
Siniša Srbljić, Dejan Škvorc, Daniel Skrobo

Widget-Oriented Consumer Programming

UDK
IFAC

004.738.5
2.8.3 Original scientific paper

Today’s consumer network applications are composed of complex sets of interconnected hardware and software
components. Application providers build component-levelworkflows to provide required functional properties and
quality of service (QoS). However, to enhance the quality ofuser experience (QoE), applications are nowadays
exposed to consumers as sets of widgets, i.e. compact and fully functional application modules displayed in a
web browser. Widgets are built for various application domains, such as personal finance management or highly-
specialized analyses of oceanographic, climate, and atmospheric data.

To augment application’s built-in QoS settings with personalized QoE properties, consumers define personalized
workflows on top of widgets. They select widgets using QoE-related criteria, such as widget data source reliability,
data processing, and presentation features and interact with them through a graphical user interface (GUI). To
automate consumers’ manual operations over a set of widgets, we presentGeppeto, a consumer-oriented framework
for programming application-level workflows over widgets.Geppetouses consumer-programmable widgets that
integrate a set of application-specific widgets into the workflow and become integral parts of an application. The
proposed framework enables each individual consumer to build personalized QoE-aware applications. Furthermore,
the community is empowered with enormousapplication development potential, because of the large number of
web consumers who can participate in software development.

Key words: Application development potential, Consumer programming, Personalization, Quality of experience,
Web automation, Widget composition, Workflow programming

Potrošǎcu prilagođeno programiranje zasnovano na udomljenicima. Današnji potrošǎcu usmjereni pri-
mjenski programi grade se od složenog skupa umreženih sklopovskih i programskih komponenti. Pružatelji usluga
povezuju komponente u radne tijekove kojima se postižu zahtijevana funkcijska svojstva i zadovoljavajuća razina
kakvóce usluge. Međutim, za poboljšanje kakvoće korisnǐckog doživljaja, primjenski programi potrošaču se izlažu
u obliku udomljenika, odnosno skupa programskih komponenti u obliku primjenskih programa kojima se rukuje
putem web preglednika. Udomljenici se grade za različita podrǔcja primjene, od široko primjenjivog upravljanja
osobnim financijama do usko specijaliziranih analiza podataka o stanju mora, klime i atmosfere.

Kako bi ugrađena svojstva kakvóce usluge nadopunili vlastitim mjerilima kakvoće doživljaja, potrošǎci
nad skupom udomljenika grade poosobljene radne tijekove. Izgradnja radnog tijeka sastoji se od izbora
potrošǎcu prikladnih udomljenika za pribavljanje, obradu i prikazinformacija te njihovog povezivanja u cjelinu
međudjelovanjem putem pripadajućih grafǐckih korisnǐckih sǔcelja. Kako bi se izbjeglo ǔcestalo rǔcno upravl-
janje radom skupa udomljenika, u ovom radu predlažemo Geppeto, potrošǎcu-usmjerenu radnu okolinu za pro-
gramiranje radnog tijeka na razini udomljenika. Izgradnjaradnog tijeka zasnovana je na skupu potrošački pro-
gramirljivih udomljenika,čijom se ugradnjom u radni tijek primjenskog programa automatizira rad primjenskih
udomljenika. Predložena okolina potrošačima omogúcava izgradnju primjenskih programa prilagođenih vlastitim
mjerilima kakvóce doživljaja. Nadalje, ukupni stvaralački potencijal društvene zajednice mnogostruko je povećan
zbog velikog broja korisnika kojima je omogućeno sudjelovanje u razvoju primjenskih programa.

Klju čne riječi: stvaralǎcki potencijal u razvoju primjenskih programa, programiranje prilagođeno potrošǎcu,
poosobljavanje, kakvóca korisnǐckog doživljaja, automatizirana uporaba weba, usložnjavanje
udomljenika, programiranje radnog tijeka

1 INTRODUCTION

The primary purpose of present consumer communica-
tions and networking is to inform, educate, and entertain
the consumers. Digital TV, video-on-demand, online gam-

ing, and P2P-based content distribution are typical exam-
ples of contemporary consumer networks. However, as the
modern society becomes increasingly dependent on infor-
mation technology in our daily lives, consumer networks
go beyond these traditional realms. They become applica-

ISSN 0005-1144
ATKAFF 50(3–4), 252–264(2009)

252 AUTOMATIKA 50(2009) 3–4, 252–264



Widget-Oriented Consumer Programming S. Srbljíc, D. Škvorc and D. Skrobo

ble in broader area of consumer activities that range from
interactive education, business and commerce, interaction
with government agencies, to healthcare and social activi-
ties.

As consumer networks get more deeply integrated
into consumers’ everyday life, they strongly impact their
privacy, commodity, and business productivity. Non-
functional properties such as visual appearance, trustwor-
thiness, and reputation of consumer network applications
are becoming at least as important as their functional char-
acteristics [1]. Where the data will be sourced from, what
type of processing will be applied and how the results will
be presented are subjective measures of consumer satis-
faction with an application. Therefore, in information-
sensitive applications, such as personal financial applica-
tions or NOAA (National Oceanic and Atmospheric Ad-
ministration, US Department of Commerce) applications
for analyses of oceanographic, climate, and atmospheric
data, quality of experience (QoE) is recognized as a new
driving force that makes the applications attractive to use.
Since QoE is a subjective measure of consumer satisfac-
tion with an application, a consumer becomes the central
authority to assess the QoE parameters and define what
the application workflow will look like [2]. In this arti-
cle, we discuss the challenge of designing future consumer
networks flexible enough to suit the subjective preferences
of individual consumers.

Complex applications are nowadays exposed to con-
sumers through widgets. Widgets are small web applica-
tions displayed in a web browser and equipped with a GUI
for interaction with the background processes. To shape
the quality of experience, consumers are given the ability
to choose a preferred set of widgets and build personalized
dashboards that are displayed in a web browser and control
execution of complex applications. However, this requires
intensive manual operation with multiple widgets, which is
tedious and becomes impractical. In this paper, we present
Geppeto(Gadget Parallel ProgrammingTool), a web au-
tomation framework based on consumer-programmable
widgets for programming the workflows of consumer ap-
plications. We use widgets as basic building blocks of con-
sumer applications, while programming-by-demonstration
technique is applied to define the workflow among wid-
gets. Although many tools for web automation exist on the
market (iMacros, Newbie, Chickenfoot, iRobot), Geppeto
is the first framework that uses consumer-programmable
widgets to automate the operation of application-specific
widgets. UsingGeppeto, consumer-programmable wid-
gets integrate application-specific widgets into the work-
flow and become an integral part of a consumer applica-
tion.

The rest of the paper is organized as follows. In Sec-
tion 2, we identify the elements that impact the quality

of user experience of computer applications and recognize
consumer programming as a methodology for advanced
user experience management. In Section 3, we describe a
model of building consumer applications based on widget
networking. In Section 4, we present a framework based
on three types of consumer-programmable widgets. The
following three subsections describe features and applica-
tion of each type of consumer-programmable widget. In
Section 5, we present the usage of our framework in the de-
sign and development of a consumer network application.
Section 6 introducesapplication development potentialas
a measure of creative power of the consumer community
engaged in development of computer applications. Section
7 concludes the paper.

2 QUALITY OF USER EXPERIENCE

As shown in Fig. 1, three basic properties of computer
applications that impact user experience are usefulness, us-
ability, and performance. Usefulness is a measure of how
using an application is beneficial to a consumer while solv-
ing a particular task. For example, a currency converter
application is useful for managing personal finances, but
not very useful for getting the latest weather report. Us-
ability refers to the ease with which a consumer can use an
application to achieve its intended purpose. Finally, per-
formance is a measure of application execution efficiency.
Each user experience property is affected by a different
type of application element. Usefulness depends on appli-
cation workflow, usability on the user interface, whereas
performance depends on the execution environment that
includes hardware and software equipment necessary to
run the application.

To evaluate and adapt applications towards individual
QoE preferences, QoE metrics have been introduced and
algorithms for automated QoE management have been de-
veloped. Quality of service (QoS) mechanisms monitor
performance-related dimensions, such as latency, avail-
ability, reliability, and price and adapt the network and ap-
plication to maintain the desired level of performance [3, 4,
5]. On the other hand, GUI adaptation mechanisms based
on explicit consumer rating or implicit usage tracking col-
lect the data about task success rate, task duration, number
of eye movements and mouse clicks necessary to interact
with the application, and adapt the GUI to the particular
preferences of the individual consumer [6, 7, 8].

However, an objective metric for evaluating the suitabil-
ity of application workflow to individual consumer prefer-
ences does not exist. Workflow suitability is not an ob-
servable application characteristic, but is reflected through
consumer satisfaction with application functional proper-
ties. Traditionally, the consumer delivered the application
functional requirements to an application developer, who

AUTOMATIKA 50(2009) 3–4, 252–264 253



S. Srbljíc, D. Škvorc and D. Skrobo Widget-Oriented Consumer Programming

Software
developer

Consumer

Network
administrator

User interface

Usefulness

Usability

Performance Latency
Availability
Reliability
Price

Creativity
Innovativeness

Task success rate
Task duration
Mouse clicks
Eye movements

QoE
Property

Application
Element

QoE
Metrics

�������������
�������������

���������

�������������
�������������

���������
������

QoS
Manager

�������������
�������������

���
���������

Execution
monitoring

Workflow
definition

GUI
Manager

QoS
configuration

Consumer tracking
Rating collection

Execution environment

Workflow
Workflow
Manager

QoE
Management

Fig. 1. Quality of user experience of computer applications

responded by implementing a workflow. However, to al-
low consumers to express their creativity and innovative-
ness on their own, we have developed a consumer-oriented
workflow programming methodology based on widget net-
working. To measure the ammount of creativity the con-
sumer community can deliver from widget networking, we
defineapplication development potential, as described in
Section 6.

3 WIDGET NETWORKING

Widget networking allows consumers to build person-
alized computer applications out of widgets, i.e. handy
and compact software components exposed as fully func-
tional web applications displayed in a web browser. Con-
sumers build their own applications by interconnecting in-
dependent widgets into personalized workflows that de-
liver new value-added functionalities. The ultimate goal of
consumer-driven personalization of network applications
is achieved as an end result of a multi-tiered model shown
in Fig. 2.

In the lowest tier, the hardware networking platform
provides facilities for interconnecting host machines, ded-
icated servers, and consumer devices through fixed and
wireless networking. Consumer network applications are
built using component-level integration and run on the
hardware platform. Components are built and integrated
using various technologies, such as CORBA, DCOM,

JINI, and Web Services, and distributed across computing
nodes. Along with providing functional correctness, one
of the major issues with component integration is provid-
ing consumers with a required level of QoS. To that end,
application providers design, implement, deploy, and fine-
tune application performance parameters, such as process-
ing time, data throughput, and memory consumption.

Once deployed on the consumer network nodes, the ap-
plications become accessible to consumers through GUIs.
Application GUIs are built using a small, simple, and well-
defined set of primitives for human-computer interaction,
like buttons, textboxes, and dropdown lists, which are fa-
miliar to consumers. Over the past decade, these primi-
tives were proven as successful abstractions for building
GUI interfaces of many different types of applications. If
designed in accordance with consumers’ needs and expec-
tations, GUI allows comfortable application usage. This in
turn, has a positive effect on application’s QoE perceived
by consumers.

Although a well designed GUI is important for success-
ful adoption of an application, QoE is about more than
just GUI’s structure. QoE deals with a wide spectrum
of factors, such as issues related to rules of data sourc-
ing, processing, organization, presentation, and trustwor-
thiness [9]. These QoE parameters are built on top of QoS
mechanisms that are controlled and delivered by consumer
network providers. However, unlike QoS, which can be

254 AUTOMATIKA 50(2009) 3–4, 252–264



Widget-Oriented Consumer Programming S. Srbljíc, D. Škvorc and D. Skrobo

Hardware networking

Component-level integration

Container PageContainer Page

Consumer
A

Consumer
B

Application provisioning

Widget convocation

Widget programming

Fig. 2. A model for building consumer network applica-
tions based on widget networking

controlled and delivered by providers, QoE is assessed by
consumers themselves using their subjective and individ-
ual measures [2]. To cope with the individual and sub-
jective nature of QoE requirements, consumers must be
given greater control over how applications are delivered
to them. This in turn requires a higher level of consumer-
controlled personalization.

A step in the direction of consumer-controlled person-
alization has already been taken using application contain-
ers for widgets. Widgets are derived from the idea of
reusable code for development of web applications, and
are fundamental elements of the component web [12]. The
web pages containing a set of widgets are called container
pages. Developers build widgets independently of con-
tainer pages and publish their code on public servers. De-
velopers of container pages reuse published widgets as
third party modules and embed them into their container
pages. Several web platforms utilize this feature to provide
blank container pages and enable consumers to search for
and personalize their pages with the preferred set of wid-
gets. Examples of such web platforms areiGooglewith
Google Gadgets[13], My Yahoo! with Yahoo! Widgets
[14], Windows Live Spaceswith Microsoft Gadgets[15],
andNetvibeswith Netvibes Universal Widgets[16].

Widget containers enable consumers to group their pre-

ferred widgets in a unified workspace and use them as an
integrated whole. This type of consumer-controlled wid-
get convocation assumes that consumers manually perform
actions to interconnect widgets and deliver new function-
alities. For example, consumers manually copy and paste
data between widgets, and manually click through widget
buttons to get the desired order of widget execution. Thus,
the containers and widget convocation enable consumers
to build QoE-enabled personalized applications. For ex-
ample, in a personal financial application, the consumer
might use two widgets: a stock market widget to fetch
the current price for a given stock and a currency conver-
sion widget to convert this price into the local currency.
In another scenario, a consumer might use three widgets:
a stock market widget to search for top movers, a com-
pany overview widget to fetch reports on company’s recent
achievements, and a translation widget to translate these
reports into the local language. In NOAA application for
analyses of oceanographic, climate, and atmospheric data,
a consumer chooses a data source widget depending on
the type of data that will be visualized (wind, currents, sea
surface height deviation, concentration of the chlorophyll
in the water, etc.), a data processing widget depending on
how the results will be statistically analyzed (linear or non-
linear modeling, time-series analysis, etc.), and a presenta-
tion widget depending on how the results will be presented
(table, graph chart, map, etc.).

In addition to the adjustments of application settings or
variations in input parameters, QoE management also in-
cludes the possibility to compose the fragments of appli-
cation logic into an arbitrary consumer application. More-
over, QoE also includes the dimensions of privacy, trust,
and reputation of service providers, such as where the data
are sourced from and who is processing the data.

Widgets as basic building blocks and containers as a
platform for hosting widgets can be used to empower users
with ability to create personalized QoE-enabled applica-
tions. Our widget programming framework enables con-
sumers to combine preferred widgets in a personalized
manner to match their QoE expectations.

4 CONSUMER-ORIENTED WORKFLOW
PROGRAMMING

Although widget containers that are personalized with a
preferred set of widgets provide a good foundation for tai-
loring the application workflow towards consumer’s QoE
expectations, advanced application scenarios still require
an intensive manual usage of multiple widgets. To avoid
repeating manual operations with a set of widgets, we have
designed a framework that enables consumers to record
and store the actions performed on widgets’ GUIs. In
addition, this framework enables consumers to edit the

AUTOMATIKA 50(2009) 3–4, 252–264 255



S. Srbljíc, D. Škvorc and D. Skrobo Widget-Oriented Consumer Programming

recorded actions and to start their execution when neces-
sary, similarly to macros in word processing applications.

Execution of a recorded workflow may be started either
on an explicit consumer request, consumer may define the
time when the workflow execution should start automat-
ically and be repeated periodically if necessary, or con-
sumer may define an event from the consumer network that
will start the workflow execution. To be easy-to-use, the
framework for recording, storing, and defining the work-
flow execution settings has to be based on the same set of
techniques that consumers apply when manually interact-
ing with the widgets. Therefore, we implement these func-
tions as special-purpose widgets that consumer integrates
into the application workflow.

Special-purpose widgets have to provide a
programming-by-demonstration method for recording
and storing of GUI actions. These widgets have to provide
a calendar-like user interface to define the date, time, and
repetition interval. Furthermore, they have to provide
an interface with a list of events that may occur in the
consumer network and allow consumer to subscribe to the
selected events. In addition, these widgets have to allow
consumer to define an arbitrary user interface to enter
parameters, start the workflow execution, and display the
final results.

Consumer
network

Consumer-defined
Workflow

TriggerMe

TickMe

TouchMe

Time
Action

Action

Action

Event from
consumer network

Consumer
action

Clock

ConsumerConsumer-
Programmable

Widgets

Application
Widgets

Fig. 3. Consumer programming framework based on
consumer-programmable widgets

As shown in Fig. 3, we introduce three types of
consumer-programmable widgets that are suitable for in-
tegration of the application-specific widgets: theTickMe
widget, to define a time-initiated workflow, theTriggerMe
widget, to define an event-initiated workflow, and the

TouchMewidget, to define a consumer-initiated workflow.
TheTickMeandTriggerMewidgets are used to start sim-
ple workflows consisting of a single GUI action performed
on a single application-specific widget. TheTouchMe
widget is used to start complex workflows consisting of
multiple GUI actions performed on multiple application-
specific widgets. If theTickMeorTriggerMewidget should
start complex workflow, it is used in conjunction with the
TouchMewidget, as shown in Section 5.

4.1 Time-Initiated Workflow Execution

The TickMe widget is used to define a time-initiated
workflow. The operation of theTickMewidget is defined
by three parameters: date and time the workflow execution
should be started, repetition interval if the workflow has to
be executed periodically, and the action that should be per-
formed by theTickMewidget on the GUI of an application-
specific widget when the workflow execution is started.

The user interface of theTickMewidget is split into two
parts (i and ii ), as shown in Fig. 4. A date is chosen
through a user interface similar to a calendar or electronic
organizer (i). To define a time and a repetition interval,
we use a form-based user interface withTime and Inter-
val input fields, respectively (ii ). To define the action, we
use theSet actionrecording button to switch the widget
into programming-by-demonstration mode to record and
store consumer action on the application-specific widget
GUI (ii ).

Programming theTickMewidget consists of five steps.
Using a calendar-like interface, the consumer defines the
date when theTickMe widget should start the workflow
execution (1). Once the date is defined, the web form
for defining the time, the repetition interval, and the ac-
tion is opened. The time and the repetition interval are
defined by filling out the web form input fields (2). A
consumer defines the action by entering the programming-
by-demonstration mode using aSet actionbutton. In this
mode, consumer performs the action that should be exe-
cuted when theTickMe widget gets activated (4). Once
programmed, theTickMewidget will execute the recorded
action at the given date and time and repeat it with the
given interval (5).

An example of programming theTickMe widget is
shown in Fig. 4. The consumer application consists of the
TickMe widget and an application-specific widget called
Chlorophyll widget. TheChlorophyll widget consists of
an image showing the concentration of the chlorophyll in
the ocean and a button to refresh the image. The workflow
refreshes the image on theChlorophyll widget every day
at the same time. This scenario is a typical use-case in the
NOAA application for analyses of oceanographic, climate,
and atmospheric data. Using theTickMewidget, consumer

256 AUTOMATIKA 50(2009) 3–4, 252–264



Widget-Oriented Consumer Programming S. Srbljíc, D. Škvorc and D. Skrobo

08:00:00 24:00:00

click Redraw the Graph at Chlorophyll08:00:00 24:00:00

(5)

(1)

(2) (3)

(4)

(i)
(ii)

Fig. 4. Programming theTickMe widget inGeppeto

schedules the workflow execution for every morning at
8:00 am, beginning on May 10th 2009. TheTickMewidget
will start the workflow execution by simulating a click on
theRedraw the Graphbutton on theChlorophyllwidget.

4.2 Event-Initiated Workflow Execution

The TriggerMe widget is used to define an event-
initiated workflow. The operation of theTriggerMewidget
is defined by two sets of parameters: a topic that a con-
sumer can subscribe to and receive notifications about re-
lated events in the consumer network, and a set of actions
associated with particular events that should be performed
by the TriggerMe widget on the GUI of application-
specific widgets when the workflow execution is started.

The user interface of theTriggerMewidget is split into
two parts (i andii ), as shown in Fig. 5. A list of available
topics is used to select the topic that a consumer wants to
subscribe to (i). A list of events related to the selected
topic and a set of associatedSet actionrecording buttons
are used to define the actions that handle the occurrences
of particular events (ii ). Similarly to theTickMe widget,
recording buttons are used to switch the widget into the
programming-by-demonstration mode to record and store
consumer actions on the application-specific widget GUI.

The operation of theTriggerMewidget is based on two
auxiliary services. The topics available in a consumer net-
work are registered in theEvent Repositoryservice (e1).
Using theTriggerMewidget, a consumer browses through
the topics (e2, e3) and events related to the selected topic

(e4, e5). Consumer subscribes to the selected events by
defining actions (e6). Using theEvent Publisherservice,
the consumer network announces the occurrences of par-
ticular events (e7), while theEvent Publisherservice for-
wards them to the consumer through theTriggerMewidget
(e8).

Programming theTriggerMe widget consists of four
steps. Using the list of available topics, consumer selects
a topic to subscribe to (p1). Once the topic is selected, the
list of events related to the selected topic is displayed. For
each event in the topic, a consumer can define an action
that should be performed by theTriggerMewidget when
the event occurs. To define the action, a consumer en-
ters the programming-by-demonstration mode using aSet
action button associated with a particular event (p2). In
this mode, consumer performs the action on the GUI of an
application-specific widget that should be executed when
the event occurs (p3). Once programmed, theTriggerMe
widget is subscribed to the events related to the selected
topic and executes the action associated with a particular
event each time it occurs (p4).

An example of programming theTriggerMe widget is
shown in Fig. 5. The consumer application consists of
the TriggerMe widget and two application-specific wid-
gets, calledChlorophyll andWind. Each widget consists
of an image showing the concentration of the chlorophyll
in the ocean and the speed of wind, respectively, as well as
a button to refresh the image. Using theTriggerMewidget,
a consumer defines the workflow that refreshes the image

AUTOMATIKA 50(2009) 3–4, 252–264 257



S. Srbljíc, D. Škvorc and D. Skrobo Widget-Oriented Consumer Programming

NOAA atmosphere
NOAA oceanography
NOAA climate
Finance

NOAA oceanography

Chlorophyll data have changed
New wind data are available

Chlorophyll data have changed
New wind data are available

click Redraw the Graph at Chlorophyll
click Redraw the Graph at Wind

NOAA oceanography

(p4)
(p4)

Event
Repository Event Publisher

Consumer
Network

(p1)

(p2)

(p3)
(p3)

(ii)

(i)

(e7)

(e1)

(e2)(e3)

(e4) (e5)

(e6) (e8)

Fig. 5. Programming theTriggerMewidget inGeppeto

at the corresponding widget when new chlorophyll or wind
data are available. The workflow is started by simulating a
click on theRedraw the Graphbutton at the corresponding
widget.

4.3 Consumer-Initiated Workflow Execution

The TouchMewidget is used to define a consumer-
initiated workflow. In contrast to theTickMe and Trig-
gerMewidgets, theTouchMewidget enables consumers to
define workflows composed from multiple widgets and to
define the GUI to control the workflow execution. There-
fore, operation of theTouchMewidget is defined by two
parameters: a consumer-programmable GUI used to con-
trol the workflow execution and a consumer-programmable
logic that implements the workflow. Workflow logic con-
sists of actions performed on the GUIs of application-
specific widgets.

A consumer builds the interface of theTouchMewidget
by assembling GUI elements from the application-specific

widgets. Consumer selects a subset of GUI elements from
the application-specific widgets and copies them to the
TouchMewidget. When copying the elements, he or she
chooses the elements that will be used to enter the values,
activate the workflow execution, and display the final re-
sults. To copy the GUI elements from application-specific
widgets to theTouchMewidget, consumer uses a pop-up
menu, as shown in Fig. 6. When copying elements, con-
sumer marks each element either as input, output, or an ac-
tivation element. Prior to starting the workflow execution,
a consumer uses input elements to enter values through the
GUI of theTouchMewidget. At the beginning of the work-
flow execution, these values are transferred to the original
application-specific widgets. Output elements are used to
display the results of workflow execution at the GUI of the
TouchMewidget. At the end of the workflow execution, the
values from these elements are transferred from the origi-
nal application-specific widgets back to theTouchMewid-
get. Finally, consumer uses the activation elements to start
the workflow execution.

To program a workflow, a consumer sets theTouchMe
widget into programming-by-demonstration mode and
then performs a set of actions on the GUIs of application-
specific widgets. As shown in Fig. 6, a consumer
uses a pop-up menu to switch theTouchMewidget into
programming-by-demonstration mode. On the interface of
theTouchMewidget, a consumer selects the activation el-
ement, starts the recording, and performs the actions. The
TouchMewidget records the actions until the recording is
stopped. Once programmed, theTouchMewidget will re-
peat the recorded actions each time the activation element
is clicked.

An example of programming theTouchMewidget is
shown in Fig. 6. Consumer uses two application-specific
widgets to define a personalized stock market monitor: the
Financewidget to retrieve the current price for a given
stock symbol in US dollars, and theCurrency Conversion
widget to convert the reported price between various cur-
rencies.

The interface of theTouchMewidget is built by copy-
ing the Symboltext field from theFinancewidget as an
input element (a1), theGo button from theFinancewid-
get as an activation element (a2), and thePrice text field
from the Currency Conversionwidget as an output ele-
ment (a3). TheTouchMewidget automatically generates
the logic to transfer the value from theSymboltext field
at theTouchMewidget into the originalSymboltext field
at theFinancewidget (b1), as well as the logic to transfer
the value from the originalPrice text field at theCurrency
Conversionwidget into thePrice text field at theTouchMe
widget (b2).

To build the rest of the workflow logic, a consumer se-
lects theGo button at theTouchMewidget as a workflow

258 AUTOMATIKA 50(2009) 3–4, 252–264



Widget-Oriented Consumer Programming S. Srbljíc, D. Škvorc and D. Skrobo

(b1)

(c2)
(b2)

when clicked Go at TouchMe
copy Symbol at TouchMe to Symbol at Finance

click Go at Finance
copy Price at Finance to Amount at Currency Conversion

select U.S.dollar from From at Currency Conversion
select Euro from To at Currency Conversion

click Convert at Currency Conversion
copy Result at Currency Conversion to Price at TouchMe

b1
c1
c2
c3
c4
c5
b2

(c1)

(c3)

(c4)

(c5)

Pop-up menu
to copy

GUI elements

Pop-up menu
to control

workflow recording

(a3)

(a2)

(a1)

Fig. 6. Programming theTouchMewidget inGeppeto

activation element and starts the workflow recording. Dur-
ing the recording, a consumer performs a sequence of GUI
actions as shown in Fig. 6: type the stock symbol into the
Symboltext field at theFinancewidget (note, this constant
input action is not recorded, because theSymboltext field
is used as an input element at theTouchMewidget) and
click theGobutton at the same widget (c1), copy the stock
price from theFinancewidget and paste it into theAmount
text field at theCurrency Conversionwidget (c2), select
the source and target currency in theFrom andTo drop-
down menus at theCurrency Conversionwidget (c3, c4),
and click theConvertbutton on the same widget (c5). Each
time a consumer clicks theGobutton at theTouchMewid-
get, theTouchMewidget transfers the values from the in-
put elements to the application-specific widgets, executes
the recorded actions, and transfers the results from the
application-specific widgets to the output elements on the
TouchMewidget.

Consumer actions in the user interfaces of application-
specific widgets are stored into a 2D table that is a part of
theTouchMewidget. In our example, four types of actions
are stored:when clicked, copy to, click, andselect. An
example of the first type of action is

when clicked Go at TouchMe

wherewhen clicked are keywords denoting the action that
postpones the workflow execution until a consumer makes
a click at the activation element, whileGo at TouchMe
is a parameter denoting the activation elementGo in the
TouchMewidget. An example of the second type of action
is

copy Price at Finance

to Amount at Currency Conversion

wherecopy and to are keywords denoting the copy/paste
operation that transfers the data from thePrice text field
at Financewidget to theAmounttext field at theCurrency
Conversionwidget. An example of the third type of action
is

click Convert at Currency Conversion

whereclick is a keyword denoting the operation of click-
ing theConvertbutton in theCurrency Conversionwidget.
Finally, an example of the fourth type of action is

select Euro

from To at Currency Conversion

whereselect andfrom are keywords denoting the operation
of selecting an item from theTo drop-down menu at the
Currency Conversionwidget, whileEuro is the menu item
to be selected.

AUTOMATIKA 50(2009) 3–4, 252–264 259



S. Srbljíc, D. Škvorc and D. Skrobo Widget-Oriented Consumer Programming

Representation of GUI actions within the 2D table re-
duces the complexity of managing the workflow to a sim-
ple spatial arrangement of these actions within the table
cells. Each cell of the table is either empty or contains a
GUI action. Time progresses from left to right and from
top to bottom simultaneously. If two non-empty cells are
adjacent, the actions associated with the cells are executed
sequentially. On the other hand, if two non-empty cells
are separated with at least one empty cell, they can be ex-
ecuted in any order, including in parallel. Organization of
actions within the 2D space enables a simple construction
of sophisticated workflow patterns for sequential and par-
allel execution of GUI actions. In the example shown in
Fig. 6, the consumer workflow consists of one sequence
of non-empty adjacent cells representing a workflow with
sequential execution.

Once recorded and represented in a tabular form, a con-
sumer can optionally use advanced functionalities, such as
edit, add, and delete actions, as well as rearrange their spa-
tial organization to construct arbitrary workflow patterns.
In addition, a consumer can save the logic and the GUI of
theTouchMewidget, recover a previously saved widget or
reset the widget. Finally, consumer can use multiple tabs
to construct multiple GUIs for theTouchMewidget, as well
as manage the visibility of the application-specific widgets
used in the workflow. For example, consumers may choose
to hide some or all of the application-specific widgets to
leave only theTouchMewidget visible. This can signifi-
cantly reduce the visual overhead imposed by a number of
application-specific widgets.

5 CONSUMER NETWORK APPLICATION EX-
AMPLE

In this section, we demonstrate the integration of all
three types of consumer-programmable widgets into a per-
sonalized consumer network application. We present an
application for advanced stock market monitoring. The
goal of the application is to get an overview of the desired
stock information once a day, but also on consumer request
if necessary. In addition, if more significant changes hap-
pen to the stock on the market, an alert is sent to a con-
sumer via SMS.

Fig. 7 illustrates the workflow of this application. In
addition to theTouchMe, TickMe, andTriggerMewidgets,
a consumer uses three application-specific widgets. The
Financewidget is used to retrieve the current stock infor-
mation for a given stock in US dollars. TheCurrency Con-
versionwidget is used to convert a given amount of money
between various currencies. TheSMS Senderwidget is
used to send SMS messages to a given phone number.

Using theTouchMewidget, a consumer implements the
workflow that is composed of theFinanceand theCur-
rency Conversionwidgets to retrieve the stock price in the

desired currency. This part of the workflow is defined in
the same way as shown in Fig. 6. The consumer initi-
ates the execution of the workflow by clicking theGo but-
ton on theTouchMewidget. Furthermore, the consumer
uses theTickMewidget to autonomously refresh the stock
price every morning at 8:00 am. TheTickMe widget is
programmed to execute a click on theGo button of the
TouchMewidget. Finally, the consumer uses theTrig-
gerMe widget to send an SMS alert if the value of the
MSFT stock drops by 5% or more. TheTriggerMewid-
get is programmed to execute a click on theSendlabel at
theSMS Senderwidget.

The table representing the GUI actions recorded within
the TouchMewidget consists of two sequences. The up-
per sequence represents the actions to retrieve a price for
a given stock in a desired currency using theFinanceand
Currency Conversionwidgets. Execution of this sequence
is started either by the consumer or by theTickMewidget.
The lower sequence is used to configure theSMS Sender
widget with a phone number and message text, and to send
out the alert. Execution of this sequence is started by the
TriggerMewidget. In addition to the four types of actions
described in the previous section, this sequence contains a
fifth type of action used to enter a constant value into a text
field. An example of this type of action is

type “+385 1 234 56 78”

into To at SMS Sender

where type and into are keywords denoting this type of
action,“+385 1 234 56 78” is a value to enter, whileTo at
SMS Senderis a parameter denoting the target text field.

6 APPLICATION DEVELOPMENT POTENTIAL

To quantify how widget-oriented programming im-
proves the creativity in software development, we define
application development potential(ADP). ADP is an esti-
mation of the total amount of new applications a commu-
nity of developers can produce in a given time frame using
a specific programming methodology.

The time required to develop a piece of software de-
pends on the size of software and the effort included into
software development (e.g. the amount of man power).
The usual method used to estimate the size of a software
product during project resource planning isFunctional Size
Measurement(FSM) [17, 18]. FSM is an internationally
recognized and ISO standardized technique for measuring
the size of software based on its functional requirements.
Since software functional requirements are independent of
any constraint of how the software is built, FSM enables
to estimate the software size regardless of the tools, tech-
niques, and technologies used to build the software. Us-
ing FSM, the size of software is normalized into a number

260 AUTOMATIKA 50(2009) 3–4, 252–264



Widget-Oriented Consumer Programming S. Srbljíc, D. Škvorc and D. Skrobo

type “+385 1 234 56 78” into To at SMS Sender
type “Buy shares from Microsoft” into Message at SMS Sender

when clicked Send at TouchMe

click Send at SMS Sender

when clicked Go at TouchMe
copy Symbol at TouchMe to Symbol at Finance

click Go at Finance
copy Price at Finance to Amount at Currency Conversion

select U.S.dollar from From at Currency Conversion
select Euro from To at Currency Conversion

click Convert at Currency Conversion
copy Result at Currency Conversion to Price at TouchMe

click Go at TouchMe08:00:00 24:00:00

GOOG went 5% down
GOOG went 5% up

click Send at TouchMe

Finance

MSFT went 5% down
MSFT went 5% up

Application
widgets

+385 1 234 56 78

Buy shares from Microsoft!

Consumer

(1)

(2)

(3)

Stock info retrieval workflow

Consumer-defined
workflow
Consumer workflow
execution initiation

Legend:

SMS notification
workflow

Fig. 7. Personalized consumer network application for advanced stock market monitoring

of Albrecht’s function points, according to Allan Albrecht
who developed the method in the late 1970s. The time re-
quired to develop an application is, therefore, proportional
to the number of Albrecht’s function points and the time
necessary to develop a single Albrecht’s function point. On
the other hand, the time required to develop a piece of ap-
plication normalized into an Albrecht’s function point de-
pends on the programming paradigm and tools being used

during application development. That time is proportional
to the lines of code necessary to develop a single Albrecht’s
function point in a given programming language.

Table 1 shows the application development potential of
widget-oriented programming compared to object-oriented
and domain-specific programming paradigms. The first
row of Table 1 shows estimated number of lines of code
(LOC) required to develop a single Albrecht’s function

AUTOMATIKA 50(2009) 3–4, 252–264 261



S. Srbljíc, D. Škvorc and D. Skrobo Widget-Oriented Consumer Programming

point (FP) using various programming paradigms [19].
Object-oriented programming typically requires a few
dozen lines of code, depending on the language being used.
Domain-specific languages and tools, such as spreadsheets
and database query languages, require five to ten lines
of code per Albrecht’s function point. Such tools im-
prove the efficiency of software development by an order
of magnitude as long as they are used within the intended
application domain. On the other hand, widget-oriented
programming, which is based on reusing and composing
coarse-grained and fully functional application blocks into
consumer-specific workflows, reduces the time required to
develop an application by a further order of magnitude.
Since the program logic to handle one user input or one
client-server transaction are typical examples of Albrecht’s
function points, widget-oriented programming allows im-
plementation of the whole function point using a single or
a couple of lines of code.

Table 1. Application development potential of different
programming paradigms

Object- Domain-specific Widget-
oriented languages and oriented

programming tools programming
LOC/FP 20-70 5-10 1-3

20 million 500 million 2 billion
Number

professional end-user web
of users

programmers programmers consumers
ADP 1-3 50-100 700-2000

In addition to the time necessary to develop an appli-
cation, second dimension used to estimate the ADP is the
total number of people within a particular community with
the ability to use the particular programming paradigm.
The second row of Table 1 shows an estimated number of
various groups of users who will participate in software
development in 2010 worldwide. According to [20, 21],
there will be around 20 million professional programmers
with the ability to use object-oriented programming and
500 million end-users who will use domain-specific lan-
guages to develop software supporting their work. At the
same time, there will be around 2 billion regular web con-
sumers with the ability to use widgets and widget-oriented
programming [22]. Moreover, the number of web con-
sumers is still growing rapidly, especially in Asia.

Based on these projections, we calculate theapplication
development potentialas the number of Albrecht’s func-
tion points developed by the whole community in a certain
time unit. The calculation of ADP is described by

ADP =
number of users

function point development time
. (1)

The function point development timeused in Equation (1)
is an approximation of the time required to develop a single

Albrecht’s function point, which is proportional to the lines
of code per Albrecht’s function point.

The third row of Table 1 shows the comparison of
ADP indices among object-oriented, domain-specific, and
widget-oriented programming. ADP indices show that in a
time frame in which the professional programmer commu-
nity produces 1 to 3 new applications, the end user com-
munity can produce 50 to 100 applications, while the con-
sumer community can produce up to 2000 applications. In
terms of ADP, widget-oriented programming outperforms
the object-oriented and domain-specific programming by
one to three orders of magnitude.

7 CONCLUSION

This paper presentsGeppeto, a framework for build-
ing applications from widgets by consumers not trained
in programming, but with an understanding of available
functionality on the consumer network. The main goal is
to provide a seamless environment for widget composition
built on usage patterns familiar to consumers. Our assump-
tion is that consumers understand the problem space they
work on and what the available widgets provide.Geppeto
strives to give them the ability to build new personalized
QoE-aware applications important for solving their partic-
ular problems, while at the same time exposing newly cre-
ated functionality to new potential consumers.

The work of Geppeto is based on workflows of
widgets. Geppeto is the first framework that uses
consumer-programmable widgets to program the opera-
tion of application-specific widgets. Using consumer-
programmable widgets,Geppetoenables consumers to de-
fine the workflow among application-specific widgets and
to start it on request, schedule it in time, or define an event
from the consumer network that will trigger its execution.
While programming the workflow inGeppeto, consumers
use the same set of techniques as during the manual oper-
ation with widgets.

Our methodology allows ordinary computer consumers
to participate in software development. To quantify
how widget-oriented programming improves the creativ-
ity in software development, we defineapplication de-
velopment potential(ADP). ADP is an estimation of the
total amount of new applications a community of de-
velopers can produce in a given time using a specific
programming methodology. In terms of ADP, widget-
oriented programming outperforms object-oriented and
domain-specific programming by one to three orders of
magnitude, providing the community with more innovative
ideas and technical solutions than isolated groups of pro-
fessional programmers or domain-oriented end users ever
could.

Geppetois implemented as an extension of theApache
Shindigproject [23]. Apache Shindigis an open source

262 AUTOMATIKA 50(2009) 3–4, 252–264



Widget-Oriented Consumer Programming S. Srbljíc, D. Škvorc and D. Skrobo

widget container and widget rendering server. It was
originally started byGoogleas a reference container for
hostingOpenSocialandGoogle Gadgetscompatible wid-
gets. Any Google Gadgetscompatible widget can be
used as an application-specific widget within theGep-
petowidget container. We extendedApache Shindigwith
consumer-programmable widgets and a widget repository
to store and share the widgets among consumers. To
try out the tool, users can visit the project’s web site at
http://geppeto.fer.hr.

ACKNOWLEDGMENT

We were fortunate that a research team lead by Roy
Mendelssohn, Bob Simons, and Lynn DeWitt from Na-
tional Oceanic and Atmospheric Administration (NOAA),
California, who were trying to develop a QoE-enabled
application based on widget workflow, contacted us and
recognized our work on consumer-programmable widgets.
Many thanks on their valuable discussions on how to im-
prove the architecture and usability of theGeppetoframe-
work and for being such gracious hosts at the picturesque
NOAA facility in Pacific Grove. The authors also wish
to acknowledge the support from the Ministry of Sci-
ence, Education, and Sports of the Republic of Croatia
through research project no. 036-0362980-1921 “Com-
puting Environments for Ubiquitous Distributed Systems”
and Google, Inc. for the Google Research Award project
“End-User Tool for Gadget Composition”. Furthermore,
the authors wish to thank Ivan Žužak, Miroslav Popović,
Vladimir Klemo, Marin Silíc, Goran Delǎc, Jakov Krolo,
and Ivan Budiselíc from Faculty of Electrical Engineer-
ing and Computing at University of Zagreb, Ivan Skuliber
and Ivan Benc from Ericsson Nikola Tesla Zagreb, Franjo
Plavec, Ivan Matošević, and DavorČapalija from Uni-
versity of Toronto, Boris Debić from Google, Inc., and
Dalibor F. Vrsalovíc for their help with preparing this
manuscript. Finally, many thanks to student members of
our research projects who participated in the implementa-
tion of theGeppetoframework.

REFERENCES

[1] T. Tullis, B. Albert,Measuring the User Experience: Col-
lecting, Analyzing, and Presenting Usability Metrics,
Morgan Kaufmann, 2008.

[2] P. H. Bloch, F. F. Brunel, T. J. Arnold,Individual Dif-
ferences in the Centrality of Visual Product Aesthet-
ics: Concept and Measurement, Journal of Consumer Re-
search, vol. 29, no. 4, pp. 551–565, March 2003.

[3] I. Foster, M. Fidler, A. Roy, V. Sander, L. Winkler,End-to-
End Quality of Service for High-End Applications, Com-
puter Communications, vol. 27, no. 14, pp. 1375–1388,
September 2004.

[4] R. Chakravorty, S. Kar, P. Farjami,End-to-End Internet
Quality of Service (QoS): An Overview of Issues, Archi-
tectures and Frameworks, Proceedings of the ICIT 2000,
December 2000.

[5] A. Campbell, C. Aurrecoechea, L. Hauw,A Review of QoS
Architectures, ACM Multimedia Systems Journal, vol. 6,
no. 3, pp. 138–151, May 1998.

[6] T. Strandvall,Eye Tracking in Human-Computer Inter-
action and Usability Research, Lecture Notes in Com-
puter Science, vol. 5727, pp. 936–937, August 2009.

[7] M. Nakayama, M. Katsukura,Assessing Usability with
Eye-Movement Frequency Analysis, Proceedings of the
2008 Symposium on Eye Tracking Research & Applica-
tions, pp. 77, 2008.

[8] Y. Lin, W. J. Zhang,Evaluating Interface Usability Based
on Eye Movement and Hand Movement Behavioral Pa-
rameters, The 47th Human Factors and Ergonomics Soci-
ety Annual Meeting, pp. 653–657, Denver, Colorado, USA,
October 2003.

[9] D. Ribbink, A. C. R. van Riel, V. Liljander, S. Streukens,
Comfort Your Online Customer: Quality, Trust and
Loyalty on the Internet , Managing Service Quality,
vol. 14, no. 6, pp. 446–456, 2004.

[10] S.-S. Liaw,Understanding User Perceptions of World-
Wide Web Environments, Journal of Computer Assisted
Learning, vol. 18, no. 2, pp. 137–148, June 2002.

[11] H. Chen, R. Wigand, M. Nilan,Optimal Experience of
Web Activities, Computers in Human Behavior, vol. 15,
no. 5, pp. 585–608, September 1999.

[12] R. Guo, B. B. Zhu, M. Feng, A. Pan, B. Zhou,Compoweb:
A Component-Oriented Web Architecture, Proceedings
of the 17th International Conference on World Wide Web,
pp. 545–554, Beijing, China, April 2008.

[13] Gadgets API, Google Inc.,
http://code.google.com/apis/gadgets, accessed 21 Oct.
2009.

[14] Konfabulator Reference Manual, Yahoo! Inc., http://
manual.widgets.yahoo.com, accessed 21 Oct. 2009.

[15] Windows Live Gadget Developer’s Guide, Microsoft Cor-
poration, http://dev.live.com/gadgets/sdk/docs/default.htm,
accessed 21 Oct. 2009.

[16] Netvibes Developers Network, Netvibes Ltd., http://dev.
netvibes.com/doc/start, accessed 21 Oct. 2009.

[17] G. C. Low, D. R. Jeffery,Function Points in the Estima-
tion and Evaluation of the Software Process, IEEE Trans-
actions on Software Engineering, vol. 16, no. 1, pp. 64–71,
January 1990.

[18] D. Cleary,Web-Based Development and Functional Size
Measurement, Proceedings of the IFPUG Annual Confer-
ence, San Diego, USA, 2000.

[19] L. H. Putnam, W. Myers,Measures for Excellence: Re-
liable Software on Time, Within Budget, Prentice Hall,
1991.

AUTOMATIKA 50(2009) 3–4, 252–264 263



S. Srbljíc, D. Škvorc and D. Skrobo Widget-Oriented Consumer Programming

[20] M. Rasalan,Global Developer Population and Demo-
graphic Study 2009 v1, Evans Data Report, April 2009.

[21] C. Scaffidi, M. Shaw, B. Myers,Estimating the Numbers
of End Users and End User Programmers, Proceedings
of the 2005 IEEE Symposium on Visual Languages and
Human-Centric Computing, pp. 207–214, 2005.

[22] Internet Usage Statistics, Internet World Stats, http://www.
internetworldstats.com/stats.htm, accessed 7 Nov. 2009.

[23] Apache Shindig, The Apache Software Foundation, http:
//incubator.apache.org/shindig/index.html, accessed 7Nov.
2009.

Siniša Srbljić is currently a professor at
the Faculty of Electrical Engineering and
Computing, University of Zagreb, and head
of the Consumer Computing Laboratory. His
career also spans Silicon Valley where he
worked on large-scale distributed systems at
AT&T Labs. He was visiting the University of
Toronto, where he worked on the NUMAchine
multiprocessor project, and the University
of California, Irvine. His research interests

include consumer Web computing and widget-oriented programming. In
teaching, he is involved in the theory of computing, programming lan-
guage translation, service-oriented computing, and network middleware
systems.

Dejan Škvorc is a Ph.D. candidate at the
Faculty of Electrical Engineering and Com-
puting, University of Zagreb, Croatia. He
received his B.Sc. degree in 2003 and
M.Sc. degree in 2006, both from School
of Electrical Engineering and Computing,
University of Zagreb. During the 2007,
Dejan Skvorc spent four months as a software
engineering intern in Google’s Mountain
View office with Google Gadgets group. He is

a coauthor and one of the architects of the inter-gadget communication
framework based on publish-subscribe paradigm - the PubSubframe-
work. His research interests include service-oriented architectures, end-
user development, and consumer programming.

Daniel Skrobo is a solution architect at Eric-
sson Nikola Tesla d.d., Zagreb, Croatia. He
received his Ph.D., M.Sc., and B.Sc. degrees
from the Faculty of Electrical Engineering and
Computing, University of Zagreb (FER Za-
greb). Currently he is working on development
of health-care records storage and analysis
systems. He held research assistantship
position at FER Zagreb and was a research
engineering intern at Google’s Mountain

View office, CA, USA. His engineering and research interestsare pro-
gram translation systems and service-oriented computing systems.

AUTHORS’ ADDRESSES

Prof. Siniša Srblji ć, Ph.D.
Dejan Škvorc, M.Sc.
Department of Electronics, Microelectronics, Computer and
Intelligent Systems,
Faculty of Electrical Engineering and Computing,
University of Zagreb,
Unska 3, HR-10000 Zagreb, Croatia
emails: sinisa.srbljic@fer.hr,
dejan.skvorc@fer.hr

Daniel Skrobo, Ph.D.
Ericsson Nikola Tesla,
Krapinska 45, HR-10000 Zagreb, Croatia,
email: daniel.skrobo@ericsson.com

Received: 2009-11-02
Accepted: 2009-11-27

264 AUTOMATIKA 50(2009) 3–4, 252–264


