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ABSTRACT

In the Euclidean plane there are several well-known meth-
ods of constructing an osculating (Euclidean) circle to a
conic. We show that at least one of these methods can
be “translated” into a construction scheme of finding the
osculating non-Euclidean circle to a given conic in a hyper-
bolic or elliptic plane. As an example we will deal with the
Klein-model of these non-Euclidean planes, as the projec-
tive geometric point of view is common to the Euclidean
as well as to the non-Euclidean cases.

Oskulacijske kruznice konika u Cayley-Klein-ovim
ravninama

SAZETAK

U euklidskoj ravnini postoji nekoliko dobro poznatih
metoda konstrukcija oskulacijske kruZnice konike. Cilj
je te konstrukcije “translatirati” u neke od neeuklid-
skih ravnina. U &lanku se daje opéa konstrukcija osku-
lacijske kruZnice konike zadane s pet elemenata u euklid-
skoj ravnini. Pokazuje se da je konstruktivha metoda pri-
mjenjiva u hiperboli¢koj i elipti¢koj ravnini. Bududi da je
projektivno geometrijsko glediste zajednitko euklidskom i
neeuklidskim slu¢ajevima, analogne se konstrukcije koriste

. . . . na Klein-ovim modelima neeuklidskih ravnina.
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1 Preliminary Remark Stachel, H. Havlicek) and Graz (J. Wallner, O. Roschel),
where they still belong to the syllabus in teachers educa-
Although the problem of constructing an osculating circle tion in Descriptive Geometry.

at a point of a conic seems to be anachronistic in times

of numerical approximation tools, knowledge about ex- . ) ) .

act constructive methods is not at all obsolete, partigular 2 Euclidean Osculating Circles of Conics

since these methods are uniformly applicable. Beyond

that, with the following projective geometric constructso ~ We start with “permissible standard givens” of a conic in
of osculating circles, we place particular emphasis on syn-the Euclidean plane, i.e. from pair of conjugate diameters
thetic argumentation, which is typically for geometry. Un- AC, BD of an ellipse, from a pair of line elemen(4, ta),
fortunately Projective Geometry and Non-Euclidean Ge- (B.ts) of a parabola and from a pair of asymptotes)
ometry in the sense of F. Klein does not have much spaceand a pointA of a hyperbola. The problem is to find the
in nowadays Mathematics education such that valuable Ge-0sculating circle at the given poiAt

ometry culture is in danger of vanishing. Our article might |y geometry courses for engineers one usually presents the
perhaps help to counteract these facts. The paper is als@onstruction recipe for the hyperosculating circles at the
t_o be posed into the series of artic_le_s_ of classical Projec-yertex of the conic: in lectures on differential geometry
tive and Non-Euclidean Geometry initiated by the second for \Mathematicians this recipe is also presented and the
author, see [5] - [8]. analytic equality of #order is proved by calculation in

It is hard to say, how “well-known” the presented consid- each of the three cases. But for all three cases there is a
erations are; they could be for example exercise material touniform projective geometric idea for the solution of this
lectures on classical Projective Geometry and not consid-(more general) problem. This idea uses properties of oscu-
ered to be valuable enough to be published. To our knowl- lating resp. hyperosculating pencils of conics. This udifie
edge lectures with related content still exist in Vienna (H. explanation of elementary construction of hyperoscudatin
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circles at vertices of a conic might be not new, but it is,
in our opinion, not at all so well-known as it is worthy to
note.

In addition, the construction principle deduced from it can
be used for all Cayley-Klein geometries, as it is shown in
the following chapter only for the hyperbolic and the quasi-
hyperbolic geometry (which is the dual geometry to the
pseudo-Euclidean geometry) as an example.

Specifically, the construction follows two steps:

Step 1 Transform the given conic by the standard shear
transformatioro; : ¢ — ¢’ into another conic’, which os-
culatesc at the pointA, and hasA as a vertex. The axis of
the shear therefore is the tangéqin A. As all elations
with the centeN onty, this sheao; maps the given conic
c into ¢’ which osculates the conicat A. The osculating
circle of one is also osculating circle for the other one.

Step 2 Construct the hyperosculating cirdg of the conic

¢ atA= A. For this one can use an additional elatmn
which also hasa as its axis, but the centérand it should
map ¢’ into a hyperosculating conic’. By demanding

¢ — ka the transformatioro; is uniquely defined;o2
transforms the poinB’ of the osculating conic’ (in the
case of an ellipse this is a “neighbouring” vertex, in case
of a hyperbola one of the asymptote’s ideal point “at infin-
ity”, in the case of a parabola it is the additionally given
point) into the poinB” of ka. The normal from the (fixed)
pointT =T/ =T" eta (T =taNtg =ty Ntg) to the chord
AB’ = AB of circle ka therewith passes through the center
Ma of kA

The following figures (Figures 1-3) show the construction

Elliptic case (Figure 1)

The pointA is transformed into the vertex of an ellipse
¢ by the sheao; : c — ¢’ (tangenttp at A is the axis of
01). Furthermoregs, : ¢ — ka with the same axis, but
with centerA, transforms a “neighbouring” verte of ¢’
into the pointB” of ka. The line through the fixed point
T =T’ =T" ontp perpendicular to the choiB” = AB'

of the osculating circléa intersects the normat of the
conicc given at the poinA in the centeMa of ka.

Parabolic case (Figure 2)

The sheao; : ¢ — ¢’ (axis is the tangert atA) transforms
the pointA into the vertex of a parabotd, which osculates
c. The midpointH of the chordAB, together with the point
T :=taNtg, defines the diameter direction of the conjc
and therefore is mapped into the poiton the line nor-
mal tota at T. Fora, : ¢ — ka (the center ish) the line
AH' is afixed line; it contains the poi®’ = g2(B') of the
hyperosculating conika. The line through the fixed point
T =T’ =T" perpendicular to the choriB” = AH’ of ka
passes through the sought-after curvature cévifer

Hyperbolic case (Figure 3)

At first we construct the tangetyt at the pointA, (A is the
midpoint of the tangent segment between the asymptotes).
By a suitable sheaw; one can transform the poiAtinto

the vertex of the hyperbolzl whose asymptotes aréand

< and the center isl’. The elatioro, : ¢ — ka with center

A transforms the ideal poifl® = B’ of the asymptote’ of

the conicc’ into the pointB” of the hyperosculating conic

ka. Therefore, the line through the fixed poihton the
tangenta perpendicular taAB” = AB' passes through the

costs, which in each of the three cases needs only a fewcommon curvature centéfa of the conicska, ¢’ andc. As

lines.

AB is parallel tor’, one only needs to draw the perpendic-
ular line to the asymptoteé = M'T at the poinfT.

N
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Figurel: Construction of the center
Ma of the osculating circldpa at the
endpointA of one of the given con-
jugate diameters of the ellipse

Figure 2: Construction of the center
Ma of the osculating circlds at the
point A of the parabolec given by
two line elementsgA, ta), (B,tg).

R’=B’

Figure 3: Construction of the cur-
vature centeMa at the pointA of
the hyperbolacgiven by the pair of
asymptotegr, s) and the poinf.
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Remark 1 Of course, there are other nice constructions visualise again the Euclidean case in Figure 4, ile” &nd

of the Euclidean curvature circle at the point of a conic, “circles” allow an elementary geometric interpretation.)
too. We want to mention the one found in [1], which is

based on the differential geometric investigations andsgoe Step 1:determine the normalof the conicc at the pointA

as follows: with respect tal ; i.e. one needs to construct the “absolute

“Choose two points R on tangent 4 symmetric to A, conjugate line’'n to the given tangerd of the conicc atA

draw the tangents from P and Q to the given conic c, re- with .respect taT'i. The absolute poldl of the normahis .
ceive the contact points'and Q. The normals pandq & point ofa and it has to be used as the center of an elation
to the cords APand AQ intersect the normalnin Ainthe 01 : ¢ — € with axisa. One still needs a related pair of
points M and Mo. Then M is the midpoint of the segment  Points to define elatiod; uniquely.

(Mp,Mg). Also this construction could be transformed to

CK-planes” Step 2:the construction of a conic poilt on the (fixed)

collineation ray onBN using the theorem of Pappus-
Pascal. (Naturally, it would be the same, if we constructed
3 Curvature Centres of Conics which are the pointE € c on the collineation ray CN.) In Figure 4 the

Given by General Datain CK-planes necessary lines are shown:

In the preceding chapter we started with affine-special D :=BNNAP, whereby P:=BCn((anb)Vv(BNNAC)).
given data of a conic. Now we choose a projective-
geometric system of data defining a conic:

Let a conic ¢ be given by two line elemef#sa), (B,b)
and a point C in a (real) projective plareequipped with
an “absolute (regular or degenerated) polarityt-. (The
planerttogether withrt- is therewith a Cayley-Klein plane,

in short a CK-plane.) Step 4:corresponds to step 2 in chapter 2 to ggt ¢ —

These specifications of the coriccan easily be derived  ka. Explicitly, one only needs the centérof elationaz

from all other given data, which define conic uniquely, by and the fact that the poifg” := o2(B’) on ka belongs to
applying the theorems of Pappus-Pascal and Brianchonthe chordAB” = AB' of ka, which is fixed undeo, where
see [2]. These givens are also appropriate for the analyticB’ := 01(B). Therewith the wanted curvature cenkéx is

treatment of the conic, as they can be interpreted as a prothe intersection point of the normaivith the lines, which
jective coordinate system. is the absolute-conjugate line A& throughanb.

Step 3: determination of the @4 harmonic pointH to N
with respect to the paifB,D) on line BN. This pointH
shall be related tél’ := nNBNin o7 and nowo; : ¢ — ¢/
is uniquely determined.

Via 1t~ the place of action is a projective plane with an or-
thogonality structure £” and a concept of circles in the
sense of Cayley-Klein; it is therefore a “projectively ex-
tended non-Euclidean plane”, a CK-plane, see e.g. [3].
Among these CK-planes we want to exclude the so-called
isotropic planes (see e.g. [4]) from further consideratjon
because their orthogonality structures too degenerated.
These CK-planes are treated separately in [7]. It turns out
that for degenerated absolute polarityone could “swap”

the two steps described in chapter 2: At first one constructs
the hyperosculating parabataat the pointA of the given
coniccin the isotropic planet with absolute point at the
ideal lineu. This can be done with an elation with center
A and axisa. Next, the parabold is transformed into the
isotropic circlek with ideal point using the shear with
axisa.

In the last chapter, it will be shown that in some cases of Figure 4: Construction of the curvature cenddx in a
QK-pI.anets, with degengrate al_)solute pqlarlty onecan eas'IypointA of a conicc, which is given by two line elements
find simplier constructions using one single elation alone. (A,a), (B,b) and an additional poir€ in the (projective

The problem is to construct the curvature ceMgrat the extended) elementary geometric plane. (Explanation of the
pointA of the given conic. (For the sake of simplicity we  construction see above.)



KoG+13 (2009), 7-12. G. Weiss, A. Sliepcevic: Osculating Circles of Conics aey-Klein Planes

4 h-Curvature Circles of a Conicin the Pro- Step 2 MakeA to a vertex of the conic’, which osculates
jective Model of a Hyperbolic Plane catA. For this we use a “projective shear”, i.e. an elation
01 with axisa and centréN € a, which is the absolute pole
As an example for the construction of the osculating circle of n,
in a non-Euclidean plane with regular absolute polamity

the complete solution will be given in a hyperbolic plane, Step 3 Construct the hyperosculating circle dfaccord-

see F|g.ure > o _ ing to the description to Figure 4. In Figure 5 we used the
According to the projective geometric background of the pointsQ andQ’ =: 01(Q) to getc’ from ¢ and the special
idea of the construction, it is somehow natural to use the oint B’ and its tangenb. Finally we connech with B
classical projective model of such a h-plane, (c.f. als® [2] P q hén g | I'. AB)’/ h hT — anb. |
This means that the place of action is essentially the inner"d €rect thé-normal line toAB throughT :=anb, it
domain of a (real) “absolute conial, which can be taken  intersectsiin theh-curvature cente.

as an_ordlnary circle in elementary geometric sense. leenStep 4 If we do not use a graphics software like “Cin-
a conicc, the problem is to construct the h-curvature center

Ma to the arbitrarily given poind (with tangent). derella”, where we can directly draw-circles in ah-

_ . . ~ plane, we still have to construct tieosculating circle.
It is expedient and practical to use a perspective This again can be done using a perspective collineation

coll!neanon Kp:u— c to construct the c_onloc _as Ko U — kit has the centeM and the axisn :— T[i(M)
collinearly related image to the absolute counic(In Fig- and the related pair of Dot ¢ ¢. A Because of
ure 5 collineatiork, is defined with the cente® and the pai poinfé & ¢, Az € u). u

axiss, and the related pair of poinf#y,A).) Note, that if K1 01 v 02 K2
s is absolute polar 08, the obtained conic would be a u — ¢ — — k —
circle. The product of these perspective collineations must act as

Step 1: The osculatingh-circle k of c at A has its center @ Projectivity onu. So the mapping: ¢ — u— kis de-
M on theh-normaln to a throughA. So as a first step one termined by three pairs of points enamong thenmfy, Az
needs to construct this andQq, Q..

Figure 5: Osculating-circle at the poinf of the conicc. (Construction in the classical projective model df-plane.)
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5 Curvature Circlesof a Conicin the CK-Planeswith Singular Absolute Polarity

To start with, we give an overview over those CK-planes,[8]f.

L

| m | acting in “Absolute figure” | Name |
elliptic involutoric | (ideal) lineu pair of imaginary | Euclidean plane,
projectivity pointsl,J €u e— plane
hyperb. involutoric| (ideal) lineu pair of real pseudo-Euclid. plane,
projectivity pointsl,J €u pe— plane
elliptic involutoric | a pencil of linesu | pair of imaginary | dual Euclid. plane,
projectivity through (ideal) linesi, j throughU | quasi-elliptic plane
pointU ge— plane
hyperb. involutoric| a pencil of lineau | pair of real dual pseudo-Euclid. plang
projectivity through (ideal) linesi, j throughU | quasi-hyperbolic plane,
pointU gh— plane
degenerate inv. (ideal) lineu pointU and lineu | isotropic plane,
projectivity (self-dual figure) | Galilean plane,
i — plane

We treated the Euclidean case in Chapter 2 aiming at aRemark 2 The same construction principle can be per-
unifying interpretation of the classical and well-known el formed also in the Euclidean case. The imaginary rays Al
ementary constructions. We will now present constructions and AJ are defined by the Orthogona|-invo|ution inthe pen-

of osculating circles by using one single elation alone. Let ¢jj with vertex A and this orthogonal involution induces in
us begin with

1) Pseudo-Euclidean case

construction of a pe-circle osculating a coniat the point

A

Explanation to Figure 6:
The conicc and its line elemen(A, a) in the pe-plane with

absolute point$,J € u are given. Now we chooskas the
center of an elatiom and construct its axig (Also this
type of elations is osculation preserving!) With center
projectl,J ontoc gettingl’, J'. Intersectu with the line
U =1'Y, get a fixed poinE andAF =: z. NowKk is well-

c an elliptic involutoric projectivityp with involution cen-
ter R. Now we had to construct the polar line r to R with
Figure 6 shows the projective model of a pe-plane and therespect to c; r connects the imaginary pointshd J and

therefore is parallel to the elation axis z.

2) Quasi-hyperbolic case

defined and(c) =: k is the desired osculating pe-circle. 7.

Figure 6: Osculating pe-circle at the poibf the conicc.

(Construction in a projective model of a pe-plane.)

Without loss of generality, let the absolute figure of the
quasi-hyperbolic plane be a pair of parallel lineg The
conicc and its line elementA, a) are given. Agh-circle
k is a conick touching both absolute linesand j. The
construction is now dual to the one of Figure 6, see Figure

Figure 7: Osculatingjh-circle at the pointA of the conic

c. (Construction in agh - plane with an absolute figure

{Usi,j})
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Explanation to Figure 7:

Intersect the absolute linésand j with the tangent of
the conicc at A. The tangent$, j’ from these intersec-
tion points toc intersect at the poind’ which corresponds
to the absolute poirlt in the desired elatior with axis
a. Line UU’ intersectsa at the centeZ of k such that
K is well-defined by{Z,a,(U,U’)} andk := k(c) is the
desired osculatingh-circle. Note thatJA represents the
gh-normaln of thec atA.
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