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The model of spatial distribution of major forest types in Croatia was developed as a function
of macroclimatic variables (monthly mean temperature, monthly precipitation, monthly mean global
solar irradiation and monthly potential evapotranspiration) and variables derived from digital ele-
vation model (terrain aspect and slope). Neural networks were used as modelling tool. The model
was developed within the frame of a raster geographic information system with a spatial resolution
of 300 x 300 m, and it was based on a forest vegetation map (in scale of 1:500000) and interpolation
macroclimatic models. The agreement between modelled and mapped forest types was very good,
which suggests a strong correlation between macroclimate and the main forest types in Croatia and
high model reliability. The model was applied to the entire area of Croatia, aiming at the construction
of the potential spatial distribution of major forest types. The model could be useful for reforesta-
tion planning and for prediction of vegetation succession under assumed climatic changes.

Keywords: air temperature, DEM, GIS, neural networks, potential evapotranspiration, potential
vegetation map, precipitation, solar irradiation

Antoni¢, O., Bukovec, D., Krizan, J., Marki, A. & Hatié¢, D.: Prostorna razdioba glavnih tipova
Suma u Hrvatskoj kao funkcija makroklime. Nat. Croat., Vol. 9, No. 1., 1-13, 2000, Zagreb.

Model prostorne razdiobe glavnih tipova $uma u Hrvatskoj razvijen je kao funkcija makrokli-
matskih varijabli (srednja mjese¢na temperatura, mjesecna oborina, srednje mjese¢no Suncevo ozracenje
i mjesecna potencijalna evapotranspiracija) te varijabli izvedenih iz digitalnog elevacijskog modela
(orijentacija i nagib terena). Neuralne mreZe koriStene su kao orude za modeliranje. Model je razvijen
u okviru rasterskog geografskog informacijskog sustava, uz prostornu razlucivost od 300 x 300 m i
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baziran je na karti Sumske vegetacije (mjerila 1:500000) i interpolacijskih makroklimatskih modela.
Podudaranje izmedu modeliranih i kartiranih tipova $uma vrlo je dobro, sto upucuje na jaku ko-
relaciju izmedu makroklime i glavnih tipova Suma u Hrvatskoj, te na visoku pouzdanost modela.
Model je primjenjen na cijeli hrvatski teritorij s ciljem konstruiranja potencijalne prostorne razdiobe
glavnih Sumskih tipova. Model bi mogao biti koristan u planiranju posumljavanja, kao i u pred-
vidanju vegetacijske sukcesije pod utjecajem pretpostavljenih klimatskih promjena.

Kljuéne rije¢i: temperatura zraka, DEM, GIS, neuralne mreZe, potencijalna evapotranspiracija,
karta potencijalne vegetacije, oborina, Sun¢evo ozracenje

INTRODUCTION

Macroclimatic variables are usually major environmental factors which influence
the large-scale spatial variability of vegetation (WOODWARD, 1987). Correlation be-
tween forest types and macroclimatic variables was recognized early in Croatia
(BECK-MANNAGETTA, 1901; ADAMOVIC, 1909) and examined in numerous studies
(see review in BERTOVIC, 1975). This correlation is relatively strong, due to the fact
that Croatia is a country with large macroclimatic variability, from a warm and dry
Mediterranean to a cold and wet mountainous climate. BERTOVIC's important study
(1975) provides general knowledge about the relation between macroclimate and
major forest types in Croatia (defined according to the Braun-Blanquet approach),
including statistics of ecologically relevant macroclimatic variables recorded at the
meteorological stations situated within the particular forest type. The use of this
knowledge in the management of the natural resources is limited by the fact that it
is often hardly applicable in the real space. Thus, some important tasks, such as re-
forestation planning or the prediction of vegetation succession under assumed cli-
matic changes, are solved arbitrarily.

The recent development of methods for the spatial interpolation of macrocli-
matic variables (see e.g. MITCHELL, 1991; LENNON & TURNER, 1995; THORNTON et al.,
1997), as well as raster modelling procedures within a framework of geographic in-
formation systems (GIS), enables spatially explicit implementation of the correlation
between vegetation and climate over larger areas (see e.g. BRZEZIECKI et al., 1995;
LEATHWICK, 1998). It makes it possible to develop spatially explicit models, capable
of predicting vegetation type as a function of macroclimatic variables, which are
useful for the management of forest resources. The development and testing of
such a model for Croatia, at the level of major forest types, were the basic aims of
this research. The second aim was the construction of the spatial distribution of po-
tential vegetation, using the mentioned model.

MATERIAL AND METHODS

Vegetation data

The study area was the entire land area of the Republic of Croatia. Approxi-
mately half of the area belongs to the Karst region with extremely rugged relief,
which strongly affects local climate. Primarily due to this fact, the vegetation pat-
tern in Croatia is very dissected.
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The forest vegetation pattern examined in this research was based on the
1:500000 map provided by TRINAJSTIC et al. (1992). This data source was chosen be-
cause it is the only available representation of the real forest vegetation in Croatia,
based on field surveys and generalised to a scale suitable for this research. Other
available sources (e.g. BERTOVIC, 1975 or BERTOVIC & LOVRIC, 1992) were inappropri-
ate, because they do not present real, but potential vegetation which prejudices cor-
relation between macroclimate and vegetation. It has to be emphasised that the
vegetation classification used in TRINAJSTIC et al. (1992) has an alternative, presented
in the work of BERTOVIC & LOVRIC (1992). The differences between those two ap-
proaches, which are mainly related to the Mediterranean region, are not discussed
in this paper.

The chosen map originally contains 14 main forest type classes and 43 subclasses
mainly based on phytocoenoses in the sense of Braun-Blanquet (compare also TRI-
NAJSTIC et al., 1992 and RAUS et al., 1992). The original map was digitised and raster-
ised in a spatial resolution of 300 x 300 m. For the purpose of this research, only
main classes were used. Some modifications were made to avoid vegetation vari-
ability caused by other, non-climatic environmental influences (class number fol-
lows TRINAJSTIC et al., 1992, syntaxonomy follows VUKELIC & RAUS, 1998):

1) class 4 (middle European flood-plain and swampy forests of Salix sp., Populus
sp., Fraxinus angustifolia Vahl and Alnus glutinosa (L.) Gédrtn.) was merged with class
5 (sub-Pannonian lowland forests of pedunculate oak, Genisto elatae-Quercetum robo-
ris Ht. 1938 and Carpino betuli-Quercetum roboris (ANIC, 1959; RAUS, 1969),

2) class 7 (pubescent oak forest on an impermeable flysch lithological substra-
tum, Molinio-Quercetum pubescentis Sugar 1981) was merged with class 3 (Mediterra-
nean thermophilic deciduous forest, from Quercetalia pubescentis Br.-Bl. (1931) 1932),

3) class 11 (middle European montane and altimontane acidophilic coniferous
forests, Vaccinio-Piceion Br.-Bl. 1939) was merged with class 10 (altimontane neutro-
philic mixed forests, ‘Abieti-Fagetum’ complex, see e.g. TRINAJSTIC, 1995),

4) class 14 (relic, edaphically conditioned pine forests, Orno-Ericion Ht. 1958) was
omitted and

5) class 13 (subalpine coniferous forests, Lonicero borbasianae-Pinetum mugi (Ht.
1938) Borh. 1963 and Listero-Piceetum abietis Ht. 1969) was merged with class 12
(subalpine beech forest, Homogyno sylvestris-Fagetum sylvaticae (Ht. 1938) Borh.
1963.), because the total area of class 13 in Croatia is relatively small in the context
of this research.

Thus, the final vegetation data set contains the nine major forest vegetation
types listed in Tab. 1, which are similar to the 'seed regions' of Croatia, derived by
GRACAN et al. (1999) from the same vegetation data source. All of these types con-
tain edaphically conditioned subtypes not examined in this paper. The spatial dis-
tribution of these types in Croatia is shown in Fig. 1.

Climate data

Four variables were selected as macroclimatic estimators of great importance for
the spatial distribution of vegetation (see e.g. LANDSBERG, 1986 or ZIMMERMANN &
KIENAST, 1999): 1) monthly mean air temperature, 2) monthly precipitation, 3)
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Fig. 1. Observed spatial distribution of major forest types used in analysis (simplified
from TRINAJSTIC ef al. (1992), see text for further explanation and Tab. 1 for legend).
White area is non-forested.

monthly mean global solar irradiation on a horizontal surface at ground level and
4) monthly potential evapotranspiration on a horizontal surface. The first two cli-
matic variables were taken directly from weather station chronicles. The last two
were modelled for each weather station as a function of relevant climatic variables
observed at the respective station, using the NIKOLOV & ZELLER model (1992) for
global solar irradiation and the PRIESTLY & TAYLOR model (1972, see also BONAN,
1989) for potential evapotranspiration. Spatial distributions of climatic variables
were averaged for the period of 1956-1995, with a spatial resolution of 300 x 300 m,
using very accurate interpolation models presented in ANTONIC ef al. (in press).
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Tab. 1. Description of major forest types used in the analysis. The order of forest types
implies a natural vegetation zoning from inland low areas, over the mountainous re-
gion, to the coastal vegetation. A map class follows the numbers of main classes on the
original map of TRINAJSTIC et al. (1992), which is modified for this purpose (see text).
For the syntaxonomic aspect of classes see TRINAJSTIC et al. (1992) and VUKELIC & RAUS
(1998). For species compositions see e.g. RAUS et al. (1992) or VUKELIC & RAUS (1998).

type map class  general physiognomic and ecological description main tree species
1 4+5 lowland deciduous forests including flood-plains Quercus robur L.
and swamps
2 6 colline and submontane deciduous forests Quercus petraea Liebl.
3 8 montane deciduous mesophilic forests Fagus sylvatica L.
4 10+11 altimontane mixed (coniferous/deciduous) forests Abies alba L. and Fagus
sylvatica L.
5 12+13 subalpine deciduous and coniferous forests Fagus sylvatica L. and
Pinus mugo Turra
6 9 montane deciduous thermophilic forests Fagus sylvatica L.
7 3+7 Mediterranean deciduous forests Quercus pubescens Willd.
8 2 Mediterranean mixed (evergreen/deciduous) forests Quercus ilex L.
9 1 Mediterranean evergreen forests Pinus halepensis Mill.

These models are based on data from 127 weather stations and on elevation data
from a digital elevation model (DEM, spatial resolution of 300 x 300 m) and were
developed using neural networks (NN).

The basic set of 48 independent estimators (4 climatic variables by 12 months) is
reduced in this research to 5 composite estimators (non-linear analogues of princi-
pal components) using five-layered autoassociative NN (see BISHOP, 1995), which
have 48 neurons in the first and last layer (48 basic estimators), 15 neurons in the
second and the fourth layer and 5 neurons in the central layer. The logistic function
was used as the activation function. Using this NN architecture, 99.79% of total
macroclimatic variability was explained. After the last two layers were cut, this
autoassociative NN was used as input for the development of forest type predic-
tion model. Consequently, the forest type prediction model was actually driven by
all 48 independent macroclimatic estimators, which were only filtered through the
autoassociative NN.

To describe the basic topoclimatic variability, the same DEM is used for the cal-
culation of terrain aspect and slope, which were used as additional independent es-
timators. The terrain aspect is a circular variable and it is consequently transformed
into a northness and eastness by the cosine and sine transformation, respectively
(GUISAN et al., 1998, 1999). The northness is general estimator of the local thermics,
while eastness was adopted in this research as a general estimator of being leeward
to the major cyclones (PANDZIC, 1989), which influence local precipitation (see PEN-
ZAR, 1959). Terrain slope was included as a general estimator of soil wetness. We
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think that more precise DEM-based topoclimatic variables (see ANTONIC, 1996 for
review), such as topographic solar irradiation (DUBAYAH & RICH, 1995; ANTONIC,
1998), soil moisture potential and snow accumulation potential (e.g. BROWN, 1994),
or exposure to wind (ANTONIC & LEGOVIC, 1999), are not suitable estimators for this
research because they relate to a finer spatial scale.

Data analysis

Vegetation and climatic spatial distributions were overlaid and sampled for the
final data matrix within the frame of a raster geographic information system (GIS).
The initial data set of 253447 pixels was split into three approximately even-sized
sets (training, verification and test set). The first set was used for the finding of the
NN parameters, the second was used to check for overfitting (see e.g. LAWRENCE,
1997), and the third contained fully independent data used for the testing of differ-
ent NNs and for the evaluation of a final model. The total data set used for model
development was unbalanced, i.e. a particular forest type was represented with a
different number of cases (pixels) according to its proportion in vegetation cover.
The use of a balanced data set, performed in a separate control analysis, did not
significantly improve model reliability.

The prediction model was derived using the feedforward NN with multilayer
perceptrons (MLP) which is appropriate for classification problems (see e.g. BISHOP,
1995 or PATTERSON, 1996). The logistic function was used as the activation function.
During the preliminary research, a number of NN architectures was tested. Each
tested architecture had an input layer with 8 independent estimators (5 composite
macroclimatic estimators, northness, eastness and terrain slope) and an output
layer with 9 vegetation classes, but a number of hidden layers (1-2) and its neurons
(5—40) varied. The NN architecture finally chosen had two hidden layers with 25
neurons. A further increase in NN architecture complexity did not yield significant
model improvement in a reasonable model training time. However, the architecture
of the final model illustrates the complexity of correlation between vegetation and
climate in the real space.

RESULTS AND DISCUSSION

The NN model originally calculates the probability of incidence of each forest
type for a given set of input values. Thus, the model returns nine probabilities for
each pixel. The class with largest probability is used for the classification of the
given pixel into the forest type. Classification results for ten NNs, independently
initialised and trained by thousand epochs, are presented in Tab. 2. All of NNs clas-
sify major forest types with a correctness between 78 % and 79 % in total. Classifi-
cation correctness for particular vegetation classes varies for different NNs (Tab. 2).
Due to this fact, the final model combines the results of these ten NNs, with each
pixel being finally classified into that forest type that is most frequent in ten inde-
pendent classifications. If two or more forest types have equal frequency, the selec-
tion between them is done randomly.
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Tab. 2. Classification correctness for ten independent NNs. All values are in percent-
ages. Numbers of forest types follow Tab. 1.

forest type 1 2 3 4 5 6 7 8 9 total
NN 1 88.1 63.7 77.6 923 347 345 942 521 941 793
NN 2 872 554 826 90.6 247 399 926 649 915 786
NN 3 90.5 544 845 903 215 412 906 513 947 786
NN 4 875 599 803 916 274 306 946 480 919 786
NN 5 83.8 618 819 891 165 376 914 617 909 78.2
NN 6 879 483 836 91.8 353 361 927 582 899 777
NN 7 85.1 628 825 908 257 404 909 623 877 791
NN 8 90.6 612 772 906 30.0 351 920 46.2 962 783
NN 9 88.2 500 869 877 270 392 933 653 901 785
NN 10 917 517 824 894 380 357 934 644 900 786

The final model has a total classification correctness of 79.5 % and overall Kappa
statistics (MONSERUD & LEEMANS, 1992) of 0.75 (see Tab. 3 for detailed classification
results). Consequently, the total agreement between observed and modelled forest
types could be characterised as 'very good' (LANDIS & KOCH, 1977). Moreover, the
total portion of correctly classified pixels together with pixels misclassified to the
adjacent forest type (Fig. 2) is 96.8 % (see also Fig. 3). These results suggest: 1) a
strong correlation between macroclimate and the spatial distribution of main forest
types in Croatia and 2) high model accuracy. However, the spatial pattern of mis-
classified pixels is clearly non-random (Fig. 3), which suggests the additional influ-
ence of topoclimatic factors. The final model was applied to the entire land area of
the Republic of Croatia, aiming at the construction of a potential spatial distribu-
tion of nine major forest types (Fig. 4).

A lower agreement (according to LANDIS & KocH, 1977, it could be assigned the
value 'fair') between the observed and modelled pixels for type 5 (subalpine de-
ciduous and coniferous forests; Tab. 3) could be explained by the hypothesis that
the incidence of this type in Croatia, which frequently occupies the ridges of the

9> 8 > T 4> >3 > 2+ ]
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Fig. 2. The scheme of spatial arrangement of adjacent forest types arising from the original
map of TRINAJSTIC et al. (1992). Numbers of types follow Tab. 1. Arrows indicate the
existence of spatial contact between types. Types 3, 4, 5 and 6 belong to the complex of
beech forests (monodominant or mixed).
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highest mountains, is probably additionally conditioned by topography (especially
by terrain exposure to wind). This assumption could be supported by the classifica-
tion results for type 4 (altimontane mixed forests): in Gorski kotar, where this type
is widely spread, our model predicts its incidence well, while on the Pannonian
mountains, where this type mainly occupies ridges, it almost disappears from the
modelled forest cover.

Tab. 3. Classification matrix for the final model (see text for further explanation). Num-
bers of forest types follow Tab. 1. Bold values indicate correctly classified pixels. N is a
number of pixels for each forest type in the test set (84468 pixels in total). Kappa statis-
tics indicates agreement between observed and modelled map for each forest type, with-
out agreement expected by chance (see MONSERUD & LEEMANS, 1992).

forest type 1 2 3 4 5 6 7 8 9
1 11056 328 150 0 0 0
2 902 8304 1182 0 0 0
3 429 5821 15664 973 99 463 395 2 0
4 0 1797 10972 988 706 130 0 0
5 0 8 23 493 117 0 0 0
6 0 14 10 10 1224 444 0 0
7 80 0 17 1 111 677 14936 398 26
8 0 0 0 0 0 0 132 1656 150
9 0 0 0 0 0 0 34 721 2825
N 12467 14453 18832 11979 1701 3187 16071 2777 3001
correct (%) 88.7 57.5 83.2 91.6 29.0 38.4 92.9 59.6 94.1
Kappa 0.91 0.61 0.65 0.79 0.41 0.49 0.91 0.69 0.85

Fair agreement for type 6 (montane deciduous thermophilic forests) suggest that
this type, although relatively widespread in Croatia, has a less defined self-specific
macroclimate. Consequently, it could be understood as a widely spread ecotone be-
tween adjacent forest types (compare Tab. 1 and Fig. 2). Agreements for other forest
types are 'good’ (types 2, 3 and 8), 'very good' (type 4) or 'excellent' (types 1, 7 and 9).

Total unexplained variability could be ascribed to: 1) vegetation mapping errors
related to the scale used (1:500000), 2) the use of spatially discrete vegetation
classes, while nature boundaries between classes are often blurred, 3) remaining lo-
cal influences (such as in Motovun forest, Istria, where lowland pedunculate oak
forest in the valley of the Mirna River is an enclave within the Mediterranean vege-
tation) and 4) model error (e.g. as on some patches in the Kvarner area, where the
model unrealistically predicts montane deciduous mesophilic forest; Fig. 4).

The presented model could be suitable for general reforestation planning and for
the prediction of regional vegetation succession under assumed climatic changes. Be-
sides, the model could be a macroclimatic frame for more detailed local models of the
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Fig. 3. Spatial distribution of correctly classified pixels (white) and misclassified pixels
(grey — misclassifed into adjacent forest type, black — misclassified out of adjacent forest
type, see Fig. 2 and text for further explanation). Non-forested area is also white.

spatial distribution of vegetation types (see e.g. BROWN, 1994; BRZEZIECKI, 1995; VAN
DE RIT, 1996; TAPPEINER, 1998; ZIMMERMAN & KIENAST, 1999) as well as the distribu-
tion of particular species (e.g. FRANKLIN, 1998; GOTTFRIED et al., 1998; LEATHWICK, 1998,
GUISAN et al., 1998, 1999; ZIMMERMAN & KIENAST, 1999). These local models, espe-
cially supported by remote sensing (see e.g. BROWN, 1994 or MICHAELSEN et al., 1994)
and by other relevant environmental variables (lithological substratum, soil proper-
ties, local topoclimate, human impact), could have a crucial role in the inventory and
mapping of data needed for optimal management of forest resources and protected
areas in Croatia. These points will be the objects of future research.
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Fig. 4. Spatial distribution of major forest types predicted by the model
(see Tab. 1 for legend) for the entire territory of Republic of Croatia
(modelled potential vegetation).
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SAZETAK

Prostorna razdioba glavnih tipova Suma u Hrvatskoj
kao funkcija makroklime

O. Antonié, D. Bukovec, J. Krizan, A. Marki & D. Hatié¢

U radu je prikazan razvoj i testiranje modela prostorne razdiobe glavnih tipova
suma u Hrvatskoj. Model je razvijen kao funkcija makroklimatskih varijabli (sred-
nja mjesecna temperatura, mjesecna oborina, srednje mjese¢no Suncevo ozracenje i
mjese¢na potencijalna evapotranspiracija) i varijabli izvedenih iz digitalnog elevacij-
skog modela (orijentacija i nagib terena). Kao izvor vegetacijskih podataka koristena
je karta realne Sumske vegetacije mjerila 1:500000, koja je za potrebe ovog istrazi-
vanja svedena na devet glavnih tipova Suma (Tab. 1 i Fig. 1). Kao izvor podataka o
makroklimi koriSteni su modeli visoke pouzdanosti, izradeni u prostornoj razluci-
vosti 300 x 300 m.

Model je razvijen u okviru rasterskog geografskog informacijskog sustava, u
prostornoj razlucivosti 300 x 300, te uz koristenje neuralnih mreZza kao oruda za
modeliranje. Upotrijebljene su viseslojne neuralne mreZe bez povratnih veza. Tije-
kom modeliranja testirane su razli¢ite arhitekture neuralnih mreza. Konac¢na ar-
hitektura ilustrira sloZenost korelacije izmedu Sumske vegetacije i makroklime u
realnom prostoru. Testiranje modela provedeno je na nezavisnom uzorku. Deset
nezavisnih inicijalizacija odabrane neuralne mreZe rezultiralo je ukupnom to¢noscéu
klasifikacije izmedu 78 % i 79 % (Tab. 2). Kako je to¢nost klasifikacije varirala za
pojedine Sumske tipove (Tab. 2), kona¢ni model kombinira rezultate svih deset
medusobno nezavisnih mreza. Taj kona¢ni model klasificira Sumsku vegetaciju s
ukupnom to¢noséu od 79.5 %. Ukupna Kappa statistika iznosi 0.75 sto se oznacava
kao ‘vrlo dobro’. Osim toga, udio to¢no klasificiranih piksela zajedno s pikselima
Klasificiranim u susjedni tip Sume (Figs. 2 i 3) iznosi 96.8 %. Svi ti rezultati upucuju
na jaku korelaciju izmedu makroklime i prostorne razdiobe Sumske vegetacije u
Hrvatskoj, te istovremeno na visoku pouzdanost modela. U radu su prikazani i
komentirani rezultati klasifikacije modelom za svaki Sumski tip posebno (Tab. 3).

Prostorna vegetacijska varijabilnost neobjasnjena modelom moze se tumaciti po-
greskom vegetacijskog kartiranja u sithnom mjerilu, koristenju diskretnih tipova koje
omogucuju kartiranje dok su prirodne granice izmedu tipova ¢esto nejasne, lokal-
nim utjecajima i pogreskom modela. Model je primijenjen na cijeli hrvatski teritorij
s ciljem konstruiranja potencijalne prostorne razdiobe glavnih Sumskih tipova
(Fig. 4).

Model bi mogao biti koristan u planiranju posumljavanja, kao i u predvidanju
vegetacijske sukcesije pod utjecajem pretpostavljenih klimatskih promjena. Nadalje,
model bi mogao biti prikladan makroklimatski okvir za detaljnije, lokalne modele
prostorne razdiobe vegetacijskih tipova, kao i posebnih biljnih vrsta, uz koristenje
dodatnih okolisnih procjenitelja kao sto su litoloska podloga, znacajke tla, topokli-
matski procjenitelji, te antropogeni utjecaji.



