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ABSTRACT

Two tetrahedra are called orthologic if the lines through
vertices of one and perpendicular to corresponding faces of
the other are intersecting. This is equivalent to the orthog-
onality of non-corresponding edges. We prove that the
additional assumption of intersecting non-corresponding
edges (“orthosecting tetrahedra”) implies that the six in-
tersection points lie on a sphere. To a given tetrahedron
there exists generally a one-parametric family of orthosect-
ing tetrahedra. The orthographic projection of the locus of
one vertex onto the corresponding face plane of the given
tetrahedron is a curve which remains fixed under isogo-
nal conjugation. This allows the construction of pairs of
conjugate orthosecting tetrahedra to a given tetrahedron.
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dra, isogonal conjugate
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Ortologni tetraedri s bridovima koji se sijeku

SAŽETAK

Dva tetraedra nazivamo ortolognim ako se pravci koji pro-
laze vrhovima jednog i okomiti su na odgovarajuće stranice
drugog med-usobno sijeku. Ovo je ekvivalentno ortogo-
nalnosti ne-odgovarajućih bridova. Mi dokazujemo kako
dodatna pretpostavka da se ne-odgovarajući bridovi si-
jeku (”ortopresječni tetraedar”) povlači da šest sjecǐsta
leži na jednoj kugli. Za dani tetraedar postoji općenito
jednoparametarska familija ortopresječnih tetraedara. Or-
togonalna projekcija geometrijskog mjesta jednog vrha na
pripadajuću ravninu danog tetraedra je krivulja koja os-
taje fiksnom pod djelovanjem izogonalne konjugacije. Ovo
dopušta konstrukciju parova konjugiranih ortopresječnih
tetraedara za dani tetraedar.

Ključne riječi: ortologni tetraedar, ortopresječni tetra-
edar, izogonalno konjugiranje

1 Introduction

Ever since the introduction of orthologic triangles and
tetrahedra by J. Steiner in 1827 [10] these curious pairs
have attracted researchers in elementary geometry. The
characterizing property of orthologic tetrahedra is concur-
rency of the straight lines through vertices of one tetrahe-
dron and perpendicular to corresponding faces of the sec-
ond. Alternatively, one can say that non-corresponding
edges are orthogonal. Proofs of fundamental properties
can be found in [7] and [8]. Quite a few results are known
on special families of orthologic triangles and tetrahedra.
See for example [5, 6, 9, 11] for more information on or-
thologic tetrahedra (or triangles) which are also perspec-
tive or [3] for a generalization of a statement on families of
orthologic triangles related to orthopoles.

In this article we are concerned withorthosecting tetrahe-
dra— orthologic tetrahedra such that non-corresponding

edges intersect orthogonally. The concept as well as a
few basic results will be introduced in Section 2. In Sec-
tion 3 we show that the six intersection points of non-
corresponding edges necessarily lie on a sphere (or a
plane). While the computation of orthosecting pairs re-
quires, in general, the solution of a system of algebraic
equations, conjugate orthosecting tetrahedra can be con-
structed from a given orthosecting pair. This is the topic
of Section 4. Our treatment of the subject is of elemen-
tary nature. The main ingredients in the proofs come from
descriptive geometry and triangle geometry.

A few words on notation: ByA1A2A3 we denote the trian-
gle with verticesA1, A2, andA3, by A1A2A3A4 the tetrahe-
dron with verticesA1, A2, A3, andA4. The line spanned
by two pointsA1 andA2 is A1∨A2, the plane spanned by
three pointsA1, A2, andA3 is A1∨A2∨A3. Furthermore,
In denotes the set of alln-tuples with pairwise different
entries taken from the set{1, . . . ,n}.
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2 Preliminaries

Two trianglesA1A2A3 andB1B2B3 are calledorthologic, if
the three lines

ai : Ai ∈ ai, ai ⊥ B j ∨Bk; (i, j,k) ∈ I3 (1)

intersect in a pointOA, the orthology centerof A1A2A3

with respect toB1B2B3. In this case, also the lines

bi : Bi ∈ bi, bi ⊥ A j ∨Ak; (i, j,k) ∈ I3 (2)

intersect in a pointOB, the orthology center ofB1B2B3 with
respect toA1A2A3. The concept of orthologic tetrahedra is
similar. Two tetrahedraA = A1A2A3A4 andB = B1B2B3B4
are calledorthologic, if the four lines

ai : Ai ∈ ai, ai ⊥ B j ∨Bk∨Bl ; (i, j,k, l) ∈ I4 (3)

intersect in a pointOA, the orthology center ofA with re-
spect toB. In this case, also the lines

bi : Bi ∈ bi, bi ⊥ A j ∨Ak∨Al ; (i, j,k, l) ∈ I4 (4)

intersect in aOB, the orthology center ofB with respect
to A. Orthologic triangles and tetrahedra have been intro-
duced by J. Steiner in [10]; proofs of fundamental proper-
ties can be found in [7, 8] or [1, pp. 173–174].

The symmetry of the two tetrahedra in the definition of or-
thology is a consequence of the following alternative char-
acterization of orthologic tetrahedra. It is well-known but
we give a proof which introduces concepts and techniques
that will frequently be employed throughout this paper.

Proposition 1 The two tetrahedraA andB are orthologic
if and only if non-corresponding edges are orthogonal:

Ai ∨A j ⊥ Bk∨Bl , (i, j,k, l) ∈ I4. (5)

Proof. We only require that the linesai throughAi and or-
thogonal to the planeB j ∨Bk ∨Bl intersect in a pointOA.
The planeAi ∨A j ∨OA contains two lines orthogonal to
the lineBk∨Bl , (i, j,k, l) ∈ I4. Therefore, all lines in this
plane, in particularAi ∨A j , are orthogonal toBk∨Bl .

Assume conversely that the orthogonality conditions (5)
hold. Clearly, any two perpendicularsai intersect. We have
to show that all intersection pointsAi j = ai ∩a j coincide.
Using our freedom to translate the tetrahedronA without
destroying orthogonality relations we can ensure, without
loss of generality, the existence of the intersection points

V12 := (A1∨A2)∩ (B3∨B4),

V13 := (A1∨A3)∩ (B2∨B4),

V23 := (A2∨A3)∩ (B1∨B4).

(6)

Consider now the orthographic projection onto the plane
A1 ∨A2 ∨A3 (Figure 1). We denote the projection of a
pointX by X′. By the Right-Angle Theorem of descriptive
geometry,1 the pointsB′

1, B′
2 andB′

3 lie on the perpendicu-
lars throughB′

4 onto the sides of the triangleA = A1A2A3.
Moreover, since the planeV12∨V13∨V23 appears in true
size, the linesai throughAi and orthogonal to the respec-
tive face planes ofA have projectionsa′1, a′2, a′3 orthogonal
to the edges of the triangleV =V23V13V12. The trianglesV
andA are orthologic. Therefore the linesa′i intersect in a
point O′

A which is necessarily the projection of a common
pointOA of the linesa1, a2, anda3. �

Figure 1:Orthographic projection onto a face plane

3 The six intersection points

The new results in this paper concern pairs of orthologic
tetrahedraA = A1A2A3A4 and B = B1B2B3B4 such that
non-corresponding edges are not only orthogonal but also
intersecting. That is, in addition to (5) we also require ex-
istence of the points

Vi j := (Ai ∨A j)∩ (Bk∨Bl ) 6= ∅, (i, j,k, l) ∈ I4. (7)

Definition 1 We call two tetrahedraA and B orthosect-
ing if their vertices can be labelled as A1A2A3A4 and
B1B2B3B4, respectively, such that(5) and(7) hold.

Theorem 1 If two tetrahedra are orthosecting, the six
intersection points of non-corresponding edges lie on a
sphere (or a plane, if flat tetrahedra are permitted). The
sphere center is the midpoint between the orthology cen-
ters.

1In an orthographic projection the right angle between two lines appears as right angle if and only if one line is in true size (parallel to the image plane)
and the other is not in a point-view (orthogonal to the image plane).
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Proof. Denote the two tetrahedra byA = A1A2A3A4 and
B = B1B2B3B4 such that the linesAi ∨A j andBk∨Bl inter-
sect orthogonally inVi j for (i, j,k, l) ∈ I4. As in the proof
of Proposition 1 we consider the orthographic projection
onto the planeA1∨A2∨A3 (Figure 1). Clearly,B′

4 equals
the projectionO′

B of the orthology centerOB of B with re-
spect toA. If it lies on the circumcircle ofA1A2A3, all per-
pendiculars fromB′

4 onto the sides ofA1A2A3 are parallel.
In this case the tetrahedronB1B2B3B4 is flat and the theo-
rem’s statement holds. Otherwise, the pointsV12, V13, and
V23 define a circlec4 — the pedal circle of the pointB′

4 with
respect to the triangleA1A2A3. By the Right-Angle Theo-
rem the projectionO′

A of the orthology centerOA of A with
respect toB is the orthology center of the triangleA1A2A3

with respect to the triangleV23V13V12. Moreover, from ele-
mentary triangle geometry it is known that the centerM′ of
c4 halves the segment betweenB′

4 andO′
A [4, pp. 54–56].

Hence all circlesci drawn in like manner on the faces of
A have axes which intersect in the midpointM of the two
orthology centersOA andOB. Moreover, any two of these
circles share one of the pointsVi j . Hence, these circles are
co-spherical and the proof is finished. �

The proof of Theorem 1 can also be applied to a slightly
more general configuration where only five of the six edges
intersect orthogonally. We formulate this statement as a
corollary:

Corollary 1 If A = A1A2A3A4 and B = B1B2B3B4 are
two orthologic tetrahedra such that five non-corresponding
edges intersect, the five intersection points lie on a sphere
(or a plane).

4 The one-parametric family of solution
tetrahedra

So far we have dealt with properties of a pair of ortho-
secting tetrahedra but we have left aside questions of ex-
istence or computation. In this sectionA = A1A2A3A4 is
a given tetrahedron to which an orthosecting tetrahedron
B = B1B2B3B4 is sought.

4.1 Construction of orthologic tetrahedra

At first, we consider the simpler case of orthologic pairs.
Clearly, translation of the face planes ofB will transform
an orthologic tetrahedron into a like tetrahedron (unless all
planes pass through a single point). Therefore, we consider
tetrahedra with parallel faces as equivalent.

The maybe simplest construction of an equivalence class
of solutions consists of the choice of the orthology center
OA. This immediately yields the face normalsni of B as
connecting vectors ofOA andAi . The variety of solution
classes is of dimension three, one solution to every choice
of OA. Since five edges determine two face planes of a
tetrahedron and, in case of suitable orthogonality relations,
also the orthology centerOA, we obtain

Theorem 2 If the vertices of two tetrahedra can be la-
belled such that five non-corresponding pairs of edges are
orthogonal then so is the sixth.

The variety of all solution classes contains a two-
parametric set of trivial solutionsn1 = n2 = n3 = n4. They
correspond to orthology centers at infinity, the solution
tetrahedra are flat. Note that the possibility to label the
edges such that non-corresponding pairs are orthogonal is
essential for the existence of non-flat solutions. If, for ex-
ample, corresponding edges are required to be orthogonal
only flat solutions exist.

4.2 Conjugate pairs of orthosecting tetrahedra

Establishing algebraic equations for solution tetrahedrais
straightforward. Six orthogonality conditions and six in-
tersection condition result in a system of six linear and
six quadratic equations in the twelve unknown coordinates
of the vertices ofB. Because of Theorem 2, only five
of the six linear orthogonality conditions are independent.
Therefore, we can expect a one-dimensional variety of so-
lution tetrahedra. This expectation is generically true, as
can be confirmed by computing the dimension of the ideal
spanned by the orthosecting conditions by means of a com-
puter algebra system.

The numeric solution of the system induced by the ortho-
secting conditions poses no problems. We used the soft-
ware Bertini,2 for that purpose. Symbolic approaches are
feasible as well. One of them will be described in Subsec-
tion 4.3. It is based on a curious conjugacy which can be
defined in the set of all tetrahedra that orthosect the given
tetrahedronA.

Assume thatB = B1B2B3B4 is a solution tetrahedron and
denote the orthographic projection ofBi onto the face plane
A j ∨Ak ∨Al by B?

i , (i, j,k, l) ∈ I4. By the Right-Angle
theorem the pedal points of all pointsB?

i on the edges of
A jAkAl are precisely the intersection points defined in (7).
Three intersection points on the same face ofA form a
pedal triangle. This observation gives rise to:

2D. J. Bates, J. D. Hauenstein, A. J. Sommese, Ch. W. Wampler: Bertini: Software for Numerical Algebraic Geometry,
http://www.nd.edu/ sommese/bertini/.
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Definition 2 A pedal chain on a tetrahedron is a set of four
pedal triangles, each with respect to one face triangle of
the tetrahedron, such that any two pedal triangles share
the vertex on the common edge of their faces (Figure 2). If
all vertices of pedal triangles lie on a sphere (or a plane),
we speak of a spherical pedal chain.

Figure 2:A pedal chain

If A1A2A3A4 andB1B2B3B4 are orthosecting, the proof of
Theorem 1 shows that six intersection points are the ver-
tices of a spherical pedal chain. The converse is also true:

Theorem 3 Given the vertices Vi j of a spherical pedal
chain on a tetrahedronA = A1A2A3A4 there exists a unique
orthosecting tetrahedronB = B1B2B3B4 such that Ai ∨
A j ∩Bk∨Bl = Vi j for all (i, j,k, l) ∈ I4.

Proof. If a solution tetrahedronB exists at all it must be
unique since its faces lie in the planesβi := Vi j ∨Vik ∨Vil
(i, j, k∈ {1,2,3,4} pairwise different).3

Figure 3:Proof of Theorem 3

In order to prove existence, we have to show that the lines
Ai ∨ A j and βi ∩ β j are, indeed, orthogonal for all pair-
wise differenti, j ∈ {1,2,3,4}. We denote the point from

which the pedal triangle on the faceAiA jAk originates (the
“anti-pedal point”) byB?

l and show orthogonality between
A1∨A2 andβ1∩β2 for (i, j,k, l) ∈I4. Relabelling accord-
ing to

P00 := V13, P01 := A1, P02 := V14,

P10 := B?
4, P11 := V12, P12 := B?

3,

P20 := V23, P21 := A2, P22 := V24

(8)

(Figure 3) we obtain a net of pointsPi j . In every elemen-
tary quadrilateral the angle measure at two opposite ver-
tices equalsπ/2. Thus, the net iscircular. Such structures
are extensively studied in the context of discrete differen-
tial geometry [2]. Our case is rather special since two pairs
of quadrilaterals span the same plane. This does, however,
not hinder application of [2, Theorem 4.21] which states
that our assumptions on the co-spherical (or co-planar) po-
sition of the pointsP00, P02, P11, P20, andP22 is equivalent
to the fact that the netPi j is adiscrete isothermic net. These
nets have many remarkable characterizing properties. One
of them, stated in [2, Theorem 2.27], says that the planes
P00∨P11∨P02, P10∨P11∨P12, andP20∨P11∨P22 have a
line in common. In our original notation this means that
the lineβ1∩β2 intersects the face normal ofA1∨A2∨A3

throughB?
4 and the face normal ofA1∨A2∨A4 throughB?

3.
Therefore, it is orthogonal toA1∨A2. �

As a consequence of Theorem 3 it can be shown that tetra-
hedra which orthosectA come in conjugate pairs: Given
A and an orthosecting tetrahedronB it is possible to con-
struct a second orthosecting tetrahedronC. The same con-
struction withC as input yields the tetrahedronB. This
conjugacy is related to the pedal chain originating fromB.
The key ingredient is the following result from elementary
triangle geometry [4, pp. 54–56]:

Figure 4:Pedal circles in a triangle

Proposition 2 If P is a point in the plane of the triangle
A1A2A3 and c its pedal circle, the reflection Q of P in the
center M of c has the same pedal circle c (Figure 4).

3The case of collinear or coinciding pointsVi j leads to degenerate solution tetrahedra whose faces contain one vertex ofA.
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A1

A2

A3

A4

Figure 5:A conjugate pairB, C of orthosecting tetrahedra.

Suppose thatA andB are orthosecting tetrahedra. The or-
thographic projectionsB?

i of the vertices ofB onto corre-
sponding face planes ofA are points whose pedal triangles
form a spherical pedal chain. By reflectingB?

i in the cen-
ters of the pedal circles on the faces ofA we obtain points
C?

i which, according to Proposition 2, give rise to a second
spherical pedal chain (with the same sphere of vertices)
and, by Theorem 3, can be used to construct a second or-
thosecting tetrahedronC (Figure 5).

The pointsP andQ of Proposition 2 are calledisogonal
conjugateswith respect to the triangleA1A2A3. The above
considerations lead immediately to

Theorem 4 Given a tetrahedronA = A1A2A3A4, the or-
thographic projection of all vertices B?i of orthosect-
ing tetrahedra onto the face plane Aj ∨ Ak ∨ Al of A
(with (i, j,k, l) ∈ I4) is a curve which is isogonally self-
conjugate with respect to the triangle AjAkAl .

4.3 Computational issues

We continue with a few remarks on the actual computation
of the isogonal self-conjugate curves of Theorem 4 with
the help of a computer algebra system. Our first result con-
cerns the construction of pedal chains.

Theorem 5 Consider a tetrahedronA = A1A2A3A4 and
six points Vi j ∈ Ai ∨A j , (i, j,k, l) ∈ I4. If three of the four
triangles Vi jVjkVki, with (i, j,k) ∈ I3, are pedal triangles
with respect to the triangle AiA jAk then this is also true for
the fourth.

Proof. Assume that the trianglesV12V24V14, V23V24V34, and
V13V34V14 are pedal triangles of their respective face trian-
gles. We have to show thatV12V23V13 is a pedal triangle
of A1A2A3. As usual, the anti-pedal points are denoted by
B?

1, B?
2, andB?

3. Clearly, we haveB?
i ∨B?

j ⊥ Ak ∨A4 for
(i, j,k,4) ∈ I4. Denote byB◦

4 a point in the intersection
of the three planes incident withVi j and perpendicular to
Ai ∨A j , (i, j,k) ∈ I3. By Proposition 1 the tetrahedraA
andB?

1B?
2B?

3B◦
4 are orthologic. Therefore, the face normals

nl of Ai ∨A j ∨Ak throughB?
l have a pointB4 in common

(l 6= 4, (i, j,k, l) ∈ I4). By the Right-Angle Theorem, the
intersection pointB?

4 of the orthographic projections ofn1,
n2, andn3 ontoA1∨A2∨A3 hasV12V23V13 as its pedal tri-
angle. �

In order to construct a pedal chain on a tetrahedron
A = A1A2A3A4 on can proceed as follows:

1. Prescribe an arbitrary pedal triangle, sayV12V23V13.

2. Choose one anti-pedal point, sayB?
3, on a neigh-

bouring face. It is restricted to the perpendicular to
A1∨A2 troughV12.

3. The remaining pedal points are determined. Theo-
rem 5 guarantees that the final completion ofV34 is
possible without contradiction.

In order to construct a spherical pedal chain, the choice
of B?

4 andB?
3 needs to be appropriate. A simple computa-

tion shows that there exist two possible choices (in alge-
braic sense) forB?

3 such that the pointsV12, V13, V23, V14,
andV24 are co-spherical (or co-planar). Demanding that
the remaining vertexV34 lies on the same sphere yields
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an algebraic condition on the coordinates ofB?
4 — the al-

gebraic equation of the isogonally self-conjugate curvei4
from Theorem 4. We are currently not able to carry out the
last elimination step in full generality. Examples suggest,
however, thati4 is of degree nine. Once a point oni4 is
determined, the computation of the corresponding ortho-
secting tetrahedron is trivial.

5 Conclusion and future research

We introduced the concept of orthosecting tetrahedra and
presented a few results related to them. In particular we
characterized the six intersection points as vertices of a
spherical pedal chain on either tetrahedron. This charac-
terization allows the construction of conjugate orthosect-
ing tetrahedra to a given tetrahedronA.

In general, there exists a one-parametric family of tetra-
hedra which orthosectA. The orthographic projection of
their vertices on the plane of a face triangle ofA is an isog-
onally self-conjugate algebraic curve. Maybe it is worth to
study other loci related to the one-parametric family of or-
thosecting tetrahedra. Since every sphere that carries ver-
tices of one pedal chain also carries the vertices of a second

pedal chain, the locus of their centers might have a reason-
able low algebraic degree.

Moreover, other curious properties of orthosecting tetra-
hedra seem likely to be discovered. For example, the re-
peated construction of conjugate orthosecting tetrahedra
yields an infinite sequence〈Bn〉n∈Z of tetrahedra such that
Bn−1 andBn+1 form a conjugate orthosecting pair with re-
spect toBn for everyn∈ Z. All intersection points of non-
corresponding edges lie on the same sphere and only two
points serve as orthology centers for any orthosecting pair
Bn, Bn+1. General properties and special cases of this se-
quence might be a worthy field of further study.

Finally, we would like to mention two possible extensions
of this article’s topic. It seems that, with exception of
Steiner’s result on orthologic triangles on the sphere, lit-
tle is known on orthologic triangles and tetrahedra in non-
Euclidean spaces. Moreover, one might consider a relaxed
“orthology property” as suggested by the anonymous re-
viewer: It requires that the four linesa1, a2, a3, a4 defined
in (3) lie in a regulus (and not necessarily in a linear pen-
cil). This concept is only useful if the regulus position of
the linesai also implies regulus position of the linesb j of
(4). We have some numerical evidence that this is, indeed,
the case.
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