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In the last decade a lot of research has focused on the ebg@iation of optimal and robust control problems
for the class of constrained discrete-time systems. Mamylyndeveloped control algorithms for such control
problems internally use operations on polytopic sets. Wewebasic polytopic manipulations and analyze them
in the context of the computational effort.

We especially consider the so-callesijiondiff problem where the set difference between a polyhedron and
union of polyhedra needs to be computed. Regiondiff probdenth relatecbolycoverproblem — checking if a
polytope is covered by the union of other polytopes — arézetil very often in derivation of the explicit solutions
to the constrained finite time optimal control problems figcpwise affine systems. Similar observation holds for
the computation of the (positive) controlled invariantssétfinite time optimal control solution and/or controier
with reduced complexity for piecewise affine systems.

We describe an in-place depth-first exploration algorithat solves the regiondiff problem in an efficient man-
ner. We derive strict upper bound for the computational derity of the described algorithm. In extensive
testing we show that our algorithm is superior to the mixedger linear programming approach when solving the
polycover problem.

Key words: Polytope, Set difference, Set cover, Constrained optimatrol, Discrete-time systems

Operacije nad politopskim skupovima kod optimalnog upravjanja sustava s ogran€enjima. U posljed-
njih desetak godina znatna istra@ka aktivnost usmjerena je na pronalaZenje eksplicitréBemnja optimalnog
i robusnog upravljanja za klasu vremenski diskretnih s@st ogrartenjima. Brojni razvijeni algoritmi in-
terno koriste operacije nad politopskim skupovima. U ovaauranaliziramo osnovne operacije nad politopskim
skupovima sa stajaliSta njihovettanske kompleksnosti.

Narctita pozornost dana je takozvanaegiondiff problemu, odnosno problemu prétma razlike poliedarskog
skupa i unije poliedara. Isto tako je analiziran i srogniycoverproblem — provjera je li poliedarski skup u
potpunosti prekriven unijom poliedara. Oba ova problésto se sk pri konstruiranju ekplicitnih rjeSenja opti-
malnog upravljanja po dijelovima afinih sustava uz kiara horizont predikcije, kao i pri protanu pozitivnih
invarijantnih skupova, optimalnog upravljanja uz besk@amahorizont predikcije i/ili prorgunu regulatora sma-
njene kompleksnosti za po dijelovima afine sustave.

Razvijen je efikasan algoritam za rjeSerggiondiff problema zasnovan na dubinskom pretraZivanju stablaste
strukture problema. lzvedena je teoretska gornja ograttarmpleksnost dobivenog algoritma, i pokazano je zasto
je takva ograda konzervartivna u praksi. Na nizu simulgmijgazana je @unsku superiornost razvijenog algoritam
zapolycoverproblem u odnosu na pristup zasnovan na rjeSavanju mjegosjilobrojnog programa.

Klju €ne rijeCi: politopski skupovi, razlika skupova, pokrivenost skupatimalno upravljanje sustava s ogrée
njima, vremenski diskretni sustavi

1 INTRODUCTION ogy of the time. In recent years, the theory is receiving
a renewed interest due the current computer performances
Set-theoretic methods for analysis and design of conwhich are suitable to face non-trivial problems [5].
trol systems have a long history since the first contribu- In the last decade a lot of research has focused on the
tions trace back to the earl§0s (cf. [1-5]). The theory solution of optimal and robust control problems for the
was almost abandoned once it became clear that, althouglass of discrete-time constrained linear systems [6-11].
the techniques are appropriate to solve many theoretic&urthermore many algorithms have been extended to the
and practical problems, the complexity of the required alimore general class of so-called PieceWise Affine (PWA)
gorithms was not compatible with the computer technol-systems [12—15].
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Motivation for this paper is the computation of the ex-2 NOTATION AND DEFINITIONS
plicit state-feedback optimal controllers. The term “ex- ) . , )
plicit’ means that such design yields the optimal controlle . ™ iS the set of positive integer&™ ", with m,n € N,
in a closed form, i.e. as an explicit function of the sys-iS the space ofn by n real matricesR™ is the space of-
tem states [6]. Constrained optimal and/or robust controfimensional real column vectorsdenotes the empty set,
methods ensure systematic design of high-quality contrgidN1:m is the shorthand notation for the st .. ., m}.

systems for demanding applications. The optimal conJhe symbol =" denotes that the left-hand side is defined

trol systems satisfies prescribed constraints while achieyy the right-hand side, and:"is used for the reverse logic
ing the performance that is optimal with respect to the de(&-9-Num = {1,...,m}). Letr € R", R ¢ R™"", i &
sign objective. Robustly controlled system can cope witN1:m: Z S Niom, thenR(;) denotes the-th row of R; R(z)
the measurement/modelling uncertainty i.e. it can achievgeno;es the matrix formed from the rows@findexed by
desired goal while being exposed to the adverse effects df # denotes the matrix transpose Bf || - || denotes
the environment. The computation of the optimal or ro-the Euclidean vector norm, i.dx| := v/+Tr, andcard(-)
bust controller for a general constrained non-linear sysdenotes cardinality of the set (e@rd(N1.n,) = m).

tem is a very difficult problem. Consequently, with the  Throughout the paper all vector inequalities are consid-

existing computational capabilities, the solution to tie 0 ered component-wise (e.qu, < b, with a,b € R™, is

timal control problem is tractable for a limited class ofsys equivalent toa(;) < b, Vi € Ni.,,). As a general rule

tems/constraints. vectors and matrices are denoted with italic letters (e.g.,
Several optimal control formulations may be used in ex<, b, R, . ..) and sets are denoted with the upper case calli-

plicit controller design. The most common formulationsgraphic letters (e.gZ, Q, .. .).

are the Constrair_led Fir!ite Time_OptimaI Control (CFTOC) We use the shorthand notati@@i}{\@l for a collection

and the Constrained Time Optimal Control (CTOC). The . No =

performance objective of the CFTOC is the sum over L sets, "e"{%i}izl = {Q1, Q2. Qnp ) Note that

finite prediction horizon of piecewise linear or quadraticfor @ = {Qi},= we havecard(Q) = No.

functions of the control inputs and (predicted values of)

system states. An attractive property of the CFTOC probpefinition 1 (Linear Program) A linear program(LP) is

lem is the fact that the optimizer, i.e. the optimal controla convex optimization problem that can be expressed in the

input, is a piecewise affine function of the (current) systenform

states [6,13]. In the CTOC problem formulation the goal is

to find the control inputs that in a minimal number of time min ¢’z (LP)

steps move the (current) system states into a controlled in- e

variant set around the origin. The computation of explicit subj.to Gz <g,

controller for the CTOC problem can be solved by manip- n N . .

ulations of polytopes, and solution can be stored in a forn\Nherex en[R 'S them‘iﬂ“m'za“oﬂl varlab_le, and matri-

of a PWA function of the current system states [14]. BothC€S¢ € K", G € R™, g € R™ are given problem

CFTOC and CTOC methodology rely on availability of a parameters. =

valid discrete-time model of the system. In practice this

means that we need a systematic procedure for discrete- Theoretically every LP (with rational parameters) is

time PWA model identification of nonlinear process [15]. Solvable in polynomial time by both the ellipsoid method

Almost all developed CFTOC and CTOC algorithms in ©f Khachiyan [17, 18] and various interior point meth-

their core use some type of operations on polytopes an@ds [19.20]. A practical algorithm to solve an LP with

i i i 3,,0.5
unions of polytopes. Furthermore, many of them rely onvgrlalb;es andn constraints requires rough@(n-"m"” +
2) operations [21]. In this paper the computational

extensive computation of set difference between polytop& " ) L N )
and union of polytopes [16]. In this paper we review basicExpense of a single LP has similar meaning like single ad-
ition or multiplication have in algebraic computations. |

polytopic manipulations and analyze them in the contexfj ) il lexity of aldorith
of the computational effort. We derive efficient algorithms Many Instances we will express complexity of algorithms
for solving two specific problems that emerge very often

in terms of the number of LPs one needs to solve, thus
when deriving the explicit solution to the constrained opti establishing the basis for relative comparison between dif
mal control problem for PWA systems: (ggiondiff prob-

ferent algorithms. Henceforth with(n, m) we denote the
lem — computation of the set difference between a poly

complexity of a single LP withm variables andn con-
hedron and union of polyhedra; (iyolycoverproblem —  Straints.
checking if a polytope is covered by the union of other Most of the following definitions are standard. For ad-
polytopes. ditional details the reader is referred to [22, 23].
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Polytopic Computations in Constrained Optimal Control

Definition 2 A hyperplanen R" is a set of the form
{z eR" | a"z = b},
wherea € R™,b € R, ||a|| > 0. O
Definition 3 A half-spaceén R is a set of the form
H={xcR"|a"z <b},

wherea € R",b € R, ||a|| > 0. O

Definition 4 (Polyhedron and polytope) A convex set

1)

with P € R™*", p € R", n, < oo, is calledpolyhe-
dron Bounded polyhedron is callgublytope The vector
inequality in(1) is considered component-wise. O

P ={zeR"|Pzx<p},

We say that a polytop® = {z € R* | Pz < p}
is full-dimensionalif it is possible to fit a non-empty-
dimensional ball irP, i.e.,

Jzg € R", e >0 : B(zg,€) C P, 2
where
B(xg,€) :={z € R" | ||z — x| < €} (3)
Equivalently, polytopéP is full-dimensional if
Iz eR™, >0 : |0 <e= Plzg+9)<p. (4)

Otherwise, we say that polytop@ is lower-dimensional
A polytopeP is referred to agmptyif
Pz e R": Px <p. (5)

Furthermore, if| P;)[| = 1,7 = 1,...,n,, we say that the

Definition 5 (Face) A linear inequalitya” 2 < b is called
valid for a polyhedrorP if a2 < b holds for allz € P.
A subset of a polyhedron is calledaceof P if it can be
represented as

F=Pn{zcR"|a"z =0}, (7

for some valid inequality” 2 < b. The faces of polyhe-
dron P of dimensior, 1, (n — 2) and (n — 1) are called
vertices, edges, ridges and facets, respectively. O

We see thatasef C P is called aface oP ifitis either(,
P itself or the intersection oP with a hyperplane derived
from a valid inequality. An empty séltis a face of every
polyhedron and by convention it has dimensieh

According to our definition every polytope represents a
convex, compact (i.e. bounded and closed) set. We will
see later that polytopes — as simple objects as they are —
play an instrumental role in the derivation of optimal con-
trol strategies for constrained linear and piecewise affine
systems. Very often, however, we also encounter sets that
are disconnected or non-convex but can be represented as a
union of finite number of polytopes. Therefore, it is useful
to define the following mathematical concept.

Definition 6 A polytopal complexC is a finite collection
of polytopes irR™ such that

e the empty setis i@
e if P € C, then all the faces dP are also inC,

¢ the intersectior? N Q of two polytopes?, Q € C is
a face both of? and Q. O

Example 1 Here are several polytopal complexesRn:
{0,0,2,10,2]}, {0,0,2,4,[0,2]}. Contrary to those,
the following sets are not polytopal complexesRh:
{0,0,]0,2]} — because of a missing polytoge}, and
{0,-2,0,2,[-2,0],[—2,2], [0, 2]} — because intersection
of two polytope$—2, 0] and[—2, 2] is not a face of—2, 2.

polytopeP is normalized One of the fundamental proper- U

ties of a polytope is that it can be described in half-space

representation (1) or in vertex representation (cf. [223),
given below,

vp

vp

P:{xeﬂ?”x:ZaiViP, 0<q; <1, Zaizl},
i=1 i=1

(6)

whereV,”” € R" denotes thé-th vertex of P, andvp is the
total number of vertices oP.

We will henceforth refer to the half-space represen-

tation (1) and vertex representation (6) & and V-
representation respectively (see Fig. 1).

AUTOMATIKA 50(2009) 3—4, 119-134

Characterization of a polytopal complex is quite expen-
sive. For every polytope in the complex we need to com-
pute all the faces (i.e. lower-dimensional polytopes)c8in
we usually work only with full-dimensional polytopes (cf.
Remark 1) it is reasonable to introduce a more practical
concept.

Definition 7 (P-collection) AP-collectionC is a finite col-
lection of full-dimensional polytopes R, i.e.,

C ={Ci}s, ®8)
whereN¢ = card(C) < o0, C; := {z € R" | Ciz < ¢;},
C; full-dimensionalj =1, ..., N¢. O
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(a) H-representation of a polytope ifR2.
{z | Pz =p@}i=1,...,5, are depicted with dashed lines

0 1 2 3 4 5 6 7 8 9 10
Xl

The hyperplanes (b) V-representation of a polytope iR2. The verticesV,P, i =

1,...,5, are depicted with circles

Fig. 1. lllustration of a polytope if{-representation and- representation

Definition 8 (Underlying Set) Theunderlying sebf a P-
collectionC = {C;}¥< is the point set irR™

Nc
c:=Jc. (9)
=1

d

Example 2 A collectionR = {[-2,—1],[0,2],[2,4]}isa
P-collection inR* with the underlying seR = [-2, —1]U
[0,4]. As another examplé® = {[-2,0],[—1,1],[0,2]}
is a P-collection inR! with underlying selR = [-2,2].

and polytopic objects most of the operations described here
are directly (or with minor modifications) applicable to
polyhedral objects. Additional details on polytope com-
putation can be found in [22, 23]. All operations and func-
tions described in this section are contained in the MPT
toolbox [24].

3.1 Minimal Representation

We say that a polytop® C R", P = {z € R" | Pz <
p} is in aminimal representatioif the removal of any row
in Px < p would change it (i.e., there are no redundant

Clearly, polytopes that define P-collection can overlap,half-spaces). The computation of minimal representation
while the underlying sets can be disconnected and norf2f Polytopes is discussed in [25] and generally requires

convex. 0O

solution of one LP for each half-space defining the non-
minimal representation gP. We report one straightfor-

Usually it is clear from the context if we are talking ward.implementgtion of the minimal representation com-
about the P-collection or we are referring to the underly-Putation in Algorithm 1.

ing set of a P-collection, in which case, for simplicity, we

use the same notation for both.

Definition 9 (Partition) A collection of set§R;} X% is a
partitionof a setP if: (i) P = UNER,, and (i) R;NR; =
0,Vi # j,withi,j € {1,..., Ng}. O

Definition 10 (Polyhedral Partition) A collection of sets
{R:}N= is a polyhedral partitiorof a setP if {R;} %
is a partition of P and the setsk; are polyhedra, where
i=1,...,Ng, andR; denotes the closure &;. O

3 OPERATIONS ON POLYTOPES

Algorithm 1 Minimal representatiorminrep (P)
Input: P:={z € R"|Pzr<p}peR™
Output: Minimal representation gP

1.7 —{1,...,n,}

2. for i =1ton,do
3. I«T\{i}
4 f* — IH;}X{P@)% | P(I)SC < P@), P(7)£E < p(¢)+1}
5 if f*> Pa) then
6. I —7U{i}
7
8.
9.

end if
end for
retun P := {z | Pz < p)}

We will now define some basic operations and functions
on polytopes. Note that although we focus on polytopes

122
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Remark 1 It is straightforward to see that a normalized, 10
full-dimensional polytop& has auniqueminimal repre- or
sentationt This fact is very useful in practice. Normal- 8l

ized, full-dimensional polytopes in a minimal represen-
tation allow us to avoid any ambiguity when comparing

them and very often speed-up other polytope manipula- ° )
tions. For simplicity, and without loss of generality, ireth <8
rest of this paper we consider only full-dimensional poly- 4
topes. Lower-dimensional polytopes (with the exception of 3
an empty polytope) are not considered. The reasoning is Al

similar to the one in the MPT toolbox [24] — this simpli-
fication reduces the complexity of the computations, while

being sufficient for description and solution of the control % 2 “ s 8 10

problems we consider in the paper. O

3.2 Chebyshev Ball l;ig. 2[R.2Chebyshev balB(x., R.) contained in a polytope
C

The Chebyshev ball of a polytoge= {z € R" | Px <
p}, with P € R™*" p € R™», corresponds to the largest
radius ball inR" such that3(z., R.) C P. The center,
and radiusR,. of the Chebyshev ball can be easily found 10

by solving the following LP [26] 8
max R, 6
Te,Re <

subj. to P(i)chr ||P(i)||RC <puy, t=1,...,my. 4
(10) 2

If the solution to (10) iskR. = 0, then the polytopé® is .
lower-dimensional; ifR. < 0, then the polytope is empty. 10

Therefore, an answer to the question “is polyt@péull-
dimensional/lempty?” is obtained at tegpenseof only
one linear program of complexity(n + 1, n,). Further-
more, for a full-dimensional polytope we also get a point
z. that is in the interior ofP (see Fig. 2 for illustration).
One word of caution: the center of a Chebyshev ball

in (10) is not necessarily unique (e.g. whenis a rect-
angle). There are other types of unique interior points 0ngjons;,, andn) reported in literature can be grouped into
could compute for a full-dimensional polytope (€.9., anatoyr classes: Fourier elimination [27, 28], block elimi-
lytic center, center of the largest volume ellipsoid, ebt)  nation [29], vertex based approaches [30] and wrapping-
those computations are usually formulated as semidefinitgzsed techniques [31]. For a good introduction to projec-

programming problems [26] and hence they are more exjon, we refer the reader to [31] and the references therein.
pensive to carry out than the Chebyshev ball computation

Fig. 3. Projection of a 3-dimensional polytofeontoR?

via LP (10). 3.4 Set Difference
3.3 Projection The Set difference of two polytopgsand Q
Given an(n + m)-polytopeP = {z € R"*™ | Pz < .
p} € R*™*™ n,m € N, the projection onto th&” is de- R=P\Q:={zeR"|zecPx¢Q} (12)

fined as am-polytope . . . .
polytop is, in general, given as a P-collectiéh = J, R;, which

proj, (P) := {y € R" | 3z € R™ : Py’ 21]" < p}. can be computed by consecutively inverting the half-
(11) spaces definin@ as described in [6] (see Fig. 4). Note

An illustration of a projection operation is given in Fig. 3. that here we use the term P-collection in the dual context
In general, the projection methods (for arbitrary dimen-of both P-collection and its underlying set (cf. Definition 7

IThe term ‘unique’ here means that for a polytope .= {z < and Definition 8). The precise statement would say that

R™ | Pz < p} the matrix|[P p] comprises unique set of row vectors. % = P \ QA} whereR is the Unde”yi_ng set of P-collection
The order of those rows is irrelevant. R = {R;},.5. However, whenever it is clear from context

AUTOMATIKA 50(2009) 3—4, 119-134 123
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what are we referring to, as is the case here, we will abusg, ..., N, is a polytope

the notation and use the former, more compact form. N N
R R
co <U R7> ={zeR"|x= Zaixi, r; € Ri,
i=1

10 s 10 =1
8 P 8 — Rl Ngr
. . RQ ! OSOZZS].,ZOQ:].}
=1
! 4 Re (14)
’ | Rs An illustration of the convex hull operation is given in

s+ + 1 % 3 <+ —+ 5 1 Fig.5. Construction of the convex hull is an expensive op-
(a) PolytopesP andQ by R=U,R: =P\ Q

Fig. 4. lllustration of the set difference operation

6

Remark 2 The set difference of two intersecting polytopesz h

(or any closed setsp and Q is, in general, not a closed
set. This means that some borders of polytoRegrom T S R
a P-collectionR = P\ Q are open, while other borders (@) P-collectiorR = U; R;

are closed. Even though it is possible to keep track of the

origin of particular borders ofR;, thus specifying if they Fig. 5. lllustration of the convex hull operation

are open or closed, we are not doing it in the algorithms

described in this paper nor in MPT [24], cf. Remark 1. In eration which is exponential in the number of facets of the
computations, we will henceforth only consider the closureériginal polytope. An efficient software implementation is

IS

N

10

2 4 6 8
(b) Convex hull ofR

of setsk,;. 0 available from [32, 33].
3.6 Envelope
Related to the above operation are the following The envelope of twoH-polyhedra® = {z ¢

two computationally very demanding problems/questionsR™ | Pz < p} andQ = {z € R | Qv < ¢} is an’H-
what is the set difference between a polytdpand a P-  polyhedron

collectionQ := U;Q;; and is a polytopéP fully covered - -

by a P-collectionQ := U;Q;? For instance, the latter en(P, Q) ={z e R" [Pz <p, Qv < g}, (15)
operation is needed to check if two unions of pOthedrawherePg: < s the subsystem aPz < p obtained by
cover the same non-convex set [11, 14] (€.g., StepAl- removing all the inequalities not valid for the polyhedron
gorithm 4.1 in [14]). In Section 4 and Section 5 we an-

alyze these problems in more details, and derive efficieng' andQz < gare deflneq n a3|m|Ie_1r way W'Fh respect to
algorithms that perform these tasks. x < g andP [34]. In a similar fashion definition can be

extended to the case of the envelope of a P-collection. An
illustration of the envelope operation is depicted in Fig. 6
35 Convex Hull The computation of the envelope is relatively cheap since
it only requires the solution to one LP for each facefof
and Q. Note that envelope of two (or more) polytopes is
not necessarily bounded set (e.g. wher Q is shaped
like a star).

The convex hull of a set of pointg = {V;}2Y, with
V; € R", is a polytope defined as

Ny Ny 3.7 Vertex Enumeration
co(V):{:EG[R”M:ZaiVi,Ogaigl,Zaizl}. ) _ )
= = The operation of extracting the vertices of a polytope
(13) P given in’H-representation is referred to as vertex enu-
The convex hull operation is used to switch froma  meration. This operation is the dual to the convex hull
representation of a polytope to7d-representation. The operation and the algorithmic implementation is identical
convex hull of a union of polytope®; C R", ¢ = to a convex hull computation, i.e. given a set of extreme

124 AUTOMATIKA 50(2009) 3-4, 119-134
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19 19 hull computation inR™ or a projection fronR?” down to
R™. The implementation of the Minkowski sum via pro-
jection is based on the following observation. For

) h ) P={yeR"|Py<p}, Q={zeR"|Qz<q}
env(R)

it holds that

0 10 0

2 4 6 8 2 4 6 8
(a) P-collectionR = |J, R: (b) Envelope ofR R

P Q
{x=y+2|y,z€ﬂ?”, Py <p, Qzéq}

{wER"IHyek":PySp, Q(w—y)éq}

Fig. 6. lllustration of the envelope operation

pointsV = {V;}% = vert(P) of a polytopeP given 0 Pz D

: =1 k = {zer|zger: <Pl
in ‘H-representation it holds tha = co(V), where the Q -Qlly q
operatorvert denotes the vertex enumeration. The neces-

sary computational effort is in the worst case exponential = proj, {w € R™ | [0 P ] w < [p] } )
in the number of the polytope facets. Two different ap- Q@ -Q q

proaches to vertex enumeration exist: the double descrip-
tion method [35] and reverse search [36]. An efficient im-
plementation of the double description method is availabl
in [32,33].

Both the projection and vertex enumeration based methods
Gre implemented in the MPT toolbox [24]. An illustration
of the Minkowski sum is given in Fig. 8.

3.8 Pontryagin Difference

2

The Pontryagin difference (also known as Minkowski .
difference) of two polytope® andQ is a polytope !

PoQ:={zcR"|z+qcP,VgcQ}). (16) ) Q

The Pontryagin difference can be efficiently computed for
polytopes by solving a sequence of LPs [37]. For special | . . . . . . |  NECEEEEDT.
cases (e.g. wheg is a hypercube), even more efficient (a) PolytopesP andQ (b) Minkowski sumP @ Q
computational methods exist [38]. An illustration of the

Pontryagin difference is given in Fig. 7. Fig. 8. lllustration of the Minkowski sum operation

: Remark 3 The Minkowski sum igot the complement of
the Pontryagin difference. For two polytop®sand Q, it
PoO holds that(P © Q) & Q C P (cf. Fig. 7 and Fig. 8). O

. 4 REGIONDIFF PROBLEM

" @ Poopes ando () Ponyagn diferenceo0  LetP = {x| Pa < p) be a polyhedron ifk" given
as the intersection of, half-spaces an®; = {z €
Fig. 7. llustration of the Pontryagin difference operatio K" | Qiz < ¢:} be Ng polyhedrainR" given as the inter-
section ofn,, half-spaces (i.eQ); € R™«*"). We want to
) . determine the set differeng\ (Uf\fl Q,). We refer to this
3.9 Minkowski Sum problem as theegiondiff problem (to differentiate it from
The Minkowski sum of two polytope® and Q is a  the problem of computing the set difference between two

polytope polytopes, cf. Section 3.4).
n We outline the procedure of finding the exact solution
= R . 17
PeQ={rtqe |z P, qe Q) 7 to theregiondiff problem in Algorithm 2. It computes the

The Minkowski sum is a computationally expensive opersetR = P \ (Uffl ), whereR (if not empty) is given as

ation which requires either vertex enumeration and convexnion of non-overlapping polyhedra.
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Fig. 9. Example for the set difference computation with Athn 2 in R2. PolytopeP is depicted with full line, active
constraints (se€l8) for definition) ofQ; with dashed lines, and non-active constraint&fwith thin lines. The indices
of corresponding active constraints of ea@h are denoted as encircled numbers.

One example of solving theegiondiff problem with  Section 3.1) and to remove thogk that do not intersect
Algorithm 2 for 2-dimensional polytope? and P- P, e.g. by checking if Chebyshev ball (see Section 3.2) of
collection{Q;}?_, is illustrated in Fig. 9. ajoint polyhedra{z | Pz < p, Q;z < ¢;} is non-empty.
cally implementing an in-place depth-first exploration of c@lledactive constraints
the tree of feasible constraint combinations, where eachy. _ 1. c 11 ) V| 3z Pz < R P
branch/node corresponds to the inversion of a fac@of = EARUELY =@y [ql(]fé)}’
(step 12 01_‘ Algorithm 2). The approach used to partitions,, each Qi,i = 1...,Ng. This can be done at the ex-
the space is based on [6].

Note that the output of Algorithm 2 is a P-collectigh N
that comprises only non-overlapping polyhedra, regasdles <
of possible overlaps in the input P-collectigh We also Z ng; - Wp(n +1,np +ng,). (19)
note that Algorithm 2 would work even if steps 2-10 were =1
not present. However, those steps potentially have a hug#fe note that the removal of non-active constraints from
impact on the speed of computation since they exclude urthe description of eacl®; does not change the result of
necessary checks at later stages (i.e. lower branches) of tAlgorithm 2, i.e.,

pense of at mo$t. "% n,, LPs:

algorithm. ~

’ PALQIS =P\ {2}, (20)
Remark 4 Step 5 of Algorithm 2 is a simple feasibility LP where ~ ~
of complexityip(n + 1,7, + n,, ). Similarly, step 12 is a Qi :={r e R" | Qixr < G}, (21)
feasibility LP of complexityp(n + 1, n, + 1). O 0, = Qilany @ = 4] (an)- (22)

R K5 (P inaF ical ) ; As a matter of fact, sinceard(.A;) < ng,, this removal of
emark S (Preprocessing)From a practical point o _non-active constraints can significantly reduce dimension

view .it makes sense to preprocess the data before USING the problem parameters in Algorithm 2 and thus drasti-
Algorithm 2 to compute the set difference. Namely, W%ally reduce complexity of Algorithm 2 0

can speed up the computation by ensuring fhatnd Q;,

i=1,..., Nq, arefull-dimensional polyhedraiR™ given = Remark 6 (Postprocessing)Note that Algorithm 2 re-
in the minimalX-representation:? = {z | Pz < p}, turnsP-collectionR = {R;} Y%, with R; that are in (pos-
Q; = {z]| Qix < ¢}, P € Rw»*" p € R, Q; € sibly) non-minimalH{-representation. As a postprocessing
R™e: X" ¢q; € R™s, Note that it is always possible to ob- step one might call Algorithm 1 to obtain the minimal rep-
tain normalized polyhedron in minimal representation (seeesentation for eaclR; of the result. O
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Algorithm 2 Set differenceregiondiff (P, Q) i.e., Hy is the cumulative number of constraints up to the
Input: P := {z € R" | Px < p},p € R», Q .= levelkofthetree,and =1,..., Nq.
{Qi}f\fp ;= {z € R" | Qiz < ¢;}, ¢; € R, One should note that (23) gives an overly conservative
i=1,...,Ng upper bound for the number of nodes at lekelFor ex-

ample, if (23) was a strict upper bound, it would imply that

Output: P-collection representing \ Q the number of nodes at the bottom of the tree is of the order

1. R—0, k1 Ng

2. if i € Ning : ng, = O then 0 ((%) ) 7 (25)

3. return R Nq

4. end if whereM denotes the total number of constraints

5. while 3z € R* : Pz < p, Qpx < qi do

6. k—k+1 No

7. if k> Ng then M= ng,. (26)

8. return P i=1

9. endif To better estimate the upper bound on the number of
10. end while nodes at levek we recall the Buck’s formula [39] for the
11. for_j = 110 n,, do hyperplane arrangement problem. Buck’s formula gives an
12. if Jw e R": Pz <p, [Qk];= > lar]() then upper bound for the maximal number of cells created by
13. P=Pn{z|[Qrl;* > [akly)} Hj, hyperplanesifR”. The upper bound is obtained by the
14. if k < Nq then hyperplanes in the so-called general position [22]. There-
15. R «— R U regiondiff (P, {Qi}j\iﬁcﬂ) fore, we can obtain the strict upper bound on the number
16. else of nodes at levek

17. R—RUP n n

18, endif Tk§2( Hy, ) O(H’j ) 27)

19. endif i=0 ! G
20. P =Pn{z|[Qklyz <laly} whereT}, denotes the number of nodes at leveff the tree
21. end for for Algorithm 2, andk =1, ..., Ng.
22. return R

Since every region in the output of Algorithm 2 corre-
sponds to exactly one feasible node at the bottom of the
exploration tree, we clearly see that the number of nodes
T, is an upper bound on the number of regions generated
py Algorithm 2

The most time consuming part of Algorithm 2 lies in
recursive calls to itself (step 15). Therefore in the foHow
ing computational complexity analysis we neglect the cos No < T 28
of removal of thenon-active constrainttom Q; (cf. Re- R =< Ng- (28)
mark 5) or computing the minimal representation of theTherefore, by taking into account thaty, = M, the fol-
regionsR; that describe the set difference (cf. Remark 6).lowing strict upper bound oW can be computed from

To establish the worst case complexity of Algorithm 2 (27) n "
one needs to look at its tree-like exploration of the space. Ngp < Z ( M > =0 (M > . (29)
The depth of the tree is equal 19q (i.e., the number of i—0 ¢ n!
regions@;). Clearly, every node on the levelhas at most
Ng.., children nodes on the leveh- 1, wheren,, denotes
the number of constraints of polytogh, (if preprocessing
step from Remark 5 is done thex, is the number of ac-
tive constraints) . Therefore the number of nodes at level
is bounded from above by

Feasible nodes of levél+ 1, withk =1,..., Ng — 1,
are computed from feasible nodes at lekelThe compu-
tation at every node of levél involves solution of at most
Ng,,, LPS withn+1 variables and at most, + Hj. 1 con-
straints (cf. Remark 4). Therefore, the strict upper bound
on the overall complexity of Algorithm 2 is given by

k Hk k Ng-—1
ani < (T) ) (23) Z Ty - ngyyy -Ip(n+1,0p + Hiy1),  (30)
i=1 k=1
where i.e., the overall complexity of Algorithm 2 is of the order
k
. Mn—i—l
Hy := ani, (24) 0] ( — Jp(n+1,n, + M)) ) (31)
=1 .
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From (31) it is clear that fon > 1 the overall complex- polytopes{R;} by using thepolyunionalgorithm for com-
ity of Algorithm 2 is hugely affected by/ — the total num-  puting the convex union df{-polyhedra reported in [34].
ber of (active) constraints for the problem at hand. ThereH approach [34] succeeds (i.e., the union is a convex set)
fore, for specific applications, wheregiondiff problemis  and the resulting polytope is equal®then?P is covered
solved via Algorithm 2, one should investigate if itis pessi by {Qi}i\i‘%, otherwise it is not. However, this approach is
ble to split the original problem in subproblems (assumingcomputationally very expensive. The algorithm in [34] is
that the dimensiom remains fixed) that would result in based on the idea that whene®r.= U;Q; is a polyhe-
calls to Algorithm 2 with a reduced value 8f (see [40] (ron thenP = env({Qi}iAin). Unfortunately the underly-
for one application of this idea). ing computation is very expensive, and one needs to solve

O(I1Y9 n,,) LPs with n variables and\/ = SN n,,

Remark 7 The expressio(29) represents the strict upper constraints. Thus, the polyunion computation from [34]
bound on the output complexity (i.e. the set difference rephecomes quickly prohibitive with the increasing number
resentation) for Algorithm 2, and therefore it cannot be gf polytopesN, and constrainta/.
further improved. The same claim holds also for the ex- | the following we propose two different approaches.
pression(30) (and, consequently, fdB1)) that defines the
strict upper bound on the computational complexity of Al-5.1  Polycover: Regiondiff Based Algorithm

gorithm 2. However, in practicey << No < M) these  Clearly, polycover is just a special case oégiondiff,
expressions are found to be very conservative (cf. testinghere resulting P-collectioR = (Z) In a special case when
results in Section 6). D we only want to check iP C (UX2 Q;) finding any feasi-

_ o ble R; in Algorithm 2 provides a negative answer and we
Remark 8 Extension of theegiondiff problem to the case  can abort further search. Implementation of this strategy i
where bothP and Q are P-collections is stra|ghtforward given in Algorithm 3.

Namely, the set difference is a P-collectiBn= {P;} Similarly to Algorithm 2 the worst case complexity of
{QJ} | that can be computed by cycling through aII poly- Algorithm 3 is bounded by (30) (see also Remark 5 and
topesP We have Remark 7).

Np Remark 9 Note that it is straightforward to extend the

R= U Pi\ {Qj}j.vfl. (32)  polycover problem to the case where both and Q are

i=1 P-collections:
Note that here the output P-collecti®may contain over- e \Verification of{P;} % C {Qj}J-V,Q :
lapping polyhedra if the input P-collectio® has some No NQ
overlapping polyhedra. O {P} 1 € {QJ} =1 < {P} \{Qﬂ} =0.
5 POLYCOVER PROBLEM o Verification of{ P;} Y, = {Q;}7¢)

The problem of checking if some polytope is covered {(PiyNr = {Qj}]-\ﬁ2 &
with the union of other polytopes emerges very often in
the construction of explicit solution for the constrained fi {P} \{QJ}J =0& {Qﬂ} 1\ AP }z 1=
nite time optimal control of piecewise affine systems. TheHere the set difference between two P-collections can be
need for solving this type of a problem is also common incomputed according t(82). 0
the computation of the (positive) controlled invariantset
infinite time solution or controllers with reduced complex-2-2 Polycover: MILP formulation
ity for PWA systems. Thus, it is important to have an al- When some of the optimization variables in a linear pro-
gorithm that checks if a polytop® is fully covered by a gram (see Definition 1) are constrained to integer values
P-collectionQ := U;Q; in an efficient manner. We refer the ensuing problem is calledraixed integer linear pro-

to this problem as thpolycover problem. gram(MILP).

One idea of solving thgolycover problem is inspired  pefinition 11 A mixed integer linear progragMILP) is a
by the following observation non-convex optimization problem that can be expressed in

the form
PCUQ;, & 'P:Ul('PﬂQZ)
min  flz (MILP)
Therefore, we could creat®; = Q;, N P, for ¢ = o
., No and then compute the union of the collection of subj. to Gz <y,
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Algorithm 3 Set coverpolycover(P, Q)
Input: P := {z € R* | Pz < p},p € R, Q :

{02, Qi = {z € R" | Qiz < ;}, ¢ € R,
i=1,...,Ng

Output: Check ifP C Uf-\fl Q;, {true, false}

k+—1
- if 3i € Ni.ng 1 ng, = 0 then
return R
end if
. while Az € R" : Pz < p, Qi < g, do
kE—k+1
if k> Ng then
return false
end if
. end while
. for j =1tong, do
if 3z € R" : Px < P, [Qk](j)l’ > [qk](j) then
if k= N¢ then
return false
end if
P=Pn{z|[Quyz = lar]}
if polycover(P, {Q;}', ) = false then
return false
end if
P —Pn{z|[Qlpz < ekl }
21. endif
22. end for
23. return true

© NN PE

e N el =
IS e A

N BB
© © N

wherez € R" x {0,1}"* is the optimization variabley,

is the number of real valued variables, is the number
of binary (or, in general, integer) variables, and matrices
f € R*G e R"w*™ g € R, withn = n, + n,, are

given problem parameters. O
We note thafP is not fully covered byo, i.e.
PE(U5Q) (33)

if and only if there is a point: inside of P that violates
at least one of the constraints of ea@h ¢ = 1, ..., No.
This is equivalent to the following set of conditions

Jr e P35 € {l,...,ng}, [QilyHz —
i=1,...,No.

9] > 0,

(34)
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To express this violation of constraints we introduce slack
variables

Qilhyz — @l I [Qilgyr — lailg) =0,
palt) =1 o it [Qilyz —laily) <0,
j=1,...,nq, i=1,....Ng.

(35)
The expression (34) can now be posed as a feasibility ques-
tion in z andy; ;

Pz < p,
Zjiil vij > 0,
Checking the condition (36) is still not possible with stan-
dard solvers, since the relation (35) describes a nontlinea
function. However, by introducing auxiliary binary vari-
ables one can rewrite (35) as the following equivalent set
of linear inequalities (cf. [41])

(36)

i=1,...,Ng

0 —my QilHz — @il —me
0 —My Q] + @]y
1 —My Yi,j 0
—1 mr, |: (51',]' S 0
1 —mp QilHz — @il —me
-1 My =[Qilyr + lai] gy + Mu
6i,j € {07 1}7
j=1,...,ng,
i=1,....Ng,

(37)
whered; ; are auxiliary binary variables and, My €
R are bounds on constraint expressions that can be pre-
computed (or overestimated) beforehand

mp, < I}F; [Qi]hz — laily)
subj. to Pz <p (38)

je{l,....ng}

7/6 {17"'7NQ}

My > inii? (Qiljyr — [Qi](j)
subj.to Pz <p (39)

je{l,...,ng}

ZE {17"'?NQ}

Actually, in terms of the number of inequalities that are
used, (37) can be further simplified to

-1 0 0
-1 0 vii | o —[Qidmz + la] )
1 —mgp o | | [Qilghr — @]y —me
| My 0
62,_} S {Oa 1}7
j: 17"'7nqi7
i=1,...,No.
(40)
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Fig. 10. Setup 1. Comparison of MIL@1) and Algorithm 3 when solvingolycover (P, {Qi}f\fﬁ), with P C R”,
n € {2,3}, and varyingNg = 11,...,60. Reported computational times are average valued iérrandom tests per

each scenario, i.e., value &fg.

Since (36) and (40) describe a Mixed Integer Linear Pro6 TESTING OF ALGORITHMS

gramming (MILP) feasibility problem it follows that we
can check ifP ¢ (Uf\f?l ;) by solving an MILP feasibil-
ity problem.

However, instead of solving a feasibility MILP problem

In this section we compare performances of the
two approaches proposed in Section 5 for computing
polycover(P, {Qi}f\i‘ﬁ), i.e., checking ifP C {Qi}f\i‘ﬁ.

Testing was carried out on 24 GHz Pentiumd ma-

with (36) it may be more useful (and numerically robust) chine with 1.5 GB RAM. The polycover problem was

to solve the following optimality MILP problem

max )\
@04, 5,Yi, 5
Px S 'z
ng, )
_ oy > A i=1,..,N,
SUbJ. to Z‘;q.l 1,7 ' Q
Sy = 1, i=1,...,Ng

constraints (40)
(41)
Effectively, the optimal value\* is related to the size of
the largest non-covered part Bt

Theorem 1 Let \* be the solution to the problerdl),
thenP ¢ (U2 Q) if and only ifA* > 0. ]

Proof: Follows from the construction of the MILP
problem (41). ]

Remark 10 Strictly speaking, conditio} ", &; ; > 1

solved with MPT 2.6 [24] under MATLABT.01 in case
of Algorithm 3, and with CPLEX9.0 [42] in case of the
MILP formulation (41).

Setup 1

Series of random tests were performed in several dimen-
sionsn, with varying number of regions/, and average
number of constraints

N,
= Zile Mg %
“ Ng Ng

In all testing instance$ C R™ was chosen as a full-
dimensional polytope centered at the origin with (a ran-
dom) Chebyshev radius betwethand15. P-collectionQ
issuchthaQ; C R*,i=1,..., Ng, are full-dimensional
polytopes with an average Chebyshev radius equaDto
and Chebyshev centers randomly placed (with uniform dis-
tribution) within a hypercubé—10, 10]™. Testing results

(42)

in (41) is redundant, but it reduces the problems with thefor various scenarios are reported in Fig. 10 and Fig. 11.
integrality tolerances in existing MILP solvers. Also note We note that Algorithm 3 is always better than the MILP

that when solving41)there is no need for conditiop ; >
0 (first row in constraintg40)). O

The MILP problem (41) has, + 2Ng + 3329 n,,
constraintsp + 1+ Zf\fl ng, real variables anEf\L < Ny,
binary variables.

130

formulation (41). This superiority is more pronounced for
larger dimensions of the space.

Setup 2

To illustrate effectiveness of Algorithm 3 we consider
the followingpolycover problem setup that should always
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Fig. 11. Setup 1. Comparison of MIL@1) and Algorithm 3 when solvingolycover (P, {Qi}f\fﬁ), with P C R”,

n € {2,3}, Ng = 20, and varyingn, € [6.8 33]. Reported computational times are average valueg@orrandom tests
per each scenario, i.e., value of.

- —

10 10 10 o -5 0 5 10

~lo =5 0 5 =10 -5 0 5 o =5 0 5
(a) Partition forNg = 5 (b) Partition forNg = 40 (c) Partition forNg = 100 (d) Partition forNg = 500

Fig. 12. Setup 2. lllustration of a P-collectia® generation inR?.

give the valudarue. PolytopeP C R" is chosen asa hy- 7 CONCLUSION
percube—10, 10]™ centered at the origin. For a fixed di-
mensionn € {2,...,12} and successive values dfg
the P-collectionQ is constructed as a polytopic partition
of P in the following (iterative) manner: foNg = 1,
Q; = P; for Ng > 1 arandomly generated pointy,,

in [~10, 10]" decides which polytop@;, i € Ni.n,—1, iS
split into two polytopes by a random hyperplane passinqh
troughxy,, (i.e., through the interior o®;) thus creating
new polytopic partition® of P with Ny polytopes. See
Fig. 12 for illustration of the above procedureRA.

We have reviewed standard polytopic operations that are
utilized when deriving explicit form of the optimal and ro-
bust control for discrete-time systems.

We have analyzed in great detail two special classes of

ese polytopic operations: the so-calkediondiff prob-

lem where the set difference between a polyhedron and

union of polyhedra is computed, and thelycoverprob-

lem where one is interested in checking if a polytope is
Testing results for varying/g and different dimensions covered by the union of other polytopes.

of the spacen are reported in Fig. 13. We point out that

for most of the instances reported in Fig. 13 the MILP for- We have devised an in-place depth-first exploration

mulation (41) is practically intractable (i.e., it prodsaeo  algorithm that solves in an efficient manner both the

solution even afte24 hours of computation). Perhaps the regiondiff problem and, as a special case, the polycover

most informative view of the testing results is reported inproblem. Furthermore, we have derived the strict upper

Fig. 14, which indicates that the computational time of Al-bound for the computational complexity of this algorithm.

gorithm 3 (for all dimensions considered in Setup 2) growdn large number of random test we have shown that our

approximately with the square of the number of regions irpolycover algorithm is superior to the mixed integer linear

P-collectionQ. programming solution to the same problem.
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