Complexation between Antimony and o-Chlorophenylfluorone and its Application to Determination of Antimony in Wastewater

Lu-Ting Pan, Xiang-Hu Liu, Tian Li, and Jian-Wei Fan*

State Key Laboratory of Pollution Control and Resource Reuse Research, College of Environmental Science and Engineering, Tongji University, Shanghai-200092, P. R. China

Abstract. The formation of a chelate complex of antimony(III) with o-chlorophenylfluorone (CPF) was used for the spectrophotometric determination of antimony. The spectral correction technique was applied to characterize the complexation and the determination of SbIII. Results have shown that complex Sb(CPF)$_2$H$_2$O was formed and its stepwise stability constants were determined to be $\log K_1=6.44$ and $\log K_2=5.81$. The molar absorptivities of the complex at pH=4.5 and at 540 nm were $\varepsilon_1=1.38 \times 10^4$ and $\varepsilon_2=3.46 \times 10^4$ dm3 mol$^{-1}$ cm$^{-1}$. The method is characterised by selectivity in the presence of the mixture of thiourea, triethanolamine and ethylenebis(oxyethylenenitrilo)-tetraacetic acid. The limit of detection is 0.03 μg cm$^{-3}$ of SbIII. Analysis of wastewater samples was performed with satisfactory results.

Keywords: spectral correction technique, o-chlorophenylfluorone, spectrophotometry, determination of antimony, wastewater

INTRODUCTION

Antimony is rare in nature and unpolluted water typically contains less than 1 ng cm$^{-3}$ of Sb. It often exists in wastewater discharged from metallurgical, ore dressing, and electroplating, printing, leather-manufacturing, pharmaceutical factories. Sb belongs to the group of non-essential elements and its toxicity is comparable to arsenic and bismuth. The United States Environmental Protection Agency (EPA) lists Sb and its compounds as the priority pollutants. Most common current methods for the determination of SbIII species in aqueous solution include hydride generation atomic absorption spectroscopy,1 GC-MS,2 differential pulse stripping voltammetry,3,4 etc. Only a few spectrophotometric methods are applied to detection of antimony, e.g., some ordinary spectrophotometric methods,5 kinetic spectrophotometric methods,6 and first-derivative spectrophotometric method.7 These methods are also used along with some other technologies, e.g., partial least squares method,8 flow injection,9 and solvent extraction.10 Compared to other methods, the spectrophotometric method has its advantages, such as low cost, simple operation, easy spread and wide application. Up to now, it has been studied extensively, particularly in the developing countries.

The purpose of the present work is to investigate the complexation between antimony(III) and o-chlorophenylfluorone (CPF) by the spectral correction technique, which has greatly improved determination of metal ions instead of ordinary spectrophotometry.12,13 The SbIII-CPF complex was used to detect antimony concentration in wastewater and the effect of other metal ions on SbIII determination was studied.

EXPERIMENTAL

Apparatus and Reagents

A double-beam spectrophotometer, Model Lambda-25 (Perkin-Elmer, USA), with UV WinLab software (Version 2.85.04), was used for absorption measurements. The solution pH was measured with a pH meter Model pHS-25 (Shanghai Precise Science Instruments, China).

Antimony(III) stock solution (1.000 mg cm$^{-3}$) was prepared by dissolving 1.000 g of high-purity antimony (> 99.9 %, A. R., Shanghai Chemicals, China) in 25 cm3 of sulfuric acid (A. R., Shanghai Chemicals, China) and heating for dissolution, and the volume was made up to 1000 cm3 with deionized water. Working solutions were obtained by suitable dilution of the stock solution with deionized water.

CPF (1.00 μmol cm$^{-3}$) was used. The solution was prepared as described earlier.14
Surfactant solutions (all with surfactant mass fraction, \(w = 1 \% \)) were prepared: Triton X-100, cetyltrimethylammonium bromide (CTAB) and sodium dodecyl benzene sulfonate (SDBS) (Shanghai Chemical Regents Co., China Medicals). The masking reagent was prepared by mixing 5 g of thiourea, 4 cm\(^3\) of triethanolamine (A. R., Zhengzhou Chemicals, China) and 4 g of ethylenebis(oxyethylenenitrilo)-tetraacetic acid (EGTA, A. R., Fudan University, China) and diluting it to 200 cm\(^3\) with deionized water.

Complex Characterization

20.0 \(\mu \)g of Sb\(^{III} \) was placed in a 25-cm\(^3\) volumetric flask. 2.5 cm\(^3\) of acetate buffer solution, pH = 4.5, 1 cm\(^3\) of a surfactant solution and a known volume of 1.00 \(\mu \)mol cm\(^{-3}\) CPF were added. The volume was made up to the mark with water and the solution was mixed well. After 10 min, solution absorbances were measured at 430 and 540 nm against a reagent blank, respectively. The constants were calculated as described earlier.\(^{16} \)

Determination of Sb\(^{III} \).\(^{17} \) 50 cm\(^3\) of a wastewater sample solution was mixed with 10 cm\(^3\) of concentrated sulfuric acid. The mixture was heated until evaporated to the volume of about 10 cm\(^3\), then neutralized with 10 % (w) NaOH and filtered. Filtrate solution was diluted to 50 cm\(^3\). Suitable aliquots of sample solution were analyzed for antimony as describe above.

RESULTS AND DISCUSSION

Absorption spectra of CPF and its Sb\(^{III} \)-CPF complex solutions recorded against water have their maxima at 496 and 540 nm, in case of pH = 4.5,\(^{15} \) 1 cm\(^3\) of a surfactant solution and a known volume of 1.00 \(\mu \)mol cm\(^{-3}\) CPF were added. The volume was made up to the mark with water and the solution was mixed well. After 10 min, solution absorbances were measured at 430 and 540 nm against a reagent blank, respectively. The constants were calculated as described earlier.\(^{16} \)

Determination of Sb\(^{III} \).\(^{17} \) 50 cm\(^3\) of a wastewater sample solution was mixed with 10 cm\(^3\) of concentrated sulfuric acid. The mixture was heated until evaporated to the volume of about 10 cm\(^3\), then neutralized with 10 % (w) NaOH and filtered. Filtrate solution was diluted to 50 cm\(^3\). Suitable aliquots of sample solution were analyzed for antimony as describe above.

The influence of CPF addition on the solutions containing 0.80 \(\mu \)g cm\(^{-3}\) Sb\(^{III} \) was examined. Absorbances remain maximally constant when CPF concentration is higher than 0.016 \(\mu \)mol cm\(^{-3}\). The effective fraction (\(\eta \)) of CPF and the composition ratio (\(\gamma \)) of CPF to Sb\(^{III} \) calculated according to literature\(^{16} \) are shown in Figure 2. From curve 1, \(\eta \) increases from 58 % up to 90 % with increasing the CPF concentration from 0.006 to 0.016 \(\mu \)mol cm\(^{-3}\) and then decreases after further increasing it above 0.016 \(\mu \)mol cm\(^{-3}\). \(\gamma \) almost remains a constant maximum at 2 when CPF concentration is higher than 0.016 \(\mu \)mol cm\(^{-3}\). As a result, the Sb(CPF)\(_2\)H\(_2\)O complex can be formed.

By varying the solution pH between 3.0 and 7.5, the peak-valley absorbance interval remains a constant maximum between pH = 3 and 5. As a result, pH = 4.5 acetate buffer solution was added in this work.

The presence of surfactants might provide a higher complexation ability with a catalytic field.\(^{19} \) Three types of surfactants: Triton X-100 as non-ionic surfactant, CTAB as cationic surfactant and SDBS as anion surfactant were
added and their effects on the interval between peak and valley absorptions of the complex solution were measured. Triton X-100 gives the longest interval. The light-absorption of SbIII-CPF solution approaches a maximum while more than 0.5 cm3 of 1% (w) Triton X-100 is present. Hence, 1.0 cm3 of 1% Triton X-100 was added in this work.

The effect of time indicated that the reaction was complete in 5 min in the presence of Triton X-100 and the absorbance of the solution remained almost constant for at least 2 h.

The stepwise stability constant (K_n) and the stepwise absorptivity (ε_n) of the complex were calculated. Two solutions were prepared: one contained 0.80 μg cm$^{-3}$ of SbIII and 0.006 μmol cm$^{-3}$ of CPF and the other 0.80 μg cm$^{-3}$ of SbIII and 0.012 μmol cm$^{-3}$ of CPF. Results are given as follows: log $K_1 = 6.44$, log $K_2 = 5.81$, $\varepsilon_1 = 1.38 \times 10^4$ and $\varepsilon_2 = 3.46 \times 10^4$ dm3 mol$^{-1}$ cm$^{-1}$ at 540 nm at 15°C in the medium of ionic strength $I_c = 0.01$ mol dm$^{-3}$. Thus, log $K = 12.25$. From ε_2, the complex reaction is sensitive.

A series of standard solutions containing SbIII (between 0 and 40.0 μg) were prepared and the absorbance of each solution was measured. The regression equations at 540 nm are: $A = 0.0169x - 0.006$ ($R = 0.9996$) and $\Delta A = 0.0150x - 0.006$ ($R = 0.9957$), where x is the Sb concentration expressed in μg cm$^{-3}$. From the R values and the line scopes, both the accuracy and sensitivity of the spectral correction technique are better than those of ordinary spectrophotometry.

Six replicated determinations of a standard solution containing 5.00 μg of SbIII were carried out. The mean ± standard deviation and relative standard deviation were 4.98 ± 0.11 μg, and 2.2% by the proposed method. However, they were 4.81 ± 0.35 μg, and 7.3% by the single wavelength spectrophotometry. The limit of detection (LOD), defined as the average of 10 replicated blanks plus 3 times of the standard deviation of the blank, was calculated to be 0.03 μg cm$^{-3}$ SbIII.

Once the masking reagent as a mixture of thiourea, triethanolamine and EGTA was added, none of the following ions will affect the direct determination of 10.0 μg of SbIII (< 5% error): 1000 μg of Cl$^-$, SO$_4^{2-}$, NO$_3^-$, F$^-$, PO$_4^{3-}$, NH$_4^+$, Ca$^{2+}$, Mg$^{2+}$, Ba$^{2+}$, Cu$^{2+}$; 300 μg of Hg$^{2+}$, Cd$^{2+}$; 150 μg of La$^{3+}$, Au$^{3+}$; 60 μg of Ni$^{2+}$, Co$^{2+}$, Sn$^{2+}$, Ag$^{+}$, Pt$^{4+}$, Cr$^{3+}$, Zn$^{2+}$; 20 μg of Mn$^{2+}$, Al$^{3+}$ and 10 μg of V$^{5+}$, Ti$^{4+}$, Fe$^{2+}$, Ge$^{4+}$.

Sample Analysis

To test the method, two wastewater samples were analyzed. They were obtained from a metallurgic plant (sample #1) and an electroplating workshop (sample #2). Before determination, every sample must be pretreated according to the mentioned procedures. Analysis results of (Table 1) were in good agreement with those obtained by atomic fluorescence spectrophotometry (AFS). The recommended method is accurate and feasible in the section of determination of antimony in wastewater.

CONCLUSION

Formation of the SbIII-CPF complex has been studied by the spectral correction technique. The recommended method is simple, sensitive and selective for the determination of SbIII. The advantage of the present procedure is that it does not require many reagents and has a low RSD value. The relative standard deviation for six replicate measurements of 5.00 μg cm$^{-3}$ of antimony(III) was 2.2%, whereas single wavelength spectrophotometry gave a RSD value 7.3%. The method has been applied to determine antimony in wastewater samples with acceptable results.

Acknowledgements. Financial support from the National Key Technology R&D Program of China (No. 2008BAJ08B13) is gratefully acknowledged.

<table>
<thead>
<tr>
<th>Sample</th>
<th>γ(Sb)(μg cm$^{-3}$)</th>
<th>RSD/%</th>
<th>Recovery/%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Added</td>
<td>Found</td>
<td>AFS(c)</td>
</tr>
<tr>
<td></td>
<td>Prop. meth.(b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1</td>
<td>0</td>
<td>0.628 ± 0.04</td>
<td>0.622 ± 0.032</td>
</tr>
<tr>
<td></td>
<td>1.25</td>
<td>1.88 ± 0.03</td>
<td>1.91 ± 0.04</td>
</tr>
<tr>
<td>#2</td>
<td>0</td>
<td>1.24 ± 0.03</td>
<td>1.12 ± 0.04</td>
</tr>
<tr>
<td></td>
<td>1.25</td>
<td>2.56 ± 0.04</td>
<td>2.44 ± 0.05</td>
</tr>
</tbody>
</table>

(a) Average of four determinations
(b) Proposed method
(c) Atomic fluorescence spectrometry

Table 1. Determination of antimony in wastewater. Conditions: $c_{CPF} = 0.040$ μmol dm$^{-3}$, pH = 4.5
REFERENCES

SAŽETAK
Kompleks antimona s o-klorofenilfluoronom i njegova primjena za određivanje antimona u otpadnim vodama

Lu-Ting Pan, Xiang-Hu Liu, Tian Li i Jian-Wei Fan
State Key Laboratory of Pollution Control and Resource Reuse Research, College of Environmental Science and Engineering, Tongji University, Shanghai-200092, P. R. China

Formiranje kelatnog kompleksa između antimona(III) i o-klorofenilfluorona (CPF) upotrebili smo za spektrofotometrijsko određivanje antimona, pri čemu je korištena tehnika korekcije spektara. Rezultati su pokazali da nastaje kompleks sastava Sb(CPF)2H2O čije je log K1 = 6,44 i log K2 = 5,81, a molarne apsorptivnosti ε1 = 1,38 × 104 i ε2 = 3,46 × 104 dm³ mol⁻¹ cm⁻¹, pri 540 nm i pH= 4.5. Metoda je selektivna u prisutnosti smjesi tiouree, trietanolamina i etilenbis(oksietilenitrilo)-tetraoctene kiseline. Granica detekcije za Sb(III) je iznosila 0,03 μg cm⁻³. Analizom uzoraka otpadnih voda dobiveni su zadovoljavajući rezultati.