈ N)(∃j1 ∈ N)(∀j′1 ≥ j1)(∃i
′
1 ≥ i1)

and there exist A-morphisms g1 : Yj1 → Xi1 and f1 : Xi′
1
→ Yj′

1
making the

following diagram commutative

Yj1 ← Yj′
1

g1 ↓ ↑ f1

Xi1 ← Xi′
1

.

Since X and Y are regularly movable, the morphisms g1 and f1 generate in

an obvious way the morphisms gi1 : Y → X and f j′1 : X → Y of tow-A,
respectively, such that

d(gi1f j′1 ,1X) ≤
1

i1 + 1
.

Namely, one has to put gi = pii1g1, i ≤ i1, and gi = uig1, i > i1, where
ui : Xi1 → Xi is the corresponding section; similarly for fj via f1, j ∈ N.
Observe that it holds for each i ∈ N and each corresponding j′. Therefore,
by appropriate inductive construction, there exist sequences (gn) in (XY , d)

and (fn) in (Y X , d) such that lim(gnfn) = 1X in (XX , d). Hence, X
q

≤ Y .
In the case of X and Y stable, the proof is much simpler. Namely, then there
exists a pair P, Q ∈ ObA such that X ∼= P and Y ∼= Q in tow-A, where P and
Q are inverse sequences generated by the identities 1P and 1Q respectively.
Then, clearly, S+

0 (X) ≤ S+
0 (Y ) implies S+

0 (P ) ≤ S+
0 (Q), which reduces to a

pair of A-morphisms g : Q→ P , f : P → Q such that the diagram

Q
1Q

← Q
g ↓ ↑ f

P
1P← P

commutes. It follows that P ≤ Q in A, and consequently, P ≤ Q in tow-A.

Then P
q

≤ Q follows trivially. Since the quasi-domination is invariant with
respect to isomorphisms of tow-A ([22, Lemma 2], a general case), it follows

that X
q

≤ Y .

Recall that the stability (strictly) implies strong movability ([24,7]). Fur-
ther, an FANR is characterized by the strong movability of any associated
inverse sequence in HcANR or HcPol ([13]). Finally, the strong movability
does not imply regular movability ([6,7,9]). However, the next corollary holds.

Corollary 5.5. Let X and Y be compact metrizable spaces.
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(i) Let X be semi-stable (especially, an FANR). Then X is shape domi-
nated by Y if and only if X is quasi-dominated by Y , i.e.,

Sh(X) ≤ Sh(Y )⇔ X
q

≤ Y.

Consequently, X
q

≤ Y implies S+
0 (X) ≤ S+

0 (Y ), whenever X is semi-
stable.

(ii) If X and Y are regularly movable or they both are FANR’s, then

S+
0 (X) ≤ S+

0 (Y ) implies X
q

≤ Y .

Proof. We only have to prove that S+
0 (X) ≤ S+

0 (Y ), where X and

Y are FANR’s, implies X
q

≤ Y . Namely, in general, a strongly movable
inverse sequence of tow-HcANR (associated with an FANR) is not stable
([7,24]). Hence, we may not apply the appropriate statement of Theorem 5.4.
However, every such a sequence (FANR) is stable with respect to HANR ([23,
Lemma 2.13 and Remark 2.14 (b)]). Therefore, one only has to verify that
the corresponding part of the proof of Theorem 5.4 works for the noncompact
ANR inverse sequences P and Q as well.

Remark 5.6. J. M. R. Sanjurjo proved in his paper [20] that the quasi-
domination on the class of all FANR’s is equivalent to the shape domination.
The result from above (Corollary 5.5 (i)) strengthens the former because it
assumes that only the dominated compactum is an FANR.

In the case of quasi-equivalence on the semi-stable inverse sequences (com-
pacta), one can get even more.

Theorem 5.7. Let X and Y be inverse sequences in a category A.

(i) If X and Y are semi-stable, then, X is isomorphic to Y in tow-A if
and only if X is quasi-equivalent to Y , i.e.,

X ∼= Y ⇔X
q
≃ Y .

Consequently, X
q
≃ Y implies S∗(X) = S∗(Y ), whenever X and Y

are semi-stable.
(ii) If X and Y are regularly movable or they both are stable, then S1(X) ≤

S1(Y ) (or S1(Y ) ≤ S1(X)) implies X
q
≃ Y .

Proof. The necessity part of assertion (i) is trivial. Conversely, as

in the proof of Theorem 5.4, if X
q
≃ Y , where X (Y ) is semi-stable,

then lim(gnfn) = 1X (lim(fngn) = 1Y ) implies that the sequence (gnfn)
((fngn)) is a stationary one. Thus, there exists an n1 ∈ N (n2 ∈ N) such
that, for every n ≥ n1 (n ≥ n2), gnfn = 1X (fngn = 1Y ). Hence, if
n ≥ n0 = max{n1, n2}, then gnfn = 1X and fngn = 1Y , which means
X ∼= Y in tow-A.



522 N. UGLEŠIĆ

Let S1(X) ≤ S1(Y ), i.e., let condition S1(X , Y ) is fulfilled ([5, Definition
1]). Then,

(∀j1 ∈ N)(∃i1 ∈ N)(∀i′1 ≥ i1)(∃j
′
1 ≥ j1)(∀j2 ≥ j′1)(∃i2 ≥ i′1)

and there exist A-morphisms f1 : Xi1 → Yj1 , g1 : Yj′
1
→ Xi′

1
and f2 : Xi2 →

Yj2 such that the following diagram in D commutes:

Xi1 ← Xi′
1
← Xi2

f1 ↓ g1 ↑ ↓ f2

Yj1 ← Yj′
1
← Yj2

.

Now, if Y and X are regularly movable, the morphisms f1, f2 and g1 generate
(see the proof of Theorem 5.4) morphisms f j1 : X → Y and gj′1 : X → Y of
tow-A, respectively, such that

d(gi′1f j1 ,1X) ≤
1

j1 + 1
and d(f j1gi′1 ,1Y ) ≤

1

i′1 + 1
.

Observe that the above relations hold for each j ∈ N and each corresponding
i′. Therefore, by an inductive construction, there exist sequences (fn) in

(Y X , d) and (gn) in (XY , d) such that lim(gnfn) = 1X in (XX , d) and

lim(fn
gn) = 1Y in (Y Y , d) . Hence, X

q
≃ Y . In the case of X and Y

stable, the proof may be as follows. There exists a pair P, Q ∈ ObA such that
X ∼= P and Y ∼= Q in tow-A, where P and Q are inverse sequences generated
by the identities 1P and 1Q respectively. Then, clearly, S1(X) ≤ S1(Y )
implies S1(P ) ≤ S1(Q), which reduces to three A-morphisms u1 : P → Q,
v1 : Q→ P , u2 : P → Q making the diagram

P
1
← P

1
← P

u1 ↓ v1 ↑ ↓ u2

Q
1
← Q

1
← Q

commutative. Thus, u1v1 = 1Q, v1u2 = 1P and u1 = u2. It follows that

P ∼= Q in A, and consequently, P ∼= Q in tow-A. Then P
q
≃ Q follows

trivially. Since the quasi-equivalence is invariant with respect to isomorphisms

of tow-A ([22, Lemma 2], a general case), it follows that X
q
≃ Y .

Corollary 5.8. Let X and Y be compact metrizable spaces.

(i) If X and Y are semi-stable (especially, FANR’s), then, X is shape
equivalent to Y if and only if X is quasi-equivalent to Y , i.e.,

Sh(X) = Sh(Y )⇔ X
q
≃ Y.

Consequently, X
q
≃ Y implies S∗(X) = S∗(Y ), whenever X and Y are

semi-stable.
(ii) If X and Y are regularly movable or they both are FANR’s, then

S1(X) ≤ S1(Y ) (or S1(Y ) ≤ S1(X)) implies X
q
≃ Y .
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Proof. Only assertion (ii) in the case of FANR’s needs an extra proof.
However, the corresponding part of the proof of Theorem 5.7 works for non-
compact ANR inverse sequences P and Q (“associated” with X and Y re-
spectively) as well. The conclusion follows.

5.2. The q-equivalence. Recall now the q-equivalence of inverse sequences in
tow-HcANR (associated with metrizable compacta) introduced in [22], Sec-
tion 5. By the definition and full category characterization ([22, Theorem 6]),

an X is q-equivalent to a Y , X
q
≃ Y , if and only if X is quasi-equivalent to

Y , X
q
≃ Y , and there exists a pair of realizing sequences (fn), (gn) having

unique increasing index functions. In terms of this paper, it means that

lim(gnfn) = 1X and lim(fngn) = 1Y ,

in (XX , d) and (Y Y , d) respectively, and for every n ∈ N, fn = [(f, [fn
j ])]

and gn = [(g, [gn
i ])]. Clearly, the q-equivalence is a kind of “uniformization”

of quasi-equivalence with respect to the index functions. It is strictly finer
than the quasi-equivalence, because, for instance, it is an equivalence rela-
tion ([22]), while the quasi-equivalence is not (transitive, [10]). Notice that
there is an obvious generalization to tow-A, for any category A. Two metriz-

able compacta X and Y are q-equivalent, X
q
≃ Y , if and only if there is a

(equivalently, for every) pair of associated X and Y in tow-HcANR such

that X
q
≃ Y . According to Theorem 5.4 (Corollary 5.5), the relations

q

≤,
q

≤
and the category domination coincide on the class of all semi-stable inverse
sequences of a category tow-A (especially, on all FANR’s in HcM). Further,

by Theorem 5.7 (Corollary 5.8), the relations
q
≃,

q
≃ and the category isomor-

phiness coincide on the class of all semi-stable inverse sequences of a category
tow-A (especially, on all FANR’s in HcM).

By applying the previously developed technique and results, we are able
to prove the following analogue of Theorem 5.1.

Theorem 5.9. Two inverse sequences X, Y in a category A are isomor-

phic, X ∼= Y in tow-A, if and only if X
q
≃ Y and there is a pair of realizing

sequences such that one of them is a Cauchy sequence.

First, some general auxiliary facts.

Lemma 5.10. Let u, u′ ∈ (Y X , d), v, v′ ∈ (ZY , d) and k ∈ N, such that

d(vu, v′u′) ≤ 1
k+1 in (ZX , d).

(i) If d(u, u′) ≤ 1
l+1 in (Y X , d) and v(k), v′(k) ≤ l ∈ N, then the distance

between any pair of points of {vu, v′u, vu′, v′u′} ⊆ (ZX , d) is less or
equal 1

k+1 . If, in addition, u (or u′) is a retraction of tow-A, then

d(v, v′) ≤ 1
k+1 in (ZY , d).
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(ii) If d(v, v′) ≤ 1
l+1 in (ZY , d), then the distance between any pair of

points of {vu, v′u, vu′, v′u′} ⊆ (ZX , d) is less or equal 1
r+1 , where

r = min{k, l}. If, in addition, v (or v′) is a section of tow-A,

then d(u, u′) ≤ 1
s+1 in (Y X , d), provided there exists a representa-

tive (w, wj), w increasing, (or (w′, w′
j), w′ increasing) of a left inverse

of v (or v′) such that w(s) ≤ r (w′(s) ≤ r).

Proof. Let d(u, u′) ≤ 1
l+1 and v(k), v′(k) ≤ l. Then, by Lemma 2.4 (vi),

d(vu, vu′) ≤ 1
k+1 and d(v′u′, v′u) ≤ 1

k+1 . Since d(vu, v′u′) ≤ 1
k+1 and d is

an ultrametric (Theorem 2.6), the first assertion follows (by assuming that u
and v are increasing, and u ≤ u′, v ≤ v′ and u′v ≤ uv′, one can provide a
direct proof by chasing the diagram

uv(k)← u′v(k)← uv′(k)← u′v′(k) ←− i
u. ↓ւ u′

. u. ↓ւ u′
.

v(k)←− v′(k)←− j = l
v. ↓ւ v′

k

).

If u (u′) is a retraction, then by Lemma 2.4 (v) d(vu, v′u) ≤ 1
k+1

(d(vu′, v′u′) ≤ 1
k+1 ) implies d(v, v′) ≤ 1

k+1 . This proves statement (i).

Let d(v, v′) ≤ 1
l+1 . Then, by Lemma 2.4 (v), d(vu, v′u) ≤ 1

l+1 and

d(vu′, v′u′) ≤ 1
l+1 . Since d(vu, v′u′) ≤ 1

k+1 and d is an ultrametric, the first

assertion of (ii) follows (by assuming that u and v are increasing, and u ≤ u′,
v ≤ v′ and u′v ≤ uv′, one can provide a direct proof by chasing the diagram

uv(r)← u′v(r)← uv′(r)← u′v′(r)← i ← uv(j′)← u′v(j′)← i′

u. ↓ւ u′
. u. ↓ւ u′

. u. ↓ւ u′
.

v(r)←− v′(r)← j ← j′

v. ↓ւ v′

r = min{k, l} ←

).

If v (v′) is a section such that there exists a desired representative of a left
inverse, then by Lemma 2.4 (vi), d(vu, vu′) ≤ 1

r+1 (d(v′u, v′u′) ≤ 1
r+1 )

implies d(u, u′) ≤ 1
s+1 . This proves statement (ii).

Proof of Theorem 5.9. We need to prove the sufficiency part only.
Let lim(gnfn) = 1X in (XX , d) and lim(fngn) = 1Y in (Y Y , d) such that,
for every n ∈ N, fn = [(f, fn

j )] and gn = [(g, gn
i )], and let (fn) be a Cauchy

sequence in (Y X , d). Without loss of generality, we may suppose that g ≥ 1N

increases. Let k ∈ N be chosen arbitrarily and let l = g(k). By assumptions
on (gnfn) and (fn), there exists an nk ∈ N such that, for all n, n′ ≥ nk,

d(gnfn, gn′

fn′

) ≤
1

k + 1
and d(fn, fn′

) ≤
1

l + 1
.
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Then, given any n, n′, n′′ ≥ nk, by the first claim of Lemma 5.10 (i),

d(gnfn, gn′

fn) ≤
1

k + 1
and d(gnfn, gn′′

fn) ≤
1

k + 1
.

Since d is an ultrametric,

d(gn′

fn, gn′′

fn) ≤
1

k + 1

also holds. By Lemma 2.4 (v),

(1) d(gn′

fngn, gn′′

fngn) ≤
1

k + 1

holds as well. Fix a pair n′, n′′ ≥ nk. Let (un) be the constant sequence

un = u = gn′

, and let (vn) be the constant sequence vn = v = gn′′

. Then,

clearly, lim(un) = gn′

and lim(vn) = gn′′

. Notice that inequality (1) turns
then into

d(unf
n
gn, vnf

n
gn) ≤

1

k + 1
, n ≥ nk.

Since (fngn), (un) and (vn) are convergent sequences, Corollary 3.10 implies
that (unfngn) and (vnfngn) are convergent too, and also that

lim(unfngn) = lim(un) lim(fngn) = gn′

1Y = gn′

and

lim(vnf
n
gn) = lim(vn) lim(fn

gn) = gn′′

1Y = gn′′

.

Therefore, there exists an n′
k ∈ N such that, for every n ≥ n′

k,

(2) d(gn′

fngn, gn′

) = d(unfngn, gn′

) ≤
1

k + 1

and

(3) d(gn′′

f
n
gn, gn′′

) = d(vnf
n
gn, gn′′

) ≤
1

k + 1
.

Since d is an ultrametric, (1), (2) and (3 imply that, for every pair n′, n′′ ≥
max{nk, n′

k},

d(gn′

, gn′′

) ≤
1

k + 1

holds, which proves that (gn) is a Cauchy sequence in (XY , d). In the same
(symmetric) way the assumption that (gn) is a Cauchy sequence implies that
(fn) is a Cauchy sequence as well. Finally, the conclusion now follows by
Theorem 5.1.

According to [22, Section 5], there exists a q-shape theory for compacta
(yielding the classification coarser than that by the shape type), modeled on
the corresponding quotient category Q. Observe that there also exists an
abstract q-shape theory for every category pair (C,D), whenever D ⊆ C is a
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sequentially dense subcategory. By means of this new metric technique, we
can prove the following facts:

Lemma 5.11. The semi-stability, movability and strong movability are the
hereditary q-shape properties.

Proof. Let X, Y ∈ ObC such that Y is q-shape dominated by X , and let
X be semi-stable. Let X, Y be sequential D-expansions of X , Y respectively.

Then Y
q

≤ X and X is a semi-stable inverse sequence in D (see [22, Lemma
6], which holds in any abstract case). Let (fn), (gn) be a pair of realizing

sequences for Y
q

≤X, i.e., lim(fngn) = !Y in (Y Y , d). Recall that, for every
n ∈ N, fn = [(f, fn

j )] and gn = [(g, gn
i )]. Without loss of generality, we

may assume that f and g are increasing and f, g ≥ 1N. Let i0 ∈ N be the
semi-stability index for X. Put j0 = g(i0), and let j′ ≥ j ≥ j0 be chosen
arbitrarily. Let i ≥ i0 be maximal such that g(i) ≤ j. Put i′ = f(j′). Since
X is semi-stable, there exist an A-morphism r : Xi → Xi′ and an i1 ≥ i′

such that, for every i′′ ≥ i1, rpii′′ = pi′i′′ holds. Choose a j∗ > j′ such that
f(j∗) ≥ i1. Finally, put n = j∗ and

s = fn
j′rg

n
i qg(i)j : Yj → Yj′ ,

and let a j1 ≥ gf(j∗) be chosen according to d(fn
gn,1Y ) ≤ 1

n+1 , i.e.,

(f, fn
j )(g, gn

i ) ≃n (1N, 1Yj
).

Now, given any j′′ ≥ j1, the following diagram occurs:

i
r−→
←−

i′ = f(j′) ← i1 ← f(j∗)

gn
. ↑ ↓ fn

. ↓ fn տ gn
.

g(i)← j
←−
−→s

j′ ← j∗ ← gf(j∗) ← j1 ← j′′

.

By chasing the diagram, one readily verifies that

sqjj′′ = fn
j′rg

n
i qg(i)jqjj′′ = qj′j′′ .

This proves that Y is a semi-stable inverse sequence in D. Finally, by Lemma
6 of [22], Y is semi-stable because Y is a sequential D-expansion of Y .

If X is movable and Y
q

≤ X, then Y is movable because the analogue
for the quasi-domination is already proved in [2]. Finally, if X is strongly
movable, one has to obtain a construction quite similar to that of the first
part of the proof, taking into account that both properties (movability and
semi-stability) are satisfied by a unique morphism r : Xi′ → Xi′′ .

That following facts make the q-equivalence (q-shape) analogues of The-
orem 5.7 and Corollary 5.8 respectively.
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Theorem 5.12. Let X and Y be inverse sequences in a category A,

(i) Let X (or Y ) be semi-stable. Then X is isomorphic to Y in tow-A
if and only if X is q-equivalent to Y , i.e.,

X ∼= Y ⇔X
q
≃ Y .

Consequently, X
q
≃ Y implies S∗(X) = S∗(Y ), whenever X (or Y )

is semi-stable.
(ii) If X and Y are stable, then S1(X) ≤ S1(Y ) (or S1(Y ) ≤ S1(X)) is

equivalent to X∼=Y .

Proof. Statement (i) follows by Theorem 5.7 and Lemma 5.11. To prove

(ii), first observe that Theorem 5.7 (ii) assures that X
q
≃ Y . Notice that

X ∼= P , Y ∼= Q and (obtained) X
q
≃ Y imply X

q
≃ P , Y

q
≃ Q and P

q
≃ Q.

Then X
q
≃ Y follows by transitivity of the q-equivalence ([21, Theorem 6

(iii)], general case). Finally, by (i), X∼=Y . The converse is trivial.

Corollary 5.13. Let X and Y be compact metrizable spaces.

(i) Let X (or Y ) be semi-stable (especially, an FANR). Then, X is shape
equivalent to Y if and only if X is q-shape equivalent to Y ,

Sh(X) = Sh(Y )⇔ X
q
≃ Y.

Consequently, the stability and strong movability (being an FANR) of
metrizable compacta are invariants of the q-equivalence, i.e., of the
q-shape type. Further,

X
q
≃ Y implies S∗(X) = S∗(Y ),

whenever X (or Y ) is semi-stable.
(ii) If X and Y are FANR’s (especially, stable), then S1(X) ≤ S1(Y ) (or

S1(Y ) ≤ S1(X)) is equivalent to Sh(X) = Sh(Y ).

Proof. We only have to verify the necessity in the last assertions con-

cerning FANR’s. The conclusion X
q
≃ Y holds as in the proof of Corollary 5.8,

while then X
q
≃ Y follows by applying the corresponding part of the proof of

Theorem 5.12 to tow-HANR. Namely, as we mentioned before, FANR’s are
stable with respect to (noncompact) ANR’s. Then apply (i).

Remark 5.14. The full analogues of Theorem 5.7 (ii) and Corollary 5.8
(ii) do not hold for the q-equivalence (q-shape). Namely, there exists a pair
of regularly movable inverse sequences X , Y in cPol (regularly movable com-
pacta X , Y ; see Example 5.15 below) such that S1(X) = S1(Y ), while X is
not q-equivalent to Y (S1(X) = S1(Y ), while X and Y have different q-shape
types).
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Example 5.15. Let X be the image of a nonstationary convergent se-
quence including the limit point in the Euclidean space R. For instance,

X = {
1

n
| n ∈ N} ∪ {0} ⊆ R.

Let Y = X⊔X (disjoint union). Let X = (Xi, [pii′ ] = {pii′}, N) be associated
with X , i.e., limX = X , where Xi is discrete, |Xi| = i, i ∈ N, and pii′

are surjections such that the fibres of all the points, except the “exploding”
one, are singletons (see Example 2.8). Let Yj = Xj ⊔ Xj , j ∈ N, and let
qjj′ = pjj′ ⊔ pjj′ . Then Y = X ⊔ X is associated with Y . Observe that
all the bonding mappings pii′ and qjj′ are retractions. Thus, X and Y are
regularly movable. By [6], X and Y are regularly movable as well. By [23],
Example 2.9, S1(X) = S1(Y ) (S1(X) = S1(Y )) holds. Then, by Theorem 5.7

(Corollary 5.8 or, directly, by (6.3) Theorem of [2]), X
q
≃ Y (X

q
≃ Y ).

However, X is not q-equivalent to Y (X and Y have different q-shape types)
- see the proof below.

Consider any pair of realizing sequences (fn) in (Y X , d), (gn) in (XY , d),

i.e., lim(gnfn) = 1X in (XX , d) and lim(fngn) = 1Y in (Y Y , d). Let
(fn, fn

j ) and (gn, gn
i ) be any representatives of f

n and gn respectively, n ∈
N. Notice that every homotopy commutative diagram relating X to Y and
vice versa must be (strictly) commutative, and that all the mappings fn

j

and gn
i must be surjective. Then, a straightforward analysis (compare the

proof following [23], Example 2.9) shows that, for every n ∈ N, the inequality
fn(1) ≥ 2n + 1 must be satisfied. Consequently, there is no unique index
function for any sequence ((fn, fn

j )) representing (fn). Thus, X (X) cannot

be q-equivalent to Y (Y ).
Let us show, in addition, that this example confirms a significance of

Theorem 5.9 comparing to its analogue (Theorem 5.1). First, observe that

one can provide a Cauchy sequence (gn) in (XY , d) satisfying the above rela-
tions. Then, by Theorem 2.10, (gn) admits a representing sequence ((g, gn

i ))
(moreover, (gn) may be the constant sequence gn = r : Y → X, where r

is induced by the obvious retractions (“gluing”) ri : Xi ⊔ Xi → Xi, i ∈ N).
Now, if X (X) would be q-equivalent to Y (Y ), then Theorem 5.9 would
imply that X ∼= Y in tow-HcPol (X is shape equivalent to Y ). This, finally,
would imply that X and Y are homeomorphic ([1], VII. (5.9) Corollary) - a
contradiction.

6. Final notes

(a) According to Remark 5.3 and Example 5.15, there is a new equivalence
relation on inverse sequences, i.e., on Ob(tow-A), as well as on compact metriz-
able spaces. It lies strictly between the quasi-equivalence and q-equivalence.
Namely, by Remark 5.3, only one sequence having a fixed index function is
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enough for the quasi-equivalence to be transitive. However, by Example 5.15,
this does not suffice for it to become the q-equivalence.

(b) The essential properties of the ultrametric d : Y X × Y X → R, de-
fined for cofinite inverse systems in Section 2, depends almost entirely on Y .
A slight dependence on X as well can be introduced in the following way.
First, for (f, fµ), (f ′, f ′

µ) : X → Y , one defines (f, fµ) ≃λ
µ (f ′, f ′

µ) provided

fµpf(µ)λ = f ′
µpf ′(µ)λ. Then, (f, fµ) ≃n′

n (f ′, f ′
µ), provided (f, fµ) ≃λ

µ (f ′, f ′
µ)

for every µ ∈ M and some λ ∈ Λ such that |µ| < n and |λ| < n′. Consider
the following formula:

ρ′((f, fj), (f
′, f ′

j)) =
1

n + 1
−

1

m + 2
,

whenever (f, fµ) ≃n′

n (f ′, f ′
µ), with n maximal and n′ minimal, and m =

max{n.n′}.
Further, let ρ′((f, fj), (f

′, f ′
j)) = 1, provided (f, fµ) ≃n (f ′, f ′

µ) does not
hold for any n. By passing to the obvious limits, these formulae induce a
pseudometric ρ′ on the set inv-A(X, Y ). It is readily seen that it yields a
metric

d′ : Y X × Y X → R, d′(f , f ′) = ρ′((f, fj), (f
′, f ′

j)),

where f and f ′ are minimal index functions among all representatives. Clearly,
d′ ≤ d. It is not difficult to prove that d′ is complete and topologically
equivalent to d. However, one can easily verify that d′ is not an ultrametric.

(c) Finally, a few words about the notions of stability and regular mov-
ability. Stability of a system of a pro-category pro-A means being isomor-
phic (in pro-A) to a rudimentary system. However, when the stability of a
C-object has to be defined, one should emphasize a certain subcategory of
pro-D. Namely, a C-object generally admits many expansions belonging to
(different subcategories of) pro-D. For instance, all FANR’s are stable with
respect to tow-HANR (as well as to pro-HPol), while there are FANR’s that
are not stable with respect to tow-HcANR (or pro-HcPol).

The regular movability was defined for metric compacta by A. Trybulec
([21]): A compactum X is said to be regularly movable provided it admits an
associated ANR inverse sequence X such that each bonding mapping pi,i+1

is a homotopy domination (weak retraction). In [6] was proved that the
regular movability of compacta is a shape invariant (the proof essentially
depends on specific properties of compact ANR’s). Thus, a characterization
may be as follows: A compactum X is regularly movable if and only if, for
every associated compact ANR inverse sequence X, there exists an i0 ∈ N
such that every i ≥ i0 admits an i′ > i so that [pii′ ] is a retraction. In
[10] was proved that regular movability is not a hereditary shape property.
Clearly, by using the above characterization, one can generally define the
regular movability of an inverse sequence (system) as well as of an object.
However, the invariance of regular movability of compacta has no analogue in
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the case of a corresponding abstract shape anymore. Namely, this property
is not a categorical one. More precisely, a category isomorphism, in general,
does not preserve the regular movability. Moreover, the stability does not
imply regular movability.
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