Simulacija profila brzine toka prirodnog plina ispod vodene mase kroz puknuće u punom presjeku na uronjenomu podmorskom cjevovodu

E.O. ObaniJesu and E.O. Omidiora

STRUČNI ČLANAK

Ovaj rad razvija model koji se zasniva na načelu očuvanja gibanja kako bi se predvidio tok prirodnog plina u vodenoj masi nakon neočekivana istjecanja kroz pukotinu punog presjeka (FBR) iz uronjenoga podmorskog cjevovoda. Za diskretizaciju modela korištena je metoda konačnih razlika, za njegovu simulaciju primijenjena je Crank-Nicholson numerička metoda, dok je MATLAB 7 korišten za simuliranje rezultirajućeg algoritma. Rješenja modela generirana su na različitim točkama mreže u proračunskoj domeni računanja kako bi se prikazao model toka na različitim točkama vodene mase, vertikalno i horizontalno. Model dobro prikazuje tok prirodnog plina u usporedbi sa sličnim postojećim modelima, pa je primjenjiv pri planiranju i koordinaciji aktivnosti u akcidentnim situacijama (ARPU).

Ključne riječi: prirodni plin, cjevovod, profil brzine, puknuće punog presjeka, ARPU

UVOD

Prirodni plin je smjesa jednostavnih ugljikovodika i neugljikovodika, koji kao plin postoji pri prosječnoj temperaturi i tlaku.⁹ Uglavnom se sastoji od metana (CH₄) i etana (C₂H₆) s funkcionalnom količinom propana (C₃H₈) i butana (C₄H₁₀). Uz komponente ugljikovodika, sirovi prirodni plin sadrži različite količine zagađivača ili razrjeđivača koji nisu ugljikovodični, poput vodikova sulfida (H₂S), ugljičnog dioksida (CO₂), dušika (N₂) i helija (He). Njegov se sastav razlikuje po porijeklu, vrsti nastanka i lokaciji nalazišta, geološkoj strukturi regije te drugim čimbenicima.¹⁸

Plin se koristi kao gorivo u domaćinstvu i u industriji, kao sirovina za sintezu metanola, formaldehida i drugih kemijskih spojeva⁵, te za proizvodnju toplinske energije.¹² Također, koristi se i u sustavima rashladnih uređaja za domaćinstvo, važan je sastojak u plastici, u umjetnom gnojivu i u antifrizu. Koristi se i za predgrijavanje metala (uglavnom za željezo i čelik), sušenje i odvlaživanje, topljenje stakla i pri obradi hrane.

Prirodni plin se neprekidno transportira kroz složenu mrežu cjevovoda dizajniranih za brz i učinkovit transport od mjesta nastanka do područja velike potražnje pod visokim tlakom i temperaturom od oko -160 °C (113 K).¹¹ Za kontinuirani odobalni transport plina cijevi se polažu u rovove iskopane na dnu vodene mase, a nakon toga se cijevi umeću u cementne zaštitne cijevi kako bi ostale na dnu. Postoji i drugi način kontinuiranoga odobalnog transporta plina koji omogućuje da voda uzgonom smanji duljinu cijevi.¹⁴ Međutim, te su cijevi podložne perforacijama zbog korozije, pogreškama pri sklapanju, pogreškama u proizvodnji, zbog neodgovarajućeg održavanja, lomova spona, konstrukcijskih pogrešaka, neodgovarajućih materijala i nepravilnog tretmana topline, pogrešaka na odljevcima, zbog promjena u uvjetima rada i neprikladnoj zaštiti okoliša i kontroli.^{13. 10. 15} Nakon takva kvara prenošeni se fluid izlijeva u vodu i remeti njezin sastav i biomasu. Oslobađanje zagađivača poput ugljikovodika i sumporovodika u vodu uzrokuje masovni pomor mnogih organizama, uključujući ribe i bentoske mekušce¹⁸, čini vodu neprikladnom za ljudsku upotrebu²¹, izaziva nastanak plinskih hidrata i ispuštanje hlapljivih organskih spojeva (VOC) u atmosferu.

Kako bi se takvi problemi sveli na minimum, razvijeni su brojni modeli da bi se proučio profil brzine plina iz točke ispuštanja radi točnog prikaza stvarne situacije pomoću iterativnog postupka.^{2. 22. 23}

ObaniJesu i Mosobalaje¹⁵ razvili su sličan model na profilu koncentracije. Taj rad razvija model kojim se predviđa brzinski profil plina unutar vodenog tijela nakon takva akcidenta, a temelji se na načelu očuvanja gibanja. Model je bio diskretiziran korištenjem metode konačnih razlika (FDM), dok je numerička tehnika Crank-Nicholson korištena kako bi se simulirao rezultirajući algoritam.

Simulacija spomenuta scenarija bitna je za razumijevanje ponašanja ovog fluida u slojevitomu ili neslojevitomu vodenom tijelu. Također, on predviđa obim mogućega zagađenja s obzirom na koncentraciju i veličinu područja. Ujedno je s lakoćom moguće predvidjeti smjer protjecanja zagađujuće tekućine u vodenom tijelu. Ako se u sustavu pojave novi elementi, ova se studija može koristiti i za predviđanje uskih grla ili drugih problema koji se mogu pojaviti u ponašanju takva sustava. Može se primijeniti i pri eksperimentima s novim situacijama o kojima nemamo ili imamo vrlo malo

E.O. OBANIJESU AND E.O. OMIDIORA

informacija kako bismo se pripremili za moguće posljedice.

METODOLOGIJA

Razvoj modela

Prema Govieru i Azizu (2002)⁶, jednadžba dvodimenzionalnog modela za očuvanje momenta gibanja fluida koji protječu kroz cijevi glasi

$$\frac{\partial (U_{\rho_i})}{\partial t} + \frac{\partial (\rho U \rho_i \rho_j)}{\partial x \rho_j} = -\frac{\partial \rho}{\partial x_{\rho_i}} + \frac{\partial D_{ij}}{\partial x_{\rho_j}} + \rho g_{\rho_i} + F_{\rho_i}$$
(1)

gdje je

 U_{pi} i U_{pj} su brzine plinske faze uiij - smjeru

 ρ je gustoća plinske faze

 x_i i x_j je položaj plina u smjeru *i* i *j*

p je tlak

 g_{pi} je sila gravitacije u smjeru *i*

 F_{pl} je ispuštanje izvora u smjeru i (prinošenje iz točke ispuštanja)

 D_{ij} je tenzor naprezanja (tenzor drugog reda čije su komponente naprezanja koje djeluju duž površine okomito na smjer koordinata)

Odnos plinske konstante dali su Smith i suradnici¹⁹ kao

$$pV = nRT \tag{2}$$

Preuređivanje jednadžbe (2) daje

$$\rho = \rho RT$$
 (3)

gdje su

$$\rho = \frac{n}{V} \tag{4}$$

$$r = \frac{R}{W}$$
(5)

R je plinska konstanta

W je molekularna masa zraka

T je temperatura

 D_{ii} je odredio Abou-Arab (1986)¹ kao

$$D_{ij} = \frac{\mu \delta U_{\rho i}}{\delta x_{\rho,i}} + \frac{\delta U_{\rho j}}{\delta x_{\rho,i}} - \frac{2\mu \delta U_{\rho,i}}{3\delta x_{\rho,i}} \delta_{ij}$$
(6)

gdje su

 μ - viskoznost plina

 δ_{pi} Kronecker delta

Prema Kumaru⁸

$$d_{ij} \operatorname{za} i = j \operatorname{i} \delta_{ij} = 0 \operatorname{za} i \neq j \tag{7}$$

Međutim, prema Chungu⁴

 $i \neq j$ na putu strujanja, osim na točki istjecanja gdje i=j (t=0) (8)

Uvrsti li se (7) i (8) u (6) dobiva se

$$D_{ij} = \frac{\mu \delta U_{p,i}}{\delta x_{p,j}} + \frac{\delta U_{pj}}{\delta x_{p,j}}$$
(9)

SIMULACIJA PROFILA BRZINE TOKA PRIRODNOG PLINA...

Uvrštavanje jednadžbe (9) u jednadžbu (1) daje

$$\frac{\delta(\rho U_{\rho i})}{\delta t} + \frac{\delta(\rho U_{\rho i}, U_{\rho j})}{\delta x_{\rho j}} = \frac{-\delta p}{\delta x_{\rho i}} + \frac{\delta}{\delta x_{\rho j}} \left[\frac{\mu \delta U_{\rho,i}}{\delta x_{\rho j}} - \frac{\delta U j}{\delta x_{\rho j}} \right] + \rho g_{\rho j} - F_{\rho,i}$$
(10)

Daljnji razvoj jednadžbe (10) daje

$$\frac{\delta(\rho U_{\rho_i})}{\delta t} + \frac{\delta(\rho U_{\rho_i} U_{\rho_j})}{\delta x_{\rho_j}} = \frac{-\delta p}{\delta x_{\rho_i}} + \frac{\mu \delta^2 U_{\rho_i}}{\delta x_{\rho_j}^2} + \frac{\delta^2 U_{\rho_j}}{\delta x_{\rho_j}} + \rho g_{\rho_j} + F_{\rho_i}$$
(11)

Daljnje preuređivanje jednadžbe (11) daje model jednadžbe

$$\frac{\delta(\rho U_{\rho i})}{\delta t} + \delta U_{\rho i} \frac{\delta(U_{\rho i})}{\delta x_{\rho j}} = \frac{-\delta \rho}{\delta x_{\rho i}} + \frac{\mu \delta^2 U_{\rho i}}{\delta x_{\rho j}^2} + \frac{\delta^2 U_{\rho j}}{\delta x_{\rho j} \delta x_{\rho i}} + \rho g_{\rho j} + F_{\rho, i} \quad (12)$$

Simulacija modela

Za simulaciju modela razvijena je numerička metoda korištenjem FDM-a (metode konačnih razlika), slika 1. Parcijalne derivacije u parcijalnoj diferencijalnoj jednadžbi izveo je u obliku parcijalne diferencijacije Kreyzig.⁷ Računska domena podijeljena je na sistem regularne mreže, a onda je nađena aproksimacija za diferencijalnu jednadžbu u točki sjecišta tih linija. Aproksimacija je učinjena zamjenom derivacije jednadžbe s aproksimacijom konačnih razlika.

Primjena metode konačnih razlika na svaki sastavni dio jednadžbe (12) daje

$$\frac{\delta(\rho U_{\rho i})}{\delta t} = \rho \frac{(U_{i,j} + 1 - U_{ij})}{\kappa} \quad \text{(prema naprijed)} \tag{13}$$

$$\frac{\rho U_{\rho i} \delta(U_{\rho i})}{\delta x_{\rho,j}} = \frac{\rho U_{\rho i} (U_{ij} - U_{i-1j})}{xj} \text{ (prema natrag)}$$
(14)

$$\frac{\mu\delta^{2}U_{p_{i}}}{\delta x_{p_{i}}^{2}} = \frac{\mu(U_{i+1j} - 2U_{ij} + U_{i-1j})}{x_{j}^{2}} \text{ (sredina)}$$
(15)

$$\frac{\delta U_{p_j}}{\delta x_{p_j}} = \frac{U_{i+1j} - U_{i-1j}}{2x_j} \text{ (sredina)}$$
(16)

$$\frac{\delta U_{p_j}}{\delta x_{\rho_i}} = \frac{U_{i,j+1} - U_{i,j-1}}{2x_i} \text{ (sredina)}$$
(17)

Uvrštavanje jednadžbi (13)-(17) u jednadžbu (12) daje model u deskretiziranom obliku.

$$\frac{\rho(U_{i,j+1} - U_{i-1j})}{K} + \rho U_{\rho i} \frac{(U_{ij} - U_{i-1j})}{x_j} = \frac{\mu(U_{i+1j} - 2U_{ij} + U_{i-1j})}{x_j^2} + \left[\frac{(U_{i,j+1} - U_{ij-1})}{2x_j} \times \left(\frac{U_{i,j+1} - U_{ij-1}}{2x_i}\right)\right] + \frac{p}{x_{\rho i}^2} + \rho g_{\rho j} + F_{\rho i}$$
(18)

No, množenje vektora prema Kreysizgu⁷ daje

$$iX_i = 0 \tag{19}$$

Stoga jednadžba (16) postaje

$$\frac{\rho(U_{i,j+1} - U_{ij})}{K} + \frac{\rho U_{\rho i}(U_{ij} - U_{i-1j})}{x_{j}} = \frac{\mu(U_{i+1j} - 2U_{ij} + U_{i-1j})}{x_{j}^{2}} + \frac{\rho}{x_{\rho i}^{2}} + \rho g_{\rho j} + F_{\rho j}$$
(20)

Preuređivanje jednadžbe (20) daje

$$\frac{\rho(U_{i,j+1} - U_{ij})}{K} = \frac{\mu(U_{i+1,j} - 2U_{ij} + U_{i-1,j})}{x_{\rho j}^{2}} - \frac{\rho U_{\rho i}(U_{ij} - U_{i-1,j})}{x_{j}} + \frac{\rho}{x_{\rho i}^{2}} + \rho g_{\rho j} + F_{\rho i}$$
(21)

Izvođenje L. C. M iz jednadžbe (21) daje

$$\frac{\rho(U_{i,j+1} - U_{ij})}{K} = \frac{\mu x_{\rho i}^{2} (U_{i+1,j} - 2U_{ij} + U_{i-1,j}) - \rho U_{\rho i} x_{\rho j} x_{\rho i}^{2} (U_{ij} - U_{i-1,j}) + x_{\rho j}^{2} p + x_{\rho j}^{2} x_{\rho i}^{2} \rho g_{\rho j} + x_{\rho j}^{2} x_{\rho i}^{2} F_{\rho i}}{(x_{\rho i}^{2}) (x_{\rho i}^{2})}$$
(22)

Za pojednostavljenje, neka je

$$\mu x_{pi}^{2} = A$$

$$\rho U_{pi} x_{pj} x_{pi}^{2} = B$$

$$x_{pi}^{2} p = C$$

$$x_{pi}^{2}, x_{pi}^{2} \rho g_{pj} = D$$

$$x_{pj}^{2}, x_{pi}^{2} F_{pi} = E$$

$$(x_{pj}^{2}) (x_{pj}^{2}) = h^{2}$$
(23)

Uvrštavanjem jednadžbe (23) u jednadžbu (22) daje

$$\frac{\rho(U_{i,j+1} - U_{ij})}{K} = \frac{A(U_{i+1,j} - 2U_{ij} + U_{i-1,j}) - B(U_{ij} - U_{i-1,j}) + C + D + E}{h^2}$$
(24)

Daljnje pojednostavljivanje i preuređivanje daje jednadžbu (24)

$$\frac{\rho(U_{i,j+1} - U_{ij})}{K} = \frac{AU_{i+1j} - (2A + B)U_{ij} + AU_{i-1j} + BU_{i-1j} + C + D + E}{h^2}$$
(25)

Primjenjujući Crank-Nicholsonovu metodu na jednadžbu (25), i to zamjenom desne strane gornje jednadžbe za $\frac{1}{2}$ puta, zbroj dvije takve razlike kvocijenata u dva retka *j* i *j*+1 (Kreyszig, 2003)⁷ daje

$$\frac{\rho(U_{i,j+1} - U_{ij})}{K} = \frac{1}{2h^2} \left(AU_{i+1j} - (2A + B)U_{ij} + AU_{i-1j} + BU_{i-1j} + C + D + E \right) + (26) + \frac{1}{2h^2} \left(AU_{i+1j+1} - (2A + B)U_{ij+1} + AU_{i-1j+1} + BU_{i-1j+1} + C + D + E \right)$$

Neka je u jednadžbi (26) $r = \frac{K}{h^2}$, nakon čega se obje strane množe s 2*K*, što daje

$$2\rho(U_{i,j+1} - U_{ij}) =$$

$$= r(AU_{i+1,j} - (2A + B)U_{ij} + AU_{i-1,j} + BUi - 1, j + C + D + E) + (27)$$

$$+ r(AU_{i+1,j+1} - (2A - B)U_{i,j+1} + AU_{i-1,j-1} - BU_{i-1,j-1} - C - D - E)$$

Razvijanjem, nakon čega slijedi daljnje preuređenje, dobiva se jednadžba (27)

E.O. OBANIJESU AND E.O. OMIDIORA

$$U_{i,j+1}(2\rho + r(2A + B)) - r[U_{i-1j+1}(A + B) + AU_{i+1j+1}] = U_{ij}(2\rho - r(2A + B)) + r[AU_{i+1j} + U_{i-1j}(A + B) + 2(C + D + E)]$$
(28)

Tri izraza na lijevoj strani jednadžbe (28) tj. i-1, i, i+1 su nepoznanice, dok su oni na desnoj strani poznate vrijednosti.

Za rješavanje jednadžbe (28) primijenjeni su odgovarajući početni i granični uvjeti.

Pri početnim uvjetima, tj. prije puknuća

$$U(x,0) = 0,0$$
 (29)

To znači da je brzina rastvora (prirodnog plina) u vodenom tijelu prije ispuštanja jednaka nuli.

Poslije puknuća primjenjivi su uzvodni i nizvodni granični uvjeti. Uzvodna oblast je vrlo blizu točki ispuštanja i ponaša se prema jednadžbi (30)

$$U(0,t) = U_i(t) \tag{30}$$

Nizvodna oblast je daleko od točke ispuštanja i ponaša se prema jednadžbi (31)

$$\frac{\partial U}{\partial x_i} = 0,0 \tag{31}$$

Program MATLAB razvijen je kako bi se riješio model algoritma, a rezultati su prikazani na slici 3.

Generiranje podataka

Podaci korišteni za testiranje modela generirani su na temelju sastava nigerijskih polja plina i pojedinačnih svojstava komponenti (tablica 1), dok su protok i unutarnji promjer cijevi temeljeni na odobalnom segmentu pokrenutog projekta zapadnoafričkog plinovoda (WAGP) (slika 1 i tablica 2). Pretpostavljeno je da se pukotina punog presjeka nalazi na mjestu loma.

Viskoznost plina, temperatura i gustoća izračunati su pojedinačno, i to korištenjem jednadžbe:

$$u_{\rm NG} = \sum C_i \mu_i \tag{32}$$

$$T_{\rm NG} = \sum C_i T_i \tag{33}$$

$$\rho_{\rm NG} = \sum C_i \rho_i \tag{34}$$

Tablica 1. T	Tablica 1. Temperatura, viskoznosti i gustoća tipičnog plinovoda Izvor: * Sonibare i Akeredolu ²⁰ ** Smith i suradnici ¹⁹				
Molekularna formula	Sastav * (%)	T** (K)	μ** (Pa·s)	$ ho^{**}$ (kg/m ³)	
CH ₄	69,0	90,69	1,33 x 10⁻⁵	28,180	
C ₂ H ₆	9,0	90,36	1,29 x 10⁻⁵	21,640	
C ₃ H ₈	7,6	85,47	1,01 x 10⁻⁵	16,583	
C ₄ H ₁₀	3,4	134,86	6,90 x 10 ⁻⁶	12,620	
CO ₂	2,6	216,58	1,85 x 10⁻⁵	26,828	
N ₂	4,0	63,15	2,15 x 10⁻⁵	31,063	
H ₂ S	3,8	187,68	1,65 x 10⁻⁵	29,130	
Не	0,6	2,20	2,25 x 10 ⁻⁵	37,115	

E.O. OBANIJESU AND E.O. OMIDIORA

SIMULACIJA PROFILA BRZINE TOKA PRIRODNOG PLINA...

gdje je C_i koncentracija komponente i

Točka puknuća je okrugla i njena površina (A) je

$$A = \frac{\pi d^2}{4} \tag{35}$$

gdje je d unutrašnji promjer cijevi

Maseni protok (*M*) je

 $M = \rho V \tag{36}$

gdje je V volumni protok, a ispuštanje izvora F_i je

 $F_i = \frac{M}{A} \tag{37}$

REZULTATI I DISKUSIJA

Računalni kod napisan u MATLAB-u 7 razvijen je kako bi se riješio model, a rezultat u dvodimenzionalnom obliku prikazan je na slici 3. Krivulja pokazuje da pri vremenu nula ništa nije ispušteno u vodeno tijelo i da je brzina duž horizontalnih i vertikalnih ploha (udaljenosti) nula, no s porastom vremena i udaljenosti brzina se povećava. Zbog razlike u gustoći i viskozitetu komponenti u dvofaznom protoku (plin i voda, tj. redom 26,35 kg/m³ i 1 000 kg/m³), faza manje gustoće protječe brže od one druge. To je dovelo do situacije neuravnoteženog stanja prvotno prikazanog na krivulji (slika 3) za horizontalan i vertikalan protok. Spomenuta situacija može se jednostavno objasniti pomoću relativne brzine (brzine klizanja), što je brzina dispergirane faze u odnosu prema brzini kontinuirane faze.

Na određenoj udaljenosti od točke ispuštanja, brzina ispuštenog plina (i vertikalna i horizontalna) se smanjuje dok se ne izjednači s brzinom struja ambijenta. To se događa zbog toga što se potisni tlak ispuštenoga plina smanjuje s udaljenošću (Cirpka, 2008).³ Smanjenje će se nastaviti dok plin ne počne protjecati valovitim gibanjem duž vodene struje te se naposljetku ne oslobodi u atmosferu, vjerojatno kroz inverziju.

Tablica 2. Operativni uvjeti tipičnog plinovoda u Nigeriji <i>Izvor:</i> ObaniJesu i Macaulay (2009) ¹⁷		
Protok (m ³ /d)	4,24 x 10 ⁹	
Unutrašnji promjer cijevi	76,2 cm (30 in.)	

Tablica 3. Generirani podaci korišteni za testiranje modela početnih uvjeta

Tlak	733,46 Pa
Viskoznost	1,344 x 10 ⁻³ Pa∙s
Gustoća	26,350 kg/m ³
Temperatura	97,092 K
Plinska konstanta	8,3143/ J·mol ⁻¹ ·K ⁻¹
Molekularna masa zraka	29 kg/kmol
Sila gravitacije	6,672 x 10 ⁻¹¹ Nm ² /kg ²
Ispuštanje izvora (Fi)	287 995 9,342 kg/m ² s

618

Zaključci

Model je uspješno predvidio raspored prirodnog toka u vodenom tijelu nakon slučajnog ispuštanja iz podvodnog cjevovoda te kvalitetno prikazuje raspored toka u usporedbi sa sličnim modelima. Stoga je u procesu odobalnoga transporta tog izvora energije nužno pravilno spriječiti ispuštanje ili curenje duž cijelog cjevovoda kako bi se izbjegle neželjene posljedice. To se može postići redovitim čišćenjem cijevi, čime se sprečava taloženje kamenca, te žurnom zamjenom napuknute cijevi i razvojem drugih načina upravljanja.

*

Autori:

ObaniJesu, E.O. Chemical Engineering Department, Curtin University of Technology, Perth, Australia. E-mail Address: emmanuel257@yahoo.com

Tel: +234-805-591-6112

Omidiora, E.O. Computer Science and Engineering Department, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.

UDK: 662.767: 622.691: 614.8: 504

662.767	prirodni plin
622.691	transport prirodnog plina, plinovod
614.8	opasnost od udesa, nesreće
504	ekologija, zaštita okoliša