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ABSTRACT

Two tetrahedra are called orthologic if the lines through
vertices of one and perpendicular to corresponding faces of
the other are intersecting. This is equivalent to the orthog-
onality of non-corresponding edges. We prove that the
additional assumption of intersecting non-corresponding
edges (“orthosecting tetrahedra”) implies that the six in-
tersection points lie on a sphere. To a given tetrahedron
there exists generally a one-parametric family of orthosect-
ing tetrahedra. The orthographic projection of the locus of
one vertex onto the corresponding face plane of the given
tetrahedron is a curve which remains fixed under isogo-
nal conjugation. This allows the construction of pairs of

Ortologni tetraedri s bridovima koji se sijeku
SAZETAK

Dva tetraedra nazivamo ortolognim ako se pravci koji pro-
laze vrhovima jednog i okomiti su na odgovarajuce stranice
drugog medusobno sijeku. Ovo je ekvivalentno ortogo-
nalnosti ne-odgovarajucih bridova. Mi dokazujemo kako
dodatna pretpostavka da se ne-odgovarajuéi bridovi si-
jeku ("ortopresjedni tetraedar”) povladi da 3est sjecista
leZi na jednoj kugli. Za dani tetraedar postoji opéenito
jednoparametarska familija ortopresje¢nih tetraedara. Or-
togonalna projekcija geometrijskog mjesta jednog vrha na
pripadaju¢u ravninu danog tetraedra je krivulja koja os-
taje fiksnom pod djelovanjem izogonalne konjugacije. Ovo
dopusta konstrukciju parova konjugiranih ortopresjeénih

conjugate orthosecting tetrahedra to a given tetrahedron. tetraedara za dani tetraedar.
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1 Introduction edges intersect orthogonally. The concept as well as a
few basic results will be introduced in Section 2. In Sec-
Ever since the introduction of orthologic triangles and tion 3 we show that the six intersection points of non-
tetrahedra by J. Steiner in 1827 [10] these curious pairscorresponding edges necessarily lie on a sphere (or a
have attracted researchers in elementary geometry. Thelane). While the computation of orthosecting pairs re-
characterizing property of orthologic tetrahedra is cancu quires, in general, the solution of a system of algebraic
rency of the straight lines through vertices of one tetrahe- equations, conjugate orthosecting tetrahedra can be con-
dron and perpendicular to corresponding faces of the sec-structed from a given orthosecting pair. This is the topic
ond. Alternatively, one can say that non-corresponding of Section 4. Our treatment of the subject is of elemen-
edges are orthogonal. Proofs of fundamental propertiestary nature. The main ingredients in the proofs come from

can be found in [7] and [8]. Quite a few results are known descriptive geometry and triangle geometry.

on special families of orthologic triangles and tetrahedra A few words on notation: By\;A»A; we denote the trian-
See for example [5, 6, 9, 11] for more information on or- gle with verticesA, Ay, andAg, by A1AAsA, the tetrahe-
thologic tetrahedra (or triangles) which are also PEerspec-y.on with verticesA, Ay, As, andA,. The line spanned
tive or [3] for a generalization of a statement on families of by two pointsA; andA; is A V Ay, the plane spanned by
orthologic triangles related to orthopoles. three pointsAy, Ay, andAg is A v Ap v Ag. Furthermore,
In this article we are concerned witiithosecting tetrahe-  .#, denotes the set of afl-tuples with pairwise different
dra— orthologic tetrahedra such that non-corresponding entries taken from the sét,...,n}.
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2 Preliminaries Consider now the orthographic projection onto the plane
A1V ApV Az (Figure 1). We denote the projection of a

Two trianglesA;A»As andB; B, B3 are calledbrthologic, if pointX by X’. By the Right-Angle Theorem of descriptive

the three lines geometry! the pointsB), B, andBj lie on the perpendicu-
lars throughB), onto the sides of the trianghe = A1 AAs.
a:Aca,a LBjVvBg (i,j,k € .7 1) Moreover, since the plané;, Vv Vi3V Vo3 appears in true
size, the linesy throughA; and orthogonal to the respec-
intersect in a poinDj, the orthology centerof AiA2As  tive face planes oA have projectiona), a,, & orthogonal
with respect td1B,B3. In this case, also the lines to the edges of the trianglé = V,3V13Vio. The triangles/
b:Bieb, b LAVAG (i,j.k) € .7 ) anFiA are o.rtho'logic. Thergfore the I.inei?intersect ina
point O, which is necessarily the projection of a common
intersectin a poinDg, the orthology center d; B,B3 with pointOp of the linesay, a,, andag. t

respect toA;A2Az. The concept of orthologic tetrahedra is
similar. Two tetrahedra = AjA2A3A4 andB = B1B,B3B4
are calledorthologig if the four lines

a:A€a, a LB VBB (i,j.kl) €S (3)

intersect in a poinOa, the orthology center oA with re-
spect toB. In this case, also the lines

bi:Biehi, bi LA VANVA; (i,j,kl) € 4)

intersect in aOg, the orthology center oB with respect

to A. Orthologic triangles and tetrahedra have been intro-
duced by J. Steiner in [10]; proofs of fundamental proper-
ties can be foundin [7, 8] or [1, pp. 173-174].

The symmetry of the two tetrahedra in the definition of or-

thology is a consequence of the following alternative char- ) o

acterization of orthologic tetrahedra. It is well-knowrtbu  Figure 1:Orthographic projection onto a face plane
we give a proof which introduces concepts and techniques

that will frequently be employed throughout this paper.

Proposition 1 The two tetrahedr@d andB are orthologic 3 The sixintersection points

if and only if non-corresponding edges are orthogonal: ] ] ] ]
The new results in this paper concern pairs of orthologic

A VA LBVB, (i,j,kl) € Sa. 5) tetrahedraA = AjA,AzAs and B = B1B,B3B, such that

_ _ non-corresponding edges are not only orthogonal but also
Proof. We only require that the lines throughA; and or-  jntersecting. That is, in addition to (5) we also require ex-
thogonal to the planB; v B¢ v By intersect in a poinOa. istence of the points

The planeA; vV Aj v O contains two lines orthogonal to

the Iine_Bk\/ B_|, (i,],k 1) € #4. Therefore, all lines in this Vij o= (AVA)N (BB #2, (i,].kl) € .74 )
plane, in particulaA; v Aj, are orthogonal t& v By.

Assume conversely that the orthogonality conditions (5) pefinition 1 We call two tetrahedrad and B orthosect-
hold. Clearly, any two perpendiculaasintersect. We have ing if their vertices can be labelled asiAAsAs and

to show that all intersection poin#s; = a N a; coincide. :
) . B1B,B3B4, respectively, such th#b) and(7) hold.
Using our freedom to translate the tetrahedfowithout 152854 P y ) (7)

destroying orthogonality relations we can ensure, without

loss of generality, the existence of the intersection point  Theorem 1 If two tetrahedra are orthosecting, the six
intersection points of non-corresponding edges lie on a

Vizi= (ALV A2) N (B3 V Ba), sphere (or a plane, if flat tetrahedra are permitted). The

Viz:i= (A1 VA3) N (B2VBy), (6) sphere center is the midpoint between the orthology cen-

Vo3 = (Az \/Ag) N (Bl V B4). ters.

1in an orthographic projection the right angle between twediappears as right angle if and only if one line is in true garallel to the image plane)
and the other is not in a point-view (orthogonal to the imaigag).
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Proof. Denote the two tetrahedra iy = AjA2AzA4 and

B = B1B»>B3B4 such that the lines; v Aj andBy v B inter-
sect orthogonally iv;j for (i, j,k,|) € Z4. As in the proof
of Proposition 1 we consider the orthographic projection
onto the planey; V Ay V Az (Figure 1). ClearlyB), equals
the projectiorOg of the orthology cente®g of B with re-
spect toA. Ifit lies on the circumcircle o3 AxAg, all per-
pendiculars fronB), onto the sides oA1A2Az are parallel.
In this case the tetrahedr@iB,BsB;, is flat and the theo-
rem’s statement holds. Otherwise, the poWwits Vi3, and
V3 define a circles — the pedal circle of the poirf), with
respect to the trianglé; A,Az. By the Right-Angle Theo-
rem the projectioi®), of the orthology cente®a of A with
respect tdB is the orthology center of the trianghg AoAs
with respect to the triang3V13V12. Moreover, from ele-
mentary triangle geometry it is known that the cetéiof

¢4 halves the segment betweBfandO), [4, pp. 54-56].
Hence all circlex; drawn in like manner on the faces of
A have axes which intersect in the midpolitof the two
orthology center®©, andOg. Moreover, any two of these
circles share one of the poinfg. Hence, these circles are
co-spherical and the proof is finished. O

The proof of Theorem 1 can also be applied to a slightly
more general configuration where only five of the six edges
intersect orthogonally. We formulate this statement as a

corollary:

Corollary 1 If A = AjA2A3A, and B = B1ByB3B4 are
two orthologic tetrahedra such that five non-corresponding

The maybe simplest construction of an equivalence class
of solutions consists of the choice of the orthology center
Oa. This immediately yields the face normaisof B as
connecting vectors dDp andA;. The variety of solution
classes is of dimension three, one solution to every choice
of Oa. Since five edges determine two face planes of a
tetrahedron and, in case of suitable orthogonality refatio
also the orthology cent&,, we obtain

Theorem 2 If the vertices of two tetrahedra can be la-
belled such that five non-corresponding pairs of edges are
orthogonal then so is the sixth.

The variety of all solution classes contains a two-
parametric set of trivial solutions, = n, =n3z =ny4. They
correspond to orthology centers at infinity, the solution
tetrahedra are flat. Note that the possibility to label the
edges such that non-corresponding pairs are orthogonal is
essential for the existence of non-flat solutions. If, for ex
ample, corresponding edges are required to be orthogonal
only flat solutions exist.

4.2 Conjugate pairs of orthosecting tetrahedra

Establishing algebraic equations for solution tetrahésira
straightforward. Six orthogonality conditions and six in-
tersection condition result in a system of six linear and
six quadratic equations in the twelve unknown coordinates
of the vertices ofB. Because of Theorem 2, only five
of the six linear orthogonality conditions are independent
Therefore, we can expect a one-dimensional variety of so-

edges intersect, the five intersection points lie on a spherejution tetrahedra. This expectation is generically true, a

(or aplane).

4 The one-parametric family of solution
tetrahedra

So far we have dealt with properties of a pair of ortho-

secting tetrahedra but we have left aside questions of ex

istence or computation. In this sectidn= A1A2AzA4 IS

a given tetrahedron to which an orthosecting tetrahedron

B = B1B,B3B, is sought.

4.1 Construction of orthologic tetrahedra

At first, we consider the simpler case of orthologic pairs.
Clearly, translation of the face planes®iwill transform
an orthologic tetrahedron into a like tetrahedron (unldiss a

can be confirmed by computing the dimension of the ideal
spanned by the orthosecting conditions by means of a com-
puter algebra system.

The numeric solution of the system induced by the ortho-
secting conditions poses no problems. We used the soft-
ware Bertini? for that purpose. Symbolic approaches are
feasible as well. One of them will be described in Subsec-

tion 4.3. It is based on a curious conjugacy which can be
defined in the set of all tetrahedra that orthosect the given
tetrahedrorA.

Assume thaB = B1B,B3B, is a solution tetrahedron and
denote the orthographic projection®fonto the face plane
Aj VANV A by B (iy ),k 1) € A4 By the Right-Angle
theorem the pedal points of all poir8 on the edges of
AjAA are precisely the intersection points defined in (7).
Three intersection points on the same faceAoform a

planes pass through a single point). Therefore, we consideiP€dal triangle. This observation gives rise to:

tetrahedra with parallel faces as equivalent.

°D. J. Bates, J. D. Hauenstein,
http://www.nd.edu/ sommese/bertini/.

A. J. Sommese,

Ch. W. WamplerertinB

Software for Numerical Algebraic Geometry,
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Definition 2 A pedal chain on atetrahedronis a set of four which the pedal triangle on the faggA;A, originates (the
pedal triangles, each with respect to one face triangle of “anti-pedal point”) byB; and show orthogonality between
the tetrahedron, such that any two pedal triangles share A; v A, andB; N B; for (i, j, k1) € .#. Relabelling accord-

the vertex on the common edge of their faces (Figure 2). If
all vertices of pedal triangles lie on a sphere (or a plane),
we speak of a spherical pedal chain.

Figure 2:A pedal chain

If AjA2A3A4 andB;1B,B3B, are orthosecting, the proof of
Theorem 1 shows that six intersection points are the ver-
tices of a spherical pedal chain. The converse is also true:

Theorem 3 Given the vertices iy of a spherical pedal
chain on a tetrahedroA = A1 A2 AzA4 there exists a unique
orthosecting tetrahedro = B;B,B3B4 such that Av
AjNBy VB =V forall (i, j,k,I) € 4.

Proof. If a solution tetrahedroB exists at all it must be
unique since its faces lie in the plan@s=Vjj vV Vi VVj
(i, j, k € {1,2,3,4} pairwise different}’

B,
Figure 3:Proof of Theorem 3

ing to

Poo:=Vi3, Por:=A1, Po2:=Vig,

Pio:=Bj;, Pu1:=Vip, P:=Bj, (8)
Po:=Va3, Pori=Ay, Pxni=Vy

(Figure 3) we obtain a net of poinB;. In every elemen-
tary quadrilateral the angle measure at two opposite ver-
tices equalgt/2. Thus, the net isircular. Such structures

are extensively studied in the context of discrete differen
tial geometry [2]. Our case is rather special since two pairs
of quadrilaterals span the same plane. This does, however,
not hinder application of [2, Theorem 4.21] which states
that our assumptions on the co-spherical (or co-planar) po-
sition of the pointdyg, Po2, P11, Poo, andPs; is equivalent

to the fact that the ndg; is adiscrete isothermic nefThese

nets have many remarkable characterizing properties. One
of them, stated in [2, Theorem 2.27], says that the planes
PooV P11V Pyp, PioVV P11V Pio, andPog Vv Pr1 VvV Pos have a

line in common. In our original notation this means that
the line 3, N B, intersects the face normal 8§ vV Ay VvV Az
throughBj and the face normal &; v Ay V A4 throughBs.
Therefore, it is orthogonal t&; \ Ay. O

As a consequence of Theorem 3 it can be shown that tetra-
hedra which orthose& come in conjugate pairs: Given

A and an orthosecting tetrahedrBrit is possible to con-
struct a second orthosecting tetrahed@oihe same con-
struction withC as input yields the tetrahedrdh This
conjugacy is related to the pedal chain originating fildm
The key ingredient is the following result from elementary
triangle geometry [4, pp. 54-56]:

Figure 4:Pedal circles in a triangle

In order to prove existence, we have to show that the linesProposition 2 If P is a point in the plane of the triangle

AV Aj and BN B; are, indeed, orthogonal for all pair-
wise differenti, j € {1,2,3,4}. We denote the point from

A1A2A3 and c its pedal circle, the reflection Q of P in the
center M of ¢ has the same pedal circle c (Figure 4).

3The case of collinear or coinciding poindg leads to degenerate solution tetrahedra whose faces mamtaivertex ofA.
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Figure 5:A conjugate paiB, C of orthosecting tetrahedra.

Suppose thah andB are orthosecting tetrahedra. The or- Proof. Assume that the triangl&§,Vo4V14, V23Vo4Va4, and
thographic projectionB; of the vertices oB onto corre-  V13V34V14 are pedal triangles of their respective face trian-
sponding face planes #f are points whose pedal triangles gles. We have to show th#;V23Vi3 is a pedal triangle
form a spherical pedal chain. By reflectiByg in the cen- of A1A2Az. As usual, the anti-pedal points are denoted by
ters of the pedal circles on the facesfofve obtain points ~ Bj, B;, andB3. Clearly, we haveBf v Bj L AcV A4 for

C which, according to Proposition 2, give rise to a second (i, J,k.4) € 4. Denote byB; a point in the intersection
spherical pedal chain (with the same sphere of vertices)of the three planes incident wity; and perpendicular to

and, by Theorem 3, can be used to construct a second or&i V Aj, (i, j,K) € 3. By Proposition 1 the tetrahedfa
thosecting tetrahedra® (Figure 5). andB;B3B3B, are orthologic. Therefore, the face normals
. » . n of Ay vV Aj vV A¢ throughB[ have a poinB4 in common
The. pomtsP. and Q of Proposm.on 2 are calletsogonal (I #4,(i,j,k 1) € 7). By the Right-Angle Theorem, the
conjugatesvith respect to the triangld; A2Az. The above

i i i ) intersection poinB} of the orthographic projections of,
considerations lead immediately to

Ny, andnz onto A1 V Az V Ag hasVioVo3Vy3 as its pedal tri-
angle. O
Theorem 4 Given a tetrahedrorh = AiAoAsAs, the OF- | qrger o construct a pedal chain on a tetrahedron
thographic projection of all vertices {Bof orthosect- 5 _ A1AsAgA, on can proceed as follows:

ing tetrahedra onto the face planej X Ac v Al of A

(with (i, j,k,I) € 7y) is a curve which is isogonally self- 1. Prescribe an arbitrary pedal triangle, Ya>3Vis.
conjugate with respect to the trianglg AA .
2. Choose one anti-pedal point, sBY, on a neigh-

4.3 Computational issues bouring face. It is restricted to the perpendicular to
A1V A; troughVio.

We continue with a few remarks on the actual computation

of the isogonal self-conjugate curves of Theorem 4 with

the help of a computer algebra system. Our first result con-

cerns the construction of pedal chains.

3. The remaining pedal points are determined. Theo-
rem 5 guarantees that the final completion/gf is
possible without contradiction.

In order to construct a spherical pedal chain, the choice
Theorem 5 Consider a tetrahedroh = AjA2AzA, and of B} andB} needs to be appropriate. A simple computa-
six points Vf € Ai VA, (i, ],k,1) € 7. If three of the four  tion shows that there exist two possible choices (in alge-
triangles \fjVjkVki, with (i, j,k) € .73, are pedal triangles  braic sense) foBj such that the pointg,, Vi3, Vo3, Via,
with respect to the trianglejAj A, then this is also true for  andV,4 are co-spherical (or co-planar). Demanding that
the fourth. the remaining verteX34 lies on the same sphere yields
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an algebraic condition on the coordinatesBjf—the al- pedal chain, the locus of their centers might have a reason-
gebraic equation of the isogonally self-conjugate cugve able low algebraic degree.

from Theorem 4. We are currently not able to carry outthe yjqreqver, other curious properties of orthosecting tetra-

last elimination step in full generality. Examples suggest pedra seem likely to be discovered. For example, the re-

however, that, is of degree nine. Once a point @nis peated construction of conjugate orthosecting tetrahedra
determined, the computation of the corresponding ortho-yie|ds an infinite sequend®;)nez, of tetrahedra such that
secting tetrahedron is trivial. Bn_1 andB,,. 1 form a conjugate orthosecting pair with re-

spect toB,, for everyn € Z. All intersection points of non-
corresponding edges lie on the same sphere and only two
points serve as orthology centers for any orthosecting pair
Bn, Bni1. General properties and special cases of this se-
guence might be a worthy field of further study.

5 Conclusion and future research

We introduced the concept of orthosecting tetrahedra and
presented a few results related to them. In particular we
characterized the six intersection points as vertices of a
spherical pedal chain on either tetrahedron. This charac-
terization allows the construction of conjugate orthosect
ing tetrahedra to a given tetrahedrn

Finally, we would like to mention two possible extensions
of this article’s topic. It seems that, with exception of
Steiner’s result on orthologic triangles on the sphere, lit
tle is known on orthologic triangles and tetrahedra in non-
Euclidean spaces. Moreover, one might consider a relaxed
In general, there exists a one-parametric family of tetra- “orthology property” as suggested by the anonymous re-
hedra which orthosed. The orthographic projection of  viewer: It requires that the four lines, a,, a3, a4 defined
their vertices on the plane of a face trianglédos anisog-  in (3) lie in a regulus (and not necessarily in a linear pen-
onally self-conjugate algebraic curve. Maybe it is worth to cil). This concept is only useful if the regulus position of
study other loci related to the one-parametric family of or- the linesa; also implies regulus position of the linbg of
thosecting tetrahedra. Since every sphere that carries ver(4). We have some numerical evidence that this is, indeed,
tices of one pedal chain also carries the vertices of a secondhe case.
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