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In the last decade a lot of research has focused on the explicit solution of optimal and robust control problems
for the class of constrained discrete-time systems. Many newly developed control algorithms for such control
problems internally use operations on polytopic sets. We review basic polytopic manipulations and analyze them
in the context of the computational effort.

We especially consider the so-calledregiondiff problem where the set difference between a polyhedron and
union of polyhedra needs to be computed. Regiondiff problemand relatedpolycoverproblem – checking if a
polytope is covered by the union of other polytopes – are utilized very often in derivation of the explicit solutions
to the constrained finite time optimal control problems for piecewise affine systems. Similar observation holds for
the computation of the (positive) controlled invariant sets, infinite time optimal control solution and/or controllers
with reduced complexity for piecewise affine systems.

We describe an in-place depth-first exploration algorithm that solves the regiondiff problem in an efficient man-
ner. We derive strict upper bound for the computational complexity of the described algorithm. In extensive
testing we show that our algorithm is superior to the mixed integer linear programming approach when solving the
polycover problem.
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Operacije nad politopskim skupovima kod optimalnog upravljanja sustava s ogranǐcenjima. U posljed-
njih desetak godina znatna istraživačka aktivnost usmjerena je na pronalaženje eksplicitnih rješenja optimalnog
i robusnog upravljanja za klasu vremenski diskretnih sustava s ogranǐcenjima. Brojni razvijeni algoritmi in-
terno koriste operacije nad politopskim skupovima. U ovom radu analiziramo osnovne operacije nad politopskim
skupovima sa stajališta njihove računske kompleksnosti.

Narǒcita pozornost dana je takozvanomregiondiff problemu, odnosno problemu proračuna razlike poliedarskog
skupa i unije poliedara. Isto tako je analiziran i srodnipolycoverproblem – provjera je li poliedarski skup u
potpunosti prekriven unijom poliedara. Oba ova problemačesto se srécu pri konstruiranju ekplicitnih rješenja opti-
malnog upravljanja po dijelovima afinih sustava uz konačan horizont predikcije, kao i pri proračunu pozitivnih
invarijantnih skupova, optimalnog upravljanja uz beskonačan horizont predikcije i/ili prorǎcunu regulatora sma-
njene kompleksnosti za po dijelovima afine sustave.

Razvijen je efikasan algoritam za rješenjeregiondiff problema zasnovan na dubinskom pretraživanju stablaste
strukture problema. Izvedena je teoretska gornja ograda zakompleksnost dobivenog algoritma, i pokazano je zašto
je takva ograda konzervartivna u praksi. Na nizu simulacijapokazana je rǎcunsku superiornost razvijenog algoritam
zapolycoverproblem u odnosu na pristup zasnovan na rješavanju mješovitog cjelobrojnog programa.

Klju čne riječi: politopski skupovi, razlika skupova, pokrivenost skupa, optimalno upravljanje sustava s ograniče-
njima, vremenski diskretni sustavi

1 INTRODUCTION

Set-theoretic methods for analysis and design of con-
trol systems have a long history since the first contribu-
tions trace back to the early70s (cf. [1–5]). The theory
was almost abandoned once it became clear that, although
the techniques are appropriate to solve many theoretical
and practical problems, the complexity of the required al-
gorithms was not compatible with the computer technol-

ogy of the time. In recent years, the theory is receiving
a renewed interest due the current computer performances
which are suitable to face non-trivial problems [5].

In the last decade a lot of research has focused on the
solution of optimal and robust control problems for the
class of discrete-time constrained linear systems [6–11].
Furthermore many algorithms have been extended to the
more general class of so-called PieceWise Affine (PWA)
systems [12–15].
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Motivation for this paper is the computation of the ex-
plicit state-feedback optimal controllers. The term “ex-
plicit” means that such design yields the optimal controller
in a closed form, i.e. as an explicit function of the sys-
tem states [6]. Constrained optimal and/or robust control
methods ensure systematic design of high-quality control
systems for demanding applications. The optimal con-
trol systems satisfies prescribed constraints while achiev-
ing the performance that is optimal with respect to the de-
sign objective. Robustly controlled system can cope with
the measurement/modelling uncertainty i.e. it can achieve
desired goal while being exposed to the adverse effects of
the environment. The computation of the optimal or ro-
bust controller for a general constrained non-linear sys-
tem is a very difficult problem. Consequently, with the
existing computational capabilities, the solution to the op-
timal control problem is tractable for a limited class of sys-
tems/constraints.

Several optimal control formulations may be used in ex-
plicit controller design. The most common formulations
are the Constrained Finite Time Optimal Control (CFTOC)
and the Constrained Time Optimal Control (CTOC). The
performance objective of the CFTOC is the sum over a
finite prediction horizon of piecewise linear or quadratic
functions of the control inputs and (predicted values of)
system states. An attractive property of the CFTOC prob-
lem is the fact that the optimizer, i.e. the optimal control
input, is a piecewise affine function of the (current) system
states [6,13]. In the CTOC problem formulation the goal is
to find the control inputs that in a minimal number of time
steps move the (current) system states into a controlled in-
variant set around the origin. The computation of explicit
controller for the CTOC problem can be solved by manip-
ulations of polytopes, and solution can be stored in a form
of a PWA function of the current system states [14]. Both
CFTOC and CTOC methodology rely on availability of a
valid discrete-time model of the system. In practice this
means that we need a systematic procedure for discrete-
time PWA model identification of nonlinear process [15].

Almost all developed CFTOC and CTOC algorithms in
their core use some type of operations on polytopes and
unions of polytopes. Furthermore, many of them rely on
extensive computation of set difference between polytope
and union of polytopes [16]. In this paper we review basic
polytopic manipulations and analyze them in the context
of the computational effort. We derive efficient algorithms
for solving two specific problems that emerge very often
when deriving the explicit solution to the constrained opti-
mal control problem for PWA systems: (i)regiondiff prob-
lem – computation of the set difference between a poly-
hedron and union of polyhedra; (ii)polycoverproblem –
checking if a polytope is covered by the union of other
polytopes.

2 NOTATION AND DEFINITIONSN is the set of positive integers,Rm×n, with m, n ∈ N,
is the space ofm by n real matrices,Rn is the space ofn-
dimensional real column vectors,∅ denotes the empty set,
andN1:m is the shorthand notation for the set{1, . . . , m}.
The symbol ’:=’ denotes that the left-hand side is defined
by the right-hand side, and ’=:’ is used for the reverse logic
(e.g.,N1:m := {1, . . . , m}). Let r ∈ Rn, R ∈ Rm×n, i ∈N1:m, I ⊆ N1:m, thenR(i) denotes thei-th row ofR; R(I)

denotes the matrix formed from the rows ofR indexed by
I; RT denotes the matrix transpose ofR; ‖ · ‖ denotes
the Euclidean vector norm, i.e.,‖r‖ :=

√
rT r, andcard(·)

denotes cardinality of the set (e.g.card(N1:m) = m).

Throughout the paper all vector inequalities are consid-
ered component-wise (e.g.,a ≤ b, with a, b ∈ Rm, is
equivalent toa(i) ≤ b(i), ∀i ∈ N1:m). As a general rule
vectors and matrices are denoted with italic letters (e.g.,
a, b, R, . . .) and sets are denoted with the upper case calli-
graphic letters (e.g.,I,Q, . . .).

We use the shorthand notation{Qi}NQ

i=1 for a collection

of sets, i.e.,{Qi}NQ

i=1 := {Q1,Q2, . . . ,QNQ}. Note that

forQ = {Qi}NQ

i=1 we havecard(Q) = NQ.

Definition 1 (Linear Program) A linear program(LP) is
a convex optimization problem that can be expressed in the
form

min
x

cT x (LP)

subj. to Gx ≤ g,

wherex ∈ Rn is the optimization variable, and matri-
cesc ∈ Rn, G ∈ Rm×n, g ∈ Rm are given problem
parameters. �

Theoretically every LP (with rational parameters) is
solvable in polynomial time by both the ellipsoid method
of Khachiyan [17, 18] and various interior point meth-
ods [19, 20]. A practical algorithm to solve an LP withn
variables andm constraints requires roughlyO(n3m0.5 +
n2m1.5) operations [21]. In this paper the computational
expense of a single LP has similar meaning like single ad-
dition or multiplication have in algebraic computations. In
many instances we will express complexity of algorithms
in terms of the number of LPs one needs to solve, thus
establishing the basis for relative comparison between dif-
ferent algorithms. Henceforth withlp(n, m) we denote the
complexity of a single LP withn variables andm con-
straints.

Most of the following definitions are standard. For ad-
ditional details the reader is referred to [22,23].
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Definition 2 A hyperplanein Rn is a set of the form

{x ∈ Rn | aT x = b},

wherea ∈ Rn, b ∈ R, ‖a‖ > 0. �

Definition 3 A half-spacein Rn is a set of the form

H = {x ∈ Rn | aT x ≤ b},

wherea ∈ Rn, b ∈ R, ‖a‖ > 0. �

Definition 4 (Polyhedron and polytope) A convex set

P = {x ∈ Rn | Px ≤ p}, (1)

with P ∈ Rnp×n, p ∈ Rnp , np < ∞, is calledpolyhe-
dron. Bounded polyhedron is calledpolytope. The vector
inequality in(1) is considered component-wise. �

We say that a polytopeP = {x ∈ Rn | Px ≤ p}
is full-dimensionalif it is possible to fit a non-emptyn-
dimensional ball inP , i.e.,

∃x0 ∈ Rn, ǫ > 0 : B(x0, ǫ) ⊂ P , (2)

where

B(x0, ǫ) := {x ∈ Rn | ‖x− x0‖ ≤ ǫ}. (3)

Equivalently, polytopeP is full-dimensional if

∃x0 ∈ Rn, ǫ > 0 : ‖δ‖ ≤ ǫ⇒ P (x0 + δ) ≤ p. (4)

Otherwise, we say that polytopeP is lower-dimensional.
A polytopeP is referred to asemptyif

∄x ∈ Rn : Px ≤ p. (5)

Furthermore, if‖P(i)‖ = 1, i = 1, . . . , np, we say that the
polytopeP is normalized. One of the fundamental proper-
ties of a polytope is that it can be described in half-space
representation (1) or in vertex representation (cf. [22]),as
given below,

P = {x ∈ Rn | x =
vP∑
i=1

αiV
P
i , 0 ≤ αi ≤ 1,

vP∑
i=1

αi = 1},

(6)

whereV P
i ∈ Rn denotes thei-th vertex ofP , andvP is the

total number of vertices ofP .

We will henceforth refer to the half-space represen-
tation (1) and vertex representation (6) asH- and V-
representation respectively (see Fig. 1).

Definition 5 (Face) A linear inequalityaT x ≤ b is called
valid for a polyhedronP if aT x ≤ b holds for allx ∈ P .
A subset of a polyhedron is called afaceof P if it can be
represented as

F = P ∩ {x ∈ Rn | aT x = b}, (7)

for some valid inequalityaT x ≤ b. The faces of polyhe-
dronP of dimension0, 1, (n − 2) and(n − 1) are called
vertices, edges, ridges and facets, respectively. �

We see that a setF ⊆ P is called a face ofP if it is either∅,
P itself or the intersection ofP with a hyperplane derived
from a valid inequality. An empty set∅ is a face of every
polyhedron and by convention it has dimension−1.

According to our definition every polytope represents a
convex, compact (i.e. bounded and closed) set. We will
see later that polytopes – as simple objects as they are –
play an instrumental role in the derivation of optimal con-
trol strategies for constrained linear and piecewise affine
systems. Very often, however, we also encounter sets that
are disconnected or non-convex but can be represented as a
union of finite number of polytopes. Therefore, it is useful
to define the following mathematical concept.

Definition 6 A polytopal complexC is a finite collection
of polytopes inRn such that

• the empty set is inC
• if P ∈ C, then all the faces ofP are also inC,
• the intersectionP ∩ Q of two polytopesP ,Q ∈ C is

a face both ofP andQ. �

Example 1 Here are several polytopal complexes inR1:
{∅, 0, 2, [0, 2]}, {∅, 0, 2, 4, [0, 2]}. Contrary to those,
the following sets are not polytopal complexes inR1:
{∅, 0, [0, 2]} – because of a missing polytope{2}, and
{∅,−2, 0, 2, [−2, 0], [−2, 2], [0, 2]} – because intersection
of two polytopes[−2, 0] and[−2, 2] is not a face of[−2, 2].
�

Characterization of a polytopal complex is quite expen-
sive. For every polytope in the complex we need to com-
pute all the faces (i.e. lower-dimensional polytopes). Since
we usually work only with full-dimensional polytopes (cf.
Remark 1) it is reasonable to introduce a more practical
concept.

Definition 7 (P-collection) A P-collectionC is a finite col-
lection of full-dimensional polytopes inRn, i.e.,

C = {Ci}NC

i=1, (8)

whereNC = card(C) < ∞, Ci := {x ∈ Rn | Cix ≤ ci},
Ci full-dimensional,i = 1, . . . , NC . �
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(a) H-representation of a polytope inR2. The hyperplanes
{x | P(i)x = p(i)}, i = 1, . . . , 5, are depicted with dashed lines
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(b) V-representation of a polytope inR2. The verticesV P
i , i =

1, . . . , 5, are depicted with circles

Fig. 1. Illustration of a polytope inH-representation andV- representation

Definition 8 (Underlying Set) Theunderlying setof a P-
collectionC = {Ci}NC

i=1 is the point set inRn

C :=
NC⋃
i=1

Ci. (9)

�

Example 2 A collectionR = {[−2,−1], [0, 2], [2, 4]} is a
P-collection inR1 with the underlying setR = [−2,−1]∪
[0, 4]. As another example,R = {[−2, 0], [−1, 1], [0, 2]}
is a P-collection inR1 with underlying setR = [−2, 2].
Clearly, polytopes that define P-collection can overlap,
while the underlying sets can be disconnected and non-
convex. �

Usually it is clear from the context if we are talking
about the P-collection or we are referring to the underly-
ing set of a P-collection, in which case, for simplicity, we
use the same notation for both.

Definition 9 (Partition) A collection of sets{Ri}NR

i=1 is a
partitionof a setP if: (i) P = ∪NR

i=1Ri, and (ii)Ri∩Rj =
∅, ∀i 6= j, with i, j ∈ {1, . . . , NR}. �

Definition 10 (Polyhedral Partition) A collection of sets
{Ri}NR

i=1 is a polyhedral partitionof a setP if {Ri}NR

i=1

is a partition ofP and the setsR̄i are polyhedra, where
i = 1, . . . , NR, andR̄i denotes the closure ofRi. �

3 OPERATIONS ON POLYTOPES

We will now define some basic operations and functions
on polytopes. Note that although we focus on polytopes

and polytopic objects most of the operations described here
are directly (or with minor modifications) applicable to
polyhedral objects. Additional details on polytope com-
putation can be found in [22,23]. All operations and func-
tions described in this section are contained in the MPT
toolbox [24].

3.1 Minimal Representation

We say that a polytopeP ⊂ Rn, P = {x ∈ Rn | Px ≤
p} is in aminimal representationif the removal of any row
in Px ≤ p would change it (i.e., there are no redundant
half-spaces). The computation of minimal representation
of polytopes is discussed in [25] and generally requires
solution of one LP for each half-space defining the non-
minimal representation ofP . We report one straightfor-
ward implementation of the minimal representation com-
putation in Algorithm 1.

Algorithm 1 Minimal representation:minrep(P)
Input: P := {x ∈ Rn | Px ≤ p}, p ∈ Rnp

Output: Minimal representation ofP
1. I ← {1, . . . , np}
2. for i = 1 to np do
3. I ← I \ {i}
4. f∗ ← max

x
{P(i)x | P(I)x ≤ p(I), P(i)x ≤ p(i)+1}

5. if f∗ > p(i) then
6. I ← I ∪ {i}
7. end if
8. end for
9. return P̃ := {x | P(I)x ≤ p(I)}
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Remark 1 It is straightforward to see that a normalized,
full-dimensional polytopeP has auniqueminimal repre-
sentation.1 This fact is very useful in practice. Normal-
ized, full-dimensional polytopes in a minimal represen-
tation allow us to avoid any ambiguity when comparing
them and very often speed-up other polytope manipula-
tions. For simplicity, and without loss of generality, in the
rest of this paper we consider only full-dimensional poly-
topes. Lower-dimensional polytopes (with the exception of
an empty polytope) are not considered. The reasoning is
similar to the one in the MPT toolbox [24] – this simpli-
fication reduces the complexity of the computations, while
being sufficient for description and solution of the control
problems we consider in the paper. �

3.2 Chebyshev Ball

The Chebyshev ball of a polytopeP = {x ∈ Rn | Px ≤
p}, with P ∈ Rnp×n, p ∈ Rnp , corresponds to the largest
radius ball inRn such thatB(xc, Rc) ⊂ P . The centerxc

and radiusRc of the Chebyshev ball can be easily found
by solving the following LP [26]

max
xc,Rc

Rc

subj. to P(i)xc + ‖P(i)‖Rc ≤ p(i), i = 1, . . . , np.
(10)

If the solution to (10) isRc = 0, then the polytopeP is
lower-dimensional; ifRc < 0, then the polytope is empty.
Therefore, an answer to the question “is polytopeP full-
dimensional/empty?” is obtained at theexpenseof only
one linear program of complexitylp(n + 1, np). Further-
more, for a full-dimensional polytope we also get a point
xc that is in the interior ofP (see Fig. 2 for illustration).
One word of caution: the center of a Chebyshev ballxc

in (10) is not necessarily unique (e.g. whenP is a rect-
angle). There are other types of unique interior points one
could compute for a full-dimensional polytope (e.g., ana-
lytic center, center of the largest volume ellipsoid, etc.)but
those computations are usually formulated as semidefinite
programming problems [26] and hence they are more ex-
pensive to carry out than the Chebyshev ball computation
via LP (10).

3.3 Projection

Given an(n + m)-polytopeP = {x ∈ Rn+m | Px ≤
p} ⊂ Rn+m, n, m ∈ N, the projection onto theRn is de-
fined as ann-polytope

projn(P) := {y ∈ Rn | ∃z ∈ Rm : P [yT zT ]T ≤ p}.
(11)

An illustration of a projection operation is given in Fig. 3.
In general, the projection methods (for arbitrary dimen-

1The term ‘unique’ here means that for a polytopeP := {x ∈Rn | Px ≤ p} the matrix[P p] comprises unique set of row vectors.
The order of those rows is irrelevant.
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Fig. 2. Chebyshev ballB(xc, Rc) contained in a polytope
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Fig. 3. Projection of a 3-dimensional polytopeP ontoR2

sionsm andn) reported in literature can be grouped into
four classes: Fourier elimination [27, 28], block elimi-
nation [29], vertex based approaches [30] and wrapping-
based techniques [31]. For a good introduction to projec-
tion, we refer the reader to [31] and the references therein.

3.4 Set Difference

The Set difference of two polytopesP andQ

R = P \ Q := {x ∈ Rn | x ∈ P , x /∈ Q}, (12)

is, in general, given as a P-collectionR =
⋃

iRi, which
can be computed by consecutively inverting the half-
spaces definingQ as described in [6] (see Fig. 4). Note
that here we use the term P-collection in the dual context
of both P-collection and its underlying set (cf. Definition 7
and Definition 8). The precise statement would say that
R = P \ Q, whereR is the underlying set of P-collection
R = {Ri}NR

i=1. However, whenever it is clear from context
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what are we referring to, as is the case here, we will abuse
the notation and use the former, more compact form.
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(a) PolytopesP andQ
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(b) R =
⋃

iRi = P \ Q

Fig. 4. Illustration of the set difference operation

Remark 2 The set difference of two intersecting polytopes
(or any closed sets)P andQ is, in general, not a closed
set. This means that some borders of polytopesRi from
a P-collectionR = P \ Q are open, while other borders
are closed. Even though it is possible to keep track of the
origin of particular borders ofRi, thus specifying if they
are open or closed, we are not doing it in the algorithms
described in this paper nor in MPT [24], cf. Remark 1. In
computations, we will henceforth only consider the closure
of setsRi. �

Related to the above operation are the following
two computationally very demanding problems/questions:
what is the set difference between a polytopeP and a P-
collectionQ := ∪iQi; and is a polytopeP fully covered
by a P-collectionQ := ∪iQi? For instance, the latter
operation is needed to check if two unions of polyhedra
cover the same non-convex set [11, 14] (e.g., step5 of Al-
gorithm 4.1 in [14]). In Section 4 and Section 5 we an-
alyze these problems in more details, and derive efficient
algorithms that perform these tasks.

3.5 Convex Hull

The convex hull of a set of pointsV = {Vi}NV

i=1, with
Vi ∈ Rn, is a polytope defined as

co(V) = {x ∈ Rn | x =
NV∑
i=1

αiVi, 0 ≤ αi ≤ 1,

NV∑
i=1

αi = 1}.
(13)

The convex hull operation is used to switch from aV-
representation of a polytope to aH-representation. The
convex hull of a union of polytopesRi ⊂ Rn, i =

1, . . . , NR, is a polytope

co

(
NR⋃
i=1

Ri

)
:= {x ∈ Rn | x =

NR∑
i=1

αixi, xi ∈ Ri,

0 ≤ αi ≤ 1,

NR∑
i=1

αi = 1}.

(14)

An illustration of the convex hull operation is given in
Fig. 5. Construction of the convex hull is an expensive op-
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⋃

iRi
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(b) Convex hull ofR

Fig. 5. Illustration of the convex hull operation

eration which is exponential in the number of facets of the
original polytope. An efficient software implementation is
available from [32,33].

3.6 Envelope

The envelope of twoH-polyhedra P = {x ∈Rn | Px ≤ p} andQ = {x ∈ Rn | Qx ≤ q} is anH-
polyhedron

env(P ,Q) = {x ∈ Rn | P̃ x ≤ p̃, Q̃x ≤ q̃}, (15)

whereP̃ x ≤ p̃ is the subsystem ofPx ≤ p obtained by
removing all the inequalities not valid for the polyhedron
Q, andQ̃x ≤ q̃ are defined in a similar way with respect to
Qx ≤ q andP [34]. In a similar fashion definition can be
extended to the case of the envelope of a P-collection. An
illustration of the envelope operation is depicted in Fig. 6.
The computation of the envelope is relatively cheap since
it only requires the solution to one LP for each facet ofP
andQ. Note that envelope of two (or more) polytopes is
not necessarily bounded set (e.g. whenP ∪ Q is shaped
like a star).

3.7 Vertex Enumeration

The operation of extracting the vertices of a polytope
P given inH-representation is referred to as vertex enu-
meration. This operation is the dual to the convex hull
operation and the algorithmic implementation is identical
to a convex hull computation, i.e. given a set of extreme
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Fig. 6. Illustration of the envelope operation

pointsV = {Vi}NV

i=1 = vert(P) of a polytopeP given
in H-representation it holds thatP = co(V), where the
operatorvert denotes the vertex enumeration. The neces-
sary computational effort is in the worst case exponential
in the number of the polytope facets. Two different ap-
proaches to vertex enumeration exist: the double descrip-
tion method [35] and reverse search [36]. An efficient im-
plementation of the double description method is available
in [32,33].

3.8 Pontryagin Difference

The Pontryagin difference (also known as Minkowski
difference) of two polytopesP andQ is a polytope

P ⊖Q := {x ∈ Rn | x + q ∈ P , ∀q ∈ Q}. (16)

The Pontryagin difference can be efficiently computed for
polytopes by solving a sequence of LPs [37]. For special
cases (e.g. whenQ is a hypercube), even more efficient
computational methods exist [38]. An illustration of the
Pontryagin difference is given in Fig. 7.
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Fig. 7. Illustration of the Pontryagin difference operation

3.9 Minkowski Sum

The Minkowski sum of two polytopesP andQ is a
polytope

P ⊕Q := {x + q ∈ Rn | x ∈ P , q ∈ Q}. (17)

The Minkowski sum is a computationally expensive oper-
ation which requires either vertex enumeration and convex

hull computation inRn or a projection fromR2n down toRn. The implementation of the Minkowski sum via pro-
jection is based on the following observation. For

P = {y ∈ Rn |Py ≤ p}, Q = {z ∈ Rn |Qz ≤ q},

it holds that

R = P ⊕Q
=

{
x = y + z | y, z ∈ Rn, Py ≤ p, Qz ≤ q

}
=

{
x ∈ Rn | ∃y ∈ Rn : Py ≤ p, Q(x− y) ≤ q

}
=

{
x ∈ Rn | ∃y ∈ Rn :

[
0 P
Q −Q

] [
x
y

]
≤
[
p
q

]}
= projn

({
w ∈ R2n |

[
0 P
Q −Q

]
w ≤

[
p
q

]})
.

Both the projection and vertex enumeration based methods
are implemented in the MPT toolbox [24]. An illustration
of the Minkowski sum is given in Fig. 8.
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Fig. 8. Illustration of the Minkowski sum operation

Remark 3 The Minkowski sum isnot the complement of
the Pontryagin difference. For two polytopesP andQ, it
holds that(P ⊖Q)⊕Q ⊆ P (cf. Fig. 7 and Fig. 8). �

4 REGIONDIFF PROBLEM

Let P = {x | Px ≤ p} be a polyhedron inRn given
as the intersection ofnp half-spaces andQi = {x ∈Rn | Qix ≤ qi} beNQ polyhedra inRn given as the inter-
section ofnqi half-spaces (i.e.Qi ∈ Rnqi

×n). We want to

determine the set differenceP \ (∪NQ

i=1Qi). We refer to this
problem as theregiondiff problem (to differentiate it from
the problem of computing the set difference between two
polytopes, cf. Section 3.4).

We outline the procedure of finding the exact solution
to theregiondiff problem in Algorithm 2. It computes the
setR = P \ (∪NQ

i=1Qi), whereR (if not empty) is given as
union of non-overlapping polyhedra.
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Fig. 9. Example for the set difference computation with Algorithm 2 inR2. PolytopeP is depicted with full line, active
constraints (see(18) for definition) ofQi with dashed lines, and non-active constraints ofQi with thin lines. The indices
of corresponding active constraints of eachQi are denoted as encircled numbers.

One example of solving theregiondiff problem with
Algorithm 2 for 2-dimensional polytopeP and P-
collection{Qi}3i=1 is illustrated in Fig. 9.

Algorithm 2 solves theregiondiff problem by basi-
cally implementing an in-place depth-first exploration of
the tree of feasible constraint combinations, where each
branch/node corresponds to the inversion of a facet ofQi

(step 12 of Algorithm 2). The approach used to partition
the space is based on [6].

Note that the output of Algorithm 2 is a P-collectionR
that comprises only non-overlapping polyhedra, regardless
of possible overlaps in the input P-collectionQ. We also
note that Algorithm 2 would work even if steps 2-10 were
not present. However, those steps potentially have a huge
impact on the speed of computation since they exclude un-
necessary checks at later stages (i.e. lower branches) of the
algorithm.

Remark 4 Step 5 of Algorithm 2 is a simple feasibility LP
of complexitylp(n + 1, np + nqk

). Similarly, step 12 is a
feasibility LP of complexitylp(n + 1, np + 1). �

Remark 5 (Preprocessing)From a practical point of
view it makes sense to preprocess the data before using
Algorithm 2 to compute the set difference. Namely, we
can speed up the computation by ensuring thatP andQi,
i = 1, . . . , NQ, are full-dimensional polyhedra inRn given
in the minimalH-representation:P = {x | Px ≤ p},
Qi = {x | Qix ≤ qi}, P ∈ Rnp×n, p ∈ Rnp , Qi ∈Rnqi

×n, qi ∈ Rnqi . Note that it is always possible to ob-
tain normalized polyhedron in minimal representation (see

Section 3.1) and to remove thoseQi that do not intersect
P , e.g. by checking if Chebyshev ball (see Section 3.2) of
a joint polyhedra{x | Px ≤ p, Qix ≤ qi} is non-empty.

Furthermore, it is useful to pre-compute the set of so-
calledactive constraints:

Ai =
{
j ∈ {1, . . . , nqi} | ∃x : Px ≤ p, [Qi](j)x > [qi](j)

}
,

(18)
for eachQi, i = 1 . . . , NQ. This can be done at the ex-

pense of at most
∑NQ

i=1 nqi LPs:

NQ∑
i=1

nqi · lp(n + 1, np + nqi). (19)

We note that the removal of non-active constraints from
the description of eachQi does not change the result of
Algorithm 2, i.e.,

P \ {Qi}NQ

i=1 = P \ {Q̃i}NQ

i=1, (20)

where
Q̃i := {x ∈ Rn | Q̃ix ≤ q̃i}, (21)

Q̃i = [Qi](Ai), q̃i = [qi](Ai). (22)

As a matter of fact, sincecard(Ai) ≤ nqi , this removal of
non-active constraints can significantly reduce dimension
of the problem parameters in Algorithm 2 and thus drasti-
cally reduce complexity of Algorithm 2. �

Remark 6 (Postprocessing)Note that Algorithm 2 re-
turns P-collectionR = {Ri}NR

i=1, withRi that are in (pos-
sibly) non-minimalH-representation. As a postprocessing
step one might call Algorithm 1 to obtain the minimal rep-
resentation for eachRi of the result. �
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Algorithm 2 Set difference:regiondiff(P ,Q)
Input: P := {x ∈ Rn | Px ≤ p}, p ∈ Rnp , Q :=
{Qi}NQ

i=1, Qi := {x ∈ Rn | Qix ≤ qi}, qi ∈ Rnqi ,
i = 1, . . . , NQ

Output: P-collection representingP \ Q
1. R← ∅, k ← 1
2. if ∃i ∈ N1:NQ : nqi = 0 then
3. return R
4. end if
5. while ∄x ∈ Rn : Px < p, Qkx < qk do
6. k← k + 1
7. if k > NQ then
8. return P
9. end if

10. end while
11. for j = 1 to nqk

do
12. if ∃x ∈ Rn : Px ≤ p, [Qk](j)x > [qk](j) then
13. P̃ = P ∩ {x | [Qk](j)x ≥ [qk](j)}
14. if k < NQ then
15. R← R∪ regiondiff(P̃ , {Qi}NQ

i=k+1)
16. else
17. R← R∪ P̃
18. end if
19. end if
20. P ← P ∩ {x | [Qk](j)x ≤ [qk](j)}
21. end for
22. return R

The most time consuming part of Algorithm 2 lies in
recursive calls to itself (step 15). Therefore in the follow-
ing computational complexity analysis we neglect the cost
of removal of thenon-active constraintsfromQi (cf. Re-
mark 5) or computing the minimal representation of the
regionsRi that describe the set difference (cf. Remark 6).

To establish the worst case complexity of Algorithm 2
one needs to look at its tree-like exploration of the space.
The depth of the tree is equal toNQ (i.e., the number of
regionsQi). Clearly, every node on the levelk has at most
nqk+1 children nodes on the levelk+1, wherenqk

denotes
the number of constraints of polytopeQk (if preprocessing
step from Remark 5 is done thennqk

is the number of ac-
tive constraints) . Therefore the number of nodes at levelk
is bounded from above by

k∏
i=1

nqi ≤
(

Hk

k

)k

, (23)

where

Hk :=
k∑

i=1

nqi , (24)

i.e., Hk is the cumulative number of constraints up to the
levelk of the tree, andk = 1, . . . , NQ.

One should note that (23) gives an overly conservative
upper bound for the number of nodes at levelk. For ex-
ample, if (23) was a strict upper bound, it would imply that
the number of nodes at the bottom of the tree is of the order

O
((

M

NQ

)NQ
)

, (25)

whereM denotes the total number of constraints

M :=
NQ∑
i=1

nqi . (26)

To better estimate the upper bound on the number of
nodes at levelk we recall the Buck’s formula [39] for the
hyperplane arrangement problem. Buck’s formula gives an
upper bound for the maximal number of cells created by
Hk hyperplanes inRn. The upper bound is obtained by the
hyperplanes in the so-called general position [22]. There-
fore, we can obtain the strict upper bound on the number
of nodes at levelk

Tk ≤
n∑

i=0

(
Hk

i

)
= O

(
Hk

n

n!

)
, (27)

whereTk denotes the number of nodes at levelk of the tree
for Algorithm 2, andk = 1, . . . , NQ.

Since every region in the output of Algorithm 2 corre-
sponds to exactly one feasible node at the bottom of the
exploration tree, we clearly see that the number of nodes
TNQ is an upper bound on the number of regions generated
by Algorithm 2

NR ≤ TNQ . (28)

Therefore, by taking into account thatHNQ = M , the fol-
lowing strict upper bound onNR can be computed from
(27)

NR ≤
n∑

i=0

(
M
i

)
= O

(
Mn

n!

)
. (29)

Feasible nodes of levelk + 1, with k = 1, . . . , NQ − 1,
are computed from feasible nodes at levelk. The compu-
tation at every node of levelk involves solution of at most
nqk+1 LPs withn+1 variables and at mostnp+Hk+1 con-
straints (cf. Remark 4). Therefore, the strict upper bound
on the overall complexity of Algorithm 2 is given by

NQ−1∑
k=1

Tk · nqk+1 · lp(n + 1, np + Hk+1), (30)

i.e., the overall complexity of Algorithm 2 is of the order

O
(

Mn+1

n!
· lp(n + 1, np + M)

)
. (31)
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From (31) it is clear that forn > 1 the overall complex-
ity of Algorithm 2 is hugely affected byM – the total num-
ber of (active) constraints for the problem at hand. There-
fore, for specific applications, whereregiondiff problem is
solved via Algorithm 2, one should investigate if it is possi-
ble to split the original problem in subproblems (assuming
that the dimensionn remains fixed) that would result in
calls to Algorithm 2 with a reduced value ofM (see [40]
for one application of this idea).

Remark 7 The expression(29) represents the strict upper
bound on the output complexity (i.e. the set difference rep-
resentation) for Algorithm 2, and therefore it cannot be
further improved. The same claim holds also for the ex-
pression(30) (and, consequently, for(31)) that defines the
strict upper bound on the computational complexity of Al-
gorithm 2. However, in practice (n ≪ NQ ≪ M ) these
expressions are found to be very conservative (cf. testing
results in Section 6). �

Remark 8 Extension of theregiondiff problem to the case
where bothP andQ are P-collections is straightforward.
Namely, the set difference is a P-collectionR = {Pi}NP

i=1 \
{Qj}NQ

j=1 that can be computed by cycling through all poly-
topesPi. We have

R =
NP⋃
i=1

Pi \ {Qj}NQ

j=1. (32)

Note that here the output P-collectionRmay contain over-
lapping polyhedra if the input P-collectionP has some
overlapping polyhedra. �

5 POLYCOVER PROBLEM

The problem of checking if some polytope is covered
with the union of other polytopes emerges very often in
the construction of explicit solution for the constrained fi-
nite time optimal control of piecewise affine systems. The
need for solving this type of a problem is also common in
the computation of the (positive) controlled invariant sets,
infinite time solution or controllers with reduced complex-
ity for PWA systems. Thus, it is important to have an al-
gorithm that checks if a polytopeP is fully covered by a
P-collectionQ := ∪iQi in an efficient manner. We refer
to this problem as thepolycoverproblem.

One idea of solving thepolycover problem is inspired
by the following observation

P ⊆ ∪iQi ⇔ P = ∪i(P ∩ Qi).

Therefore, we could createRi = Qi ∩ P , for i =
1, . . . , NQ and then compute the union of the collection of

polytopes{Ri} by using thepolyunionalgorithm for com-
puting the convex union ofH-polyhedra reported in [34].
If approach [34] succeeds (i.e., the union is a convex set)
and the resulting polytope is equal toP thenP is covered
by {Qi}NQ

i=1, otherwise it is not. However, this approach is
computationally very expensive. The algorithm in [34] is
based on the idea that wheneverP := ∪iQi is a polyhe-
dron thenP = env({Qi}NQ

i=1). Unfortunately the underly-
ing computation is very expensive, and one needs to solve
O(ΠNQ

i=1nqi) LPs with n variables andM =
∑NQ

i=1 nqi

constraints. Thus, the polyunion computation from [34]
becomes quickly prohibitive with the increasing number
of polytopesNQ and constraintsM .

In the following we propose two different approaches.

5.1 Polycover: Regiondiff Based Algorithm

Clearly,polycover is just a special case ofregiondiff ,
where resulting P-collectionR = ∅. In a special case when
we only want to check ifP ⊆ (∪NQ

i=1Qi) finding any feasi-
bleRj in Algorithm 2 provides a negative answer and we
can abort further search. Implementation of this strategy is
given in Algorithm 3.

Similarly to Algorithm 2 the worst case complexity of
Algorithm 3 is bounded by (30) (see also Remark 5 and
Remark 7).

Remark 9 Note that it is straightforward to extend the
polycover problem to the case where bothP andQ are
P-collections:

• Verification of{Pi}NP

i=1 ⊆ {Qj}NQ

j=1:

{Pi}NP

i=1 ⊆ {Qj}NQ

j=1 ⇔ {Pi}NP

i=1 \ {Qj}NQ

j=1 = ∅.

• Verification of{Pi}NP

i=1 = {Qj}NQ

j=1:

{Pi}NP

i=1 = {Qj}NQ

j=1 ⇔
{Pi}NP

i=1\{Qj}NQ

j=1 = ∅ & {Qj}NQ

j=1 \ {Pi}NP

i=1 = ∅.
Here the set difference between two P-collections can be
computed according to(32). �

5.2 Polycover: MILP formulation

When some of the optimization variables in a linear pro-
gram (see Definition 1) are constrained to integer values
the ensuing problem is called amixed integer linear pro-
gram(MILP).

Definition 11 A mixed integer linear program(MILP) is a
non-convex optimization problem that can be expressed in
the form

min
x

fT x (MILP)

subj. to Gx ≤ g,
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Algorithm 3 Set cover:polycover(P ,Q)
Input: P := {x ∈ Rn | Px ≤ p}, p ∈ Rnp , Q :=
{Qi}NQ

i=1, Qi := {x ∈ Rn | Qix ≤ qi}, qi ∈ Rnqi ,
i = 1, . . . , NQ

Output: Check ifP ⊆ ∪NQ

i=1Qi, {true, false}
1. k← 1
2. if ∃i ∈ N1:NQ : nqi = 0 then
3. return R
4. end if
5. while ∄x ∈ Rn : Px < p, Qkx < qk do
6. k← k + 1
7. if k > NQ then
8. return false
9. end if

10. end while
11. for j = 1 to nqk

do
12. if ∃x ∈ Rn : Px ≤ P c, [Qk](j)x > [qk](j) then
13. if k = NQ then
14. return false
15. end if
16. P̃ = P ∩ {x | [Qk](j)x ≥ [qk](j)}
17. if polycover(P̃ , {Qi}NQ

i=k+1) = false then
18. return false
19. end if
20. P ← P ∩ {x | [Qk](j)x ≤ [qk](j)}
21. end if
22. end for
23. return true

wherex ∈ Rnr × {0, 1}nb is the optimization variable,nr

is the number of real valued variables,nb is the number
of binary (or, in general, integer) variables, and matrices
f ∈ Rn, G ∈ Rng×n, g ∈ Rng , with n = nr + nb, are
given problem parameters. �

We note thatP is not fully covered byQ, i.e.

P * (∪NQ

i=1Qi) (33)

if and only if there is a pointx inside ofP that violates
at least one of the constraints of eachQi, i = 1, . . . , NQ.
This is equivalent to the following set of conditions

∃x ∈ P : ∃ji ∈ {1, . . . , nqi}, [Qi](ji)x− [qi](ji) > 0,

i = 1, . . . , NQ.
(34)

To express this violation of constraints we introduce slack
variables

yi,j(x) =

{
[Qi](j)x− [qi](j) if [Qi](j)x− [qi](j) ≥ 0,

0 if [Qi](j)x− [qi](j) ≤ 0,

j = 1, . . . , nqi , i = 1, . . . , NQ.
(35)

The expression (34) can now be posed as a feasibility ques-
tion in x andyi,j

Px ≤ p,∑nqi

j=1 yi,j > 0, i = 1, . . . , NQ
(36)

Checking the condition (36) is still not possible with stan-
dard solvers, since the relation (35) describes a non-linear
function. However, by introducing auxiliary binary vari-
ables one can rewrite (35) as the following equivalent set
of linear inequalities (cf. [41])

0 −mL

0 −MU

1 −MU

−1 mL

1 −mL

−1 MU


[

yi,j

δi,j

]
6



[Qi](j)x− [qi](j) −mL

−[Qi](j)x + [qi](j)
0

0

[Qi](j)x− [qi](j) −mL

−[Qi](j)x + [qi](j) + MU


δi,j ∈ {0, 1},

j = 1, . . . , nqi ,

i = 1, . . . , NQ,
(37)

whereδi,j are auxiliary binary variables andmL, MU ∈R are bounds on constraint expressions that can be pre-
computed (or overestimated) beforehand

mL ≤ min
x,i,j

[Qi](j)x− [qi](j)
subj. to Px ≤ p

j ∈ {1, . . . , nqi}
i ∈ {1, . . . , NQ}

(38)

MU ≥ min
x,i,j

[Qi](j)x− [qi](j)

subj. to Px ≤ p

j ∈ {1, . . . , nqi}
i ∈ {1, . . . , NQ}

(39)

Actually, in terms of the number of inequalities that are
used, (37) can be further simplified to

−1 0

−1 0

1 −mL

1 −MU

[ yi,j

δi,j

]
6


0

−[Qi](j)x + [qi](j)
[Qi](j)x− [qi](j) −mL

0


δi,j ∈ {0, 1},

j = 1, . . . , nqi ,

i = 1, . . . , NQ.
(40)
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Fig. 10. Setup 1. Comparison of MILP(41) and Algorithm 3 when solvingpolycover(P , {Qi}NQ

i=1), with P ⊂ Rn,
n ∈ {2, 3}, and varyingNQ = 11, . . . , 60. Reported computational times are average values for100 random tests per
each scenario, i.e., value ofNQ.

Since (36) and (40) describe a Mixed Integer Linear Pro-
gramming (MILP) feasibility problem it follows that we
can check ifP * (∪NQ

i=1Qi) by solving an MILP feasibil-
ity problem.

However, instead of solving a feasibility MILP problem
with (36) it may be more useful (and numerically robust)
to solve the following optimality MILP problem

max
λ,x,δi,j ,yi,j

λ

subj. to


Px ≤ p,∑nqi

j=1 yi,j ≥ λ, i = 1, . . . , NQ∑nqi

j=1 δi,j ≥ 1, i = 1, . . . , NQ

constraints (40)
(41)

Effectively, the optimal valueλ∗ is related to the size of
the largest non-covered part ofP .

Theorem 1 Let λ∗ be the solution to the problem(41),
thenP * (∪NQ

i=1Qi) if and only ifλ∗ > 0. �

Proof: Follows from the construction of the MILP
problem (41).

Remark 10 Strictly speaking, condition
∑nqi

j=1 δi,j ≥ 1
in (41) is redundant, but it reduces the problems with the
integrality tolerances in existing MILP solvers. Also note
that when solving(41) there is no need for conditionyi,j ≥
0 (first row in constraints(40)). �

The MILP problem (41) hasnp + 2NQ + 3
∑NQ

i=1 nqi

constraints,n+1+
∑NQ

i=1 nqi real variables and
∑NQ

i=1 nqi

binary variables.

6 TESTING OF ALGORITHMS

In this section we compare performances of the
two approaches proposed in Section 5 for computing
polycover(P , {Qi}NQ

i=1), i.e., checking ifP ⊆ {Qi}NQ

i=1.
Testing was carried out on a2.4 GHz Pentium4 ma-

chine with 1.5 GB RAM. The polycover problem was
solved with MPT 2.6 [24] under MATLAB7.01 in case
of Algorithm 3, and with CPLEX9.0 [42] in case of the
MILP formulation (41).

Setup 1

Series of random tests were performed in several dimen-
sionsn, with varying number of regionsNQ and average
number of constraints

n̄q :=
∑NQ

i=1 nqi

NQ
=

M

NQ
. (42)

In all testing instancesP ⊂ Rn was chosen as a full-
dimensional polytope centered at the origin with (a ran-
dom) Chebyshev radius between10 and15. P-collectionQ
is such thatQi ⊂ Rn, i = 1, . . . , NQ, are full-dimensional
polytopes with an average Chebyshev radius equal to10
and Chebyshev centers randomly placed (with uniform dis-
tribution) within a hypercube[−10, 10]n. Testing results
for various scenarios are reported in Fig. 10 and Fig. 11.
We note that Algorithm 3 is always better than the MILP
formulation (41). This superiority is more pronounced for
larger dimensions of the space.

Setup 2

To illustrate effectiveness of Algorithm 3 we consider
the followingpolycoverproblem setup that should always
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Fig. 11. Setup 1. Comparison of MILP(41) and Algorithm 3 when solvingpolycover(P , {Qi}NQ

i=1), with P ⊂ Rn,
n ∈ {2, 3}, NQ = 20, and varyingn̄q ∈ [6.8 33]. Reported computational times are average values for100 random tests
per each scenario, i.e., value ofn̄q.
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Fig. 12. Setup 2. Illustration of a P-collectionQ generation inR2.

give the valuetrue. PolytopeP ⊂ Rn is chosen as a hy-
percube[−10, 10]n centered at the origin. For a fixed di-
mensionn ∈ {2, . . . , 12} and successive values ofNQ

the P-collectionQ is constructed as a polytopic partition
of P in the following (iterative) manner: forNQ = 1,
Q1 = P ; for NQ > 1 a randomly generated pointxNQ

in [−10, 10]n decides which polytopeQi, i ∈ N1:NQ−1, is
split into two polytopes by a random hyperplane passing
troughxNQ (i.e., through the interior ofQi) thus creating
new polytopic partitionQ of P with NQ polytopes. See
Fig. 12 for illustration of the above procedure inR2.

Testing results for varyingNQ and different dimensions
of the spacen are reported in Fig. 13. We point out that
for most of the instances reported in Fig. 13 the MILP for-
mulation (41) is practically intractable (i.e., it produces no
solution even after24 hours of computation). Perhaps the
most informative view of the testing results is reported in
Fig. 14, which indicates that the computational time of Al-
gorithm 3 (for all dimensions considered in Setup 2) grows
approximately with the square of the number of regions in
P-collectionQ.

7 CONCLUSION

We have reviewed standard polytopic operations that are
utilized when deriving explicit form of the optimal and ro-
bust control for discrete-time systems.

We have analyzed in great detail two special classes of
these polytopic operations: the so-calledregiondiff prob-
lem where the set difference between a polyhedron and
union of polyhedra is computed, and thepolycoverprob-
lem where one is interested in checking if a polytope is
covered by the union of other polytopes.

We have devised an in-place depth-first exploration
algorithm that solves in an efficient manner both the
regiondiff problem and, as a special case, the polycover
problem. Furthermore, we have derived the strict upper
bound for the computational complexity of this algorithm.
In large number of random test we have shown that our
polycover algorithm is superior to the mixed integer linear
programming solution to the same problem.
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