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ABSTRACT

This paper is an overview of the pedal surfaces ?,?*2 for
first order line congruences. We describe their construc-
tion, prove their algebraic properties, derive parametric
and implicit equations and visualize these new resulting
surfaces with the program Mathematicain seven examples.
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1 Introduction

Congruencg is a set of lines in a three-dimensional space

(projective, affine or Euclidean) depending on two param-

eters [3]. The lind € C is said to be aay of the congru-
ence. Theorder of an algebraic congruence is the number
of its rays passing through an arbitrary point; tassof

NozZisne plohe kongruencija prvog reda
SAZETAK

U radu je dan pregled noZzisnih ploha ?,?*2 za kongruen-
cije prvog reda. Opisana je njihova konstrukcija, dokazana
su njihova algebarska svojstva, izvedene su parametarske
i implicitne jednadZbe za opdi slu¢aj, a za sedam primje-
ra, pomocéu programa Mathematica vizualizirani su njihovi
oblici.

Kljuéne rijeci: kongruencija, nozisna ploha kongruencije,
kuspidalna tocka, singularna tocka

tersection points ofl andc" can be multiple points of"
with the highest multiplicityn — 2 for a space curve and
n—1 for a plane curve. Some of these points can coin-
cide, and there are cases wigkis the tangent line of",

the tangent at inflection, etc. ¢f is a plane curve, it must
contain an(n— 1)-ple point which is the intersection point
of d and the plane af”. All singular points ofC? lie on its

a congruence is the number of its rays lying in an arbitrary girecting linesc" andd, and all singular planes af! are

plane. " denotes amth order rth classcongruence. A
point is asingular pointof a congruence ifo! rays pass
through it. A plane is a&ingular planeof a congruence if
it containseo® rays.

In Euclidean spaci?, thepedal surfacef a congruence
G with respect to a pol®@ is the locus of the foot points
of perpendiculars from the poiftto the rays of the con-
gruence(;)". The order of the pedal surface @f" for the
poleP is 2m+ n[11].

2 First order line congruences

According to [16, p. 64], [22, pp. 1184-1185], [19, p. 32],
there are only two types of first order line congruences di-
rected by loci of points. Their rays intersect two curves or
the same curve twice.

Thefirst typeis the type ofth class congruenced!, their
rays are transversals of one straight lthend onenth or-

der curvec" which cuts this straight line at— 1 points.
These curves are called td@ecting linesof ¢}. The in-

the planes of the pendill] (see Fig. 1).

a

Figure 1: The directing lines ot} are shown in figure a.
For a point Ce ", the rays of¢} form a pencil of lines in
the plane through d (figure b) and for &ld they form an
nth degree cone with the vertex N (figure c).
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The second typeof first order line congruences consists

3.1 Construction of the pedal surfacep!+?

only of 3rd class congruences and their rays are bisectors

of a twisted cubid®. Unlike the first type congruenag},
this type will be denoted by .

The properties of the first order congruences (the construc
tion of their rays, singular points and planes, focal preper
ties, etc.) can be found in [2].

3 Pedal surfaces o}

In [1] the authors define one transformation of three-

Itis clear that any plane through theple line of an(n+2)-
order surface intersects this surface abifgde line and one
conic. If the surface contains the absolute conic, thig-inte

section conic is a circle.

In any plane through the directing straight lirkk the rays

of G} form the pencil of linegC), where the poin€ ¢ d is
the intersection of the plardand the directing curve'. If

a poleP is in the general position with respect to the direct-
ing lines of the congruenc€?, the feet of perpendiculars
from P to the rays of the pencilC) form a circlec with

dimensional projective space where corresponding pointsthe diamete€P, whereP’ is the orthogonal projection of

lie on the rays of the 1st ordemth class congruence?}
and are conjugate with respect to a proper quadrig his
transformation, calledn + 2)-degree inversion, maps a
straight line to ar{n+ 2)-order space curve, and a plane to
an (n+ 2)-order surface which contains ample straight
line.

Proposition 1 The pedal surface of the first type congru-
enceC? with respect to a pole P is am+ 2)-order surface
with n-ple straight line d containing the curv& and the
absolute conic of3.

PrROOF. Orthogonality in Euclidean spad® means con-
jugacy with respect to the absolute conic. The plane
through a poin is orthogonal to a lin¢ iff it is the polar
plane of the point at infinity on the linkewith respect to
any sphere with the centéc Thus, the pedal surface of a
congruence: with respect to a pol® is the image of the
plane at infinity given by thén+ 2)-degree inversion with
respect ta’ and any sphere with the cenfer According
to [1], it is an(n+ 2)-order surface with an-ple straight
line d containing the curve” and the absolute conic &F.

]

In the following, 212 denotes the pedal surface@f.

Proposition 2 If the directing line d lies in the plane at in-
finity, the pedal surface*2 splits into an(n+ 1)-order
surface with thén— 1)-ple line d and the plane at infinity.

PrROOFE This proposition follows from the property of the
(n+ 2)-degree inversion which is given in theorem 4 [1]
(see examples 4.5.). O

Proposition 3 If the directing curve ¢ lies in the plane

at infinity, the pedal surfac@+2? splits into an(n+ 1)-
degree ruled surface with the n-ple line d and the plane at
infinity.

PrROOFE This proposition follows from the property of the

(n+ 2)-degree inversion which is given in theorem 3 [1]
(see examples 4.6.). O

28

P onto d. For a given poleP, the path of the poinP’ is
the circlek lying in the plane througt® perpendicular to
d. The diameter ok is PPy, wherePy is the orthogonal
projection ofP ontod.

Thus, we can regard the pedal surfaE? as the system
of circles in the planes through theple line d with the
end points of diameters on the curg®and the circlek
(see Fig. 2). The diameters of the circlebe on the rul-
ings of one(n+ 2)-degree ruled surface with the directing
linesc", d andk [14, p. 186], [16, p. 90].

z=d
'

Figure 2: One system of the curves @j*2 can be con-
structed as circles in the planes through d with the end
points of the diameters o @and k.

3.2 Singularities of B7+2

The highest singularity which a prop@f*2 can possess is
an(n+1)-ple point. If such a point exists, it must lie on its
n-ple line. Namely, 272 had an(n+ 1)-ple pointA out

of d, every line throught which cutsd would cut®i+? at
2n+1 points. This is possible only in the case if this line
lies entirely on?™+2, but then the surface must break up
into the plane througA andd and one ruled surface of the
degreen+ 1.
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Proposition 4 An (n+ 1)-ple point exists on?™?2 iff a

PrROOF. The number of possibilities that no planessaf™

pole P lies on d. The highest number of such points on coincide is 1+ [ 3]. In all other cases, at least two tangent

P2 s two only if ¢ lies in the plane perpendicular to d.

PROOF If a poleP lies ond, then every circle passing
throughP, and it is the(n+ 1)-ple point of BI+2 because
every straight line througR (exceptd) intersectsp? at
P and only one additional point an Inversely, ifN™! c d

is an(n-+ 1)-ple point, every circle must pass through it.
Namely, if some circle did not pass througN™t1, every
line in the plane of passing through™** would cut?+2
atn—+ 3 points, which is impossible. It is possible only if
N1 = P, because the circlkemust break up into a pair of
isotropic lines with the double poit. If there exists one
more(n+ 1)-ple pointO ond, it must lie onc" because all
circlesc pass througl? andO. It is possible only ic" is a
planar curve with arin — 1)-ple pointO. It is elementary
that in such a cas€” lies in the plane perpendicular tb
(Thales’ theorem). O

Any other pointN € d is ann-planar point — the tangent
cone atN splits inton planes throughl. Namely,n cir-
clesc pass througiN € d and the planes of these circles
form the splitting tangent congTy, of 2™+2 atN. If some

planes coincide and the touching point is the pinch-point
of P2, O

Proposition 7 On the pedal surface™? exist4(n— 1)
pinch-points.

PROOF. Every planed of the pencil[d] cuts B+ at the
n-ple lined and one circlee. The intersection pointsly,

N of d andc are the touching points & and27+2. But,
through each of the points; andN, othern— 1 tangent
planes pass. The correspondence between the planes of
the pencil[d], where corresponding planes have the same
touching point, is an involution of the ordefr?— 1). This
involution has 4n— 1) double elements [13, p. 48] which
are the coinciding tangent planes through the points on the
n-ple line, and their touching points are the pinch-points of
P2 [18, p. 317]. These points can be real or imaginary.
|

Except for the points on theple lined, the highest singu-
larity which 72 can possess is a double point.

of these tangent planes coincide, the touching point is theProposition 8 The maximal number of real double points

pinch-pointof 2. The tangent planes at anplanar

point can be real or imaginary. Depending on the number
of real and imaginary tangent planes, as well as the num-

onPM?is:

n, if c"is a space curve,

ber of coinciding planes, we distinguish different types of N+ 1,if ¢ is a planar curve.

n-planar points. To calculate the number of these types we

use thepartition functiort p: NU {0} — N [21].

Proposition 5 The number of types of the splitting tangent
coness7" at n-planar points is

=13

Zo p(s) - p(n—2s).

PROOF Any coneS7" consists ofs (0 < s< [J]) pairs

of imaginary planes and — 2s real planes. The number
of different multiplicities of these planes equals the sfm o
the corresponding partitions. O

Proposition 6 The number of types of pinch-points on
PH2is

s=13]

“1-[5)+ 3 P pn-29)

s=

PROOF. If D is the double point off"*?2, it is a double
point for every section af? throughD. Thus, the circle
cin the plane througb and the lined splits into a pair of
isotropic lines througtD. This is the case when the end
points of the diameteCP’ coincide, i.e. circlek intersects
the curvec" at the poinD. Therefore, it is a space curve,
P2 can possess at mastdouble points in the plane of
the circlek. Butif ¢" is a plane curve in the plane kfthen

c" andk can possess—+ 1 intersection points which do not
lie ond. a

3.3 Parametric equations ofP+?

Let the directing lines ot} be the axiz and the curve”
given by the following parametrization:

rCn(¢) = (ch(¢),ycn(¢)7zcn(¢)), Xen, Yen, Zen - [Oa T[) —R.
1)

Let (px, py, pz) be the coordinates of the pdke

1A partition of a positive integen is a way of writingn as a sum of positive integers. The number of partitions isfgiven by the partition function
p(n) wherep(0) = 1 by convention. The partition function is implementedMiathematicaasPartitionP [n] or NumberOfPartitions[n] in the

MathematicapackageCombinatorica’.
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Let (r,z), where|r| = /X2 +¥?, be the coordinates in the
planed($) given by the equatioy = xtan¢ if ¢ € [0, 1),
¢ #1/2,andx=0if ¢ = 11/2 (see Fig. 2).

The coordinates of the poin& P’ € d(¢) are

re(0) = /% (9)2 +yen (9)2, zc(9) = zn ()
rp(¢) = pxcosp + pysing, o (9)=pz (2

R(¢) is the radius an®(rs(¢),zs(¢)) is the center of the
circlecin the planed():

V(rc(®) —re(9))2+ (zc(9) — Po)?

R(p) = )
rs(0) = fc(¢)‘£fpf(¢)
2o(0) = OB @

Since the parametric equations of the circlia the plane
o(d) are

r(8) =R(¢p)sinB+rs(d)

z(8) = R(¢p)cosB+zs(dp), B € [0,2m), (4)

the parametric equations of the surfagg 2 are the fol-
lowing:

X(6,¢) = cosp (R(¢)sinB +rs(¢))

y(6,0) = sing (R(¢)sinB+ rs(9))

2(6,9) = R(¢) cosd +z5(9),
¢ €[0,m), 6 € [0,2m).

(5)

3.4 Implicit equation of P2

According to [1], the plane at infinity cutgl2 at the ab-
solute conic ana rays of GX. These rays pass through the
point at infinity of the directing linel and can be real or

The proof of this theorem is given in [9, p. 251].
Thus, since the axisis then-ple line of 272, the implicit

equation ofP? takes the following form:

O +Y?+2)H](x,y) + H™ (%, y,2) + HY(x,y) =0, (6)

whereH} are homogeneous polynomials of degree

From eq. (4), by using the standard coordinate transfor-
mation formulas for Cartesian and cylindrical coordinates
it is possible to determine the polynomizﬂﬁ for every
P2,

4 Examples of P2

4.1 £P13 — pedal surfaces of linear congruences

The pedal surfaces of linear congruen@ésare cubics
which contain the absolute conic. It was shown in [11]
that in the general case i} is a hyperbolic linear con-
gruence, seven real straight lines exist on the pedal surfac
23, if ¢} is elliptic, three real straight lines exist @f;

if ¢l is parabolic, ther? contains one double point and
five real straight lines and two of them are counted twice.
Figure 3 shows three types of parabolic cyclides obtained
as the pedal surfaces of the hyperbolic linear congruence.

4.2 £P24 — pedal surfaces of 1st order 2nd class congru-
ences

A complete classification of the pedal surfacescéf is
given in [6]. If there are no directing lines @ in the
plane at infinity, the pedal surfacg' is a quartic with a
double straight line. These surfaces are classified in five
types depending on the number of real straight lines on
them. According to propositions 4 and 8, there are at most
two triple points (see Fig. 4) and at most three real double

imaginary. Therefore, the polynomial of the highest degree points (see Fig. 5¢) on the pedal surfaggs

in the implicit equation of?1+2 can be written in the form
(X% +y?+Z)H"(x,y), whereH"(x,y) is the homogeneous
polynomial of degree.

Theorem 1 If an nth order surface inE2 which passes
through the origin is given by the equation

F(Xa Zay) = fm(X,y, Z) + fm+1(x7y7 Z) +eee fn(X,y, Z) = 07

where £(x,y,2) (1 < k < n) are homogeneous polynomials

The points on the double linkare bi-planar points — tan-
gent cones split into two planes through These points
can be isolated (two tangent planes are imaginary), binodal
(the tangent planes are real and different) or pinch-points
(coinciding tangent planes). The pinch-pointsRfsepa-
rate the intervals with isolated and binodal pointsicand
there are at most four real pinch-pintsaisee Fig. 5a).

If one directing lined or ¢2 lies in the plane at infinity, the

of degree k, then the tangent cone at the origin is given by pedal surface?y splits into the plane at infinity and into a

the equation f(x,y,z) = 0.

30
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Figure 3: The directing orthogonal lines Qfll are the axis z, placed in the horizontal plane, and the lineajal to the
axis y in the plane x 1. For three different positions of the pole P on the axis :éx%, 1, 2), the pedal surface is the
ring, spindle and horn parabolic cyclide [4, pp. 371-373]the case a, b and c, respectively.

a b c

Figure 4:2; with triple points and 3rd order tangent cones. The diregtitements are: figure a 2+ 4y? — 2x+4y =0,
z=0), P(0,0,2); figure b — (x> —y? — 2x=0, z= 0), P(0,0, 2); figure ¢ — &(x* +y? + 2x+4y= 0, x—y+2z=0), P(0,0,8).
Except the triple points, all points on the double line amased in the case a, and binodal in the case b. In the casecc, tw
pinch-points separate the segments with isolated and hirmaints on the double line.

a b c

Figure 5: ¢ with four real pinch-points is shown in figure a. The diregtielements are%c(x? + 0.5y2 +x+y = 0,
x+y+z=0) and R(1,1,5). The pedal surface in figure b has no real pinch-points andlitscting elements are’c
(yz=1,x=1) and F2.5,2. — 0.3). The directing elements faPy in figure c are € (x* + 6y?> —x— 4y =0, z= 0) and
P(1,1,0). Three conical points of this surface are the intersectiomfs (different from the origin) ofcand the circle k.
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4.3 Specialf directed by Viviani’s curve we distinguish six types of quintuple points @f [5].

Three of them are shown in Figure 7. The points on the axis

Special sextics with a quadruple lir®® are elaborated in : . . .
detail in [5]. They are obtained a?the pedal surfaces of2are quadri-planar points Cﬂ‘?’ their tangent cones split

one special first order fourth class congrueagaiirected N0 four planes through These tangent planes can be real
by the axisz and Viviani's curve — the intersection of the and different, real and coinciding or imaginary. According
sphere(x + v2)2 + Y2 + (z+ v/2)? = 4 and the cylinder to proposition 5, we distinguish nine types of quadri-ptana
(X+2z+ \/§)2+2y2 — 2 (see Fig. 6). Viviani's curve is points: typel — four real and different tangent planes;

given by the following parametrization: type2 — two real and different planes and a pair of imag-
inary planes;type3 — two different pairs of imaginary
H(§) = 4v2 m (_ 2(cosh)2, —sin 2, (sinq;)z), planestype4 — one double plane and two different single
(3+cos ) real planestype5 — one double plane and a pair of imagi-
¢ €[0,m. @) nary planesty pe6 —a pair of double real plands;pe7 — a

double pair of imaginary planetype8 — one triple plane
and one single plangype9 — one quadruple plane. On
the axisz the intervals with quadri-planar points of types
1-3 are bounded by the points of the types 4-9 which are
the pinch-points of£?. Since four rays o’} in the plane

at infinity are given by the equatiof2x? +y%)2 = 0, the
point at infinity on the axiz is the pinch-point of type 7.
The type of a quadri-planar point depends on the factoriza-
tion of the homogeneous 4th degree polynomiad andy
which represents its cone. Based on the conditions given in
[20], we made a program iMathematica Gavailable on-
line: www.grad.hr/sgorjanc/pingboints.nb) which calcu-
lates the coordinates of the pinch-points ofl’§3 for every
choice of poleP. According to proposition 7, the highest
Figure 6: The origin is the double point of Viviani’s curve number of real pinch-points af? is twelve. Three exam-

c* (the intersection of a sphere and cylinder) and the axis ples are shown in Fig. 8.

z cuts ¢ at one more regular pointgz= —2+/2. The following is shown in [5]: iff a pold® lies on the part
of one parabola{Pj{3 has two real conical points; if? lies

The highest singularity whici#? can possessis a quintuple on one 5th degree ruled surfacgS has at least one real
point. According to the type of its 5th degree tangent cone, conical point.

Figure 7:1f P = O, the tangent cone at P splits into two planes and one 3rdegegone (a). If P= (0,0,—21/2), the
tangent cone at P splits into a 4th degree cone and one plgné&db all other positions of a pole B z, the tangent cones
at P are proper 5th degree cones with a quadruple line z. Sumna with an isolated quadruple line is shown in figure c.
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b

a b c

Figure 8: The s:urface‘st3 with 12, 10 and 8 real pinch-points are shown in figures a, b engespectively. The pinch-
points counted twice (types 6 and 7) are indicated by redrcdlither pinch-points (types 4 and 5) are black. Besides
the highlighted pinch-points, every surfafé has a pinch-point of type 7 at infinity. The segments on the agbntain
quadruple points of type 1 (black), type 2 (red) and type 3lea red).

4.4 SpecialP2+2 directed by roses Itis clear ([9, p. 251], [17, p. 27]) that- 1 tangent lines

. at the origin are given b
Roseor rhodoneaare curves which can be expressed by 9 9 y

the following polar equations: 2-1_0. (11)
r(p)=cosnp or r(¢)=sinnp, neR. (8)  Some examples are shown in Fig. 9.

If n=2k—1, ke N, the curves close at a polar angte  Let the axisz and the curve given by equations

and haven petals. They are algebraic curves of the or-

dern+ 1, with only one singular point — ample pointin (X +y)¥—1*1=0, ax+by+z=0, (12)
the origin [12, pp. 358-3?9]. According to the multiple-
angle formula cosd = ziljg,(—l)i () (cosp)"~?(sing)?

and the standard coordinate transformation formulas; thei
implicit equation is

be the directing lines of a congruencg,. The curvec?

is the intersection of onek2order cylinder and a plane
through the origin (see Fig. 10a). The singular points of
C3 lie on its directing linex? andz (see Fig. 10b and
Fig. 10c). The rays of’s, through the originO form the

2 k_ o2k—1_
(¢ +y?)f—T* =0, where ©) pencil of lines(O) in the planeax+ by+z =0, and the
other lines througl®© are not regarded as the rays@(.
21 ‘ (—1) 2k—-1 N (10)  Thepedal surfac@2<"2 of ¢}, with respect to a pol® is
i; 2i ' a(2k+ 2)-order surface with2ple linez (see Fig. 10d).
y y y
(\ /)
— \ \ ’r,
/ \‘ . \ P ¥ f\\\ I - X X
I / TR .\“ —
\’ = ’// ’,/ / 2 ‘\‘,\
L \J
a b c d

Figure 9:The curves (¢) = cosn¢ for n equal to 1, 3, 5 and 7 are shown in figures a, b, c and d, espsy.
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Figure 10:c* is the intersection of ongk-degree cylinder with &k — 1)-ple line z and a plane through the origin (a).
The rays oszlk through a point on z form &k-degree cone with &k — 1)-ple line z (b). The rays szlk through a point
C € ¢ form the pencil of line¢C) in the plane though z and C (c). The pedal surféﬁé*z is a system of circles in the
planes through z, with the end points of its diameters®mnd k. These diameters lie on the rulings of ¢2le+ 2)-degree
ruled surface (d).

In every plane througl, the coordinates of € ¢ are The plane at infinity cutg’zﬁi‘*z at the absolute conic and

given by the pair of isotropic lines countddtimes. These isotropic
_ lines are the rays of 3 and also the rulings of the rose-
(rc(9).2c(9)) = cosng (1, —acosp —bsing). (13) cylinder given by the first equation in (12). Thus, the point

. . . . . . . 2k 2
From (13) and egs. (2) — (5), we obtain the parametric at infinity on the axiszis the pinch-point ofZ;, ",
equations ofP§|f+2 which enable them to be visualized us- |f we translate the origin intaZp(0,0,%), then (from
ing the progranMathematica Some examples are shown eq. (15) and according to theorem 1) we obtain the fol-

in Fig. 11. lowing equation of the splitting tangent coneZat

Since every plane through the a)zisu'[sfPZ%'(‘Jr2 at the cir- 5 .

cle c and the &-ple linez the equation of22*2 in the (B — Pa20) 0C +¥)" + (X(px+ az0— apy)

cylindrical coordinatesr, ¢, z) is +y(py +bz —bp,))1* 1 =0. (17)

. ((r— 24 (z—- 2_R(¢))=0. 14

(= 1s(0)"+ (2= 2(0)) @) (14) The surface?z’*? has a(2k + 1)-ple point iff P lies on the
From (14), by using egs. (13), (2), (3) and the standard co-axisz. In this case, all coefficients in eq. (17) are equal to
ordinate transformation formulas, we obtain the following zero, and the tangent coneRtin the coordinate system

implicit equation ofP2<*2: with the originP, is given by the following equation:
(¥ +2) 0@+ Y+ HE L (x y.2) + H(x,y) =0, p20¢ +Y))" — (¢ +y* —axz-byzr*"t=0.  (18)
(15)
If P =0, the tangent cone & splits into one 2nd degree

where cone and 2k — 1) planes through the axis

2k+1 _ 2 k
H (X7 Y, Z) - (pXX+ pyy+ pZZ) (X =+ yZ) (X2 + y2 — axz— byZ)T2k71 —0. (19)

— (% +y? —axz— byt 1
K k—

HZ(x,y) = (Pxx+ Py — apX— bpy) T . (16) Three examples are shown in Fig 12.
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Figure 11:The pedal surfac@zzl'fr2 for the poles P—1,1,—2), P(—1,1,1) and k= 2, 3,4 are shown in figures a, b and c,
respectively.

a b c

Figure 12:The surfacePg, directed by the 5-petalled curve in the plan¢ x+z= 0 and the pole F0,0,2), and its 7th
degree tangent cone at P, are shown in figure a. The pedaleasfalirected by the 5-petalled and 7-petalled curves in the
plane x+y+z= 0and P= O, are shown in figures b and c, respectively.

According to proposition 81’2%'(‘*2 possesses the highest is an odd number, at least one real double point exists on
number of real double points if the directing cure® @22il(<+2 if a=b= p,=0.

and the circlek lie in the same plane. It is the case that The pedal surfaces directed by the roses in the ptan®

a=b = p, = 0 whenc® andk have 4« intersection points. . o
But 2— 1 points coincide wittD, two points are the abso- are elaborated in detail in [7]. Some examples are shown

lute points of the plane= 0, thus only X— 1 intersection  in Fig. 13.
points can lie besides the axisind be real. Sincek2- 1 In this case 4 = b = 0), if a poleP lies on the axig, the
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equation (15) takes the form Thus, the pedal surface splits into a pair of isotropic pdane
through the axisz and one R-order surface given by
(x2+y2)p2k(x,y, 7) =0, (20) P%(x,y,z) = 0. The linezis a (2k — 2)-ple line of these
surfaces with twd 2k — 1)-ple points, the origif® and the
where poleP (see Fig. 14).

Especially, ifP = O, the tangent cone &splits into X—1
PX(x,y,2) = (C+y) L +y?+ 72 —pz) -1 L (21)  planes given by equatiorf*1 = 0 (see Fig. 15).

XX

a b c

Figure 13:The pedal surfaces for the polé R0,2) and 3, 5 and 7-petalled roses in the plane 8 are shown in figures a,
b and c, respectively.

® B @

a b c

Figure 14:The pedal surfaces for the polé@0,2) and 3, 5 and 7-petalled roses in the plane B with 3, 5 and 7-degree
tangent cones at P and O are shown in figures a, b and c, respécti

R @ WE

a b c

Figure 15:The pedal surfaces for the polePO and 3, 5 and 7-petalled roses in the plane 8 are shown in figures a, b
and c, respectively.
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4.5 P2 of GH(c",d) with d at infinity

If the directing lined lies in the plane at infinity ),
thena® is the singular plane of}(c",d®). Thus, its im-
age given by thén + 2)-degree inversion with respect to
CH(c",d*) and any sphere with the cenfesplits intoa®
and the imageD"1 of the singular lined® which is an
(n+1)-order surface with thén—1)-ple lined” (see theo-
rem 4 [1]). In this case the circlesplits into a line through
P perpendicular to the pencil of plangk’] and one line at
infinity. The planes througt®™ cut D)7 into the circles
with the end points of diameters &randc". Three exam-
ples are shown in Fig. 16.

4.6 B2 of GHc",d) with c" at infinity

If the directing curvee” lies in the plana&x®, the intersec-
tion pointD® = a* Nd must be thén— 1)-ple point ofc™.

In this casen® is the singular plane of*(c"”,d) and its
image given by thén + 2)-degree inversion with respect
to CY(c",d) and any sphere with the centersplits into
a® and the image®,™** of c"™ which is ong(n+ 1)-degree
ruled surface with the-ple lined (see theorem 3 [1]). In
the planed € [d] the ruling of "1 is perpendicular to the
rays of G+ and passes throug¥, i. e. the circlec splits
into this ruling and the line at infinity. Three examples are
shown in Fig. 17.

Figure 16:a — Q)f defined by & in the plane y= 0, ¢ given by equations % 0 and z= % andR2,1.5,1).
b — 9?2 defined by & in the plane y= 0, ¢ given by equations 0 and y —yz+ 1= 0and P(3,—4,1).
c— @3 defined by @ in the plane x= 0, ¢ given by equations ¥ % and z= % and R(3,—-4,2).

Figure 17:The pedal ruled surfaces for the pol¢ZP0,0), axis z and 1, 3 and 5-petalled roses in the plane at infinigy ar
shown in figures a, b and c, respectively. These directingsrase the curves at infinity of the highlighted red cones.
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5 Pedal surfaces Oﬂ(gl expressed by the following equations:
—ki(u) y—ka(u) z—ka(u)
5.1 CongruenceX; X = = , 23
% Q) —ta(l) () ko) kW k@ 2D
Twisted cubick® may be divided into four types accord- (u,v) € R2.

ing to the different sections of the curve by the plane at
infinity. These are theubical parabola cubical hyper-
bolic parabolg cubical ellipseandcubical hyperbolaf the
plane at infinity meets the curve at three coincident points, et P be any finite point inE3 andk® the directing curve
at two coincident points and one real point, at one real andof :7(31_ The pedal surface 01(31 with respect to the polE
two imaginary points and at three real and different points, js genoted? k3. The rays ofx2 through any poinkK € k3

5.2 Pedal surfaceP %3

respectively [15, p. 353]. form a 2nd degree corig with the vertex< (see Fig. 19a).
Below we will use the following canonical form of a  The feet of the perpendiculars frofon the rulings ofx
twisted cubidk® = (kq(t), ko (t),ka(t)) lie on the spherek with the diametePK. Thus, we can
regard the pedal surfaceX3 as the system of the 1st
ait aot +bot? agt + bat2+ cat® kind of quartic curves — the intersection curve<gfand
k(M) = (- = K ) teR, (22) G (see Fig. 19h).

wherek equals 1, 1-t, 14t? or 1—t? which specify a
cubical parabola, cubical parabolic hyperbola, cubical el
lipse or cubical hyperbola, respectively [4, pp. 69-76], [8
p. 928]. Specially, fok = 1+1t2, a; = by, ay = b3 = 0,

az = C3, €q. (22) represents a cubical circle.

These curves foa; = by, = cz3 =1 anda; = az3 = b3 =0,
lying on the corresponding 2nd degree cones, are shown in
Fig. 18.

The union of the tangent and secant lines of a twisted cubic
k3 fill up the projective spacE® and the lines are pairwise
disjoint, except at the points of the curve itself [10, p..90] Figure 19:The rays of%; through K< k® form a 2nd de-
Thus, the system of lines meeting a twisted cubic twice is gree con€k with the vertex K (a)ok is a sphere with the
the 1st order 3rd class congruer‘t&é with the singular ~ diameterPK. The intersection curve @§ andok lies on
points on the directing curvie®. The rays of%x3 can be the pedal surfac® X3 (b).

a b

a b c d

Figure 18:The cubical parabola, parabolic hyperbola, ellipse and éggola are shown in figures a, b, c and d, respectively.
Their points at infinity are:(0:0:1:0 counted three times in case @,:1:1:0 and(0:0:1:0 counted twice in case b,
(0:0:1:0 and the pair of imaginary pointgti: —1:Fi:0) in case cand+1:1:£1:0), (0:0:1:0 in case d, where the
points are expressed in standard homogeneous Cartesiadioates.
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Proposition 9 The pedal surfac&’?(g is a 5th order sur-
face passing through the pole P and the absolute conic.

PROOF. The proof of this proposition is given in [11].0

Proposition 10 The twisted cubic kis the double curve
of w(g and ten pinch-points exist on it.

PROOF. For every poinKK € k3, the intersection curve of
(k andok is a 4th order space curve with the double point
K. The tangent lines of this curve kitare the intersection
rulings of the con€k and the plane througk perpendic-
ular toPK. Thus, there are two tangent planes&tﬂ‘cg at

K e k3, determined by the tangent line kot atK and two
tangent lines of the curng Nok atK. If the two tangent

Proposition 12 The ray at infinity of&3 lies on the pedal
surface? k3.

ProOF. Orthogonality in Euclidean space means polarity
with respect to the absolute conic — a lingith the point at
infinity L* is perpendicular to a plarrewith the line at in-
finity p* iff L* is the pole ofp™ with respectto the absolute
conic. Every ray of.‘]%l cutsfP?(g at two double points on

k3 and the intersection point with the corresponding plane
throughP perpendicular to this ray. Since the ray at infin-
ity corresponds with the pencil of planes, every point on it
lies onP K33, O

According to the straight lines at infinity, we divide the
pedal surface® X3 into the following four types:

lines of {x Nok atK are real and different, coinciding or Type | ?%3 has one real straight line counted three times at

imaginary,K is the binodal point, pinch-point or isolated
point of?ﬂ(g, respectively (see Fig. 20). The proofthat o

be real or imaginary. O

infinity. The directing curvéd is a cubical parabola.

a 5th order surface with a double twisted cubic ten pincﬁl:ype Il P has two real straight lines at infinity, and one

points can exist is given in [18, p. 312]. These points can

of them is counted twice. The directing cutideis a
cubical hyperbolic parabola.

Type Ill PK3 has one real and a pair of imaginary straight

C

Figure 20:0n the twisted cubic the intersection curvesof
and{ has a node, cusp or isolated double point shown in
figure a, b and c, respectively.

Proposition 11 If the pole P lies on the directing curvé k
P is the triple point of? %C5.

PROOF ltis clear that ifP € k3, then every curvég N ok,

K e k3 passes througB. The tangent lines dfx Nok atP

are the result of afil, 1) correspondence between one sec-
ond degree envelope cone with the veiffeand one pencil

of planes through the line passing throl®yhrhus, accord-

lines at infinity. The directing curvk® is a cubical
ellipse.

Type IV w(g has three real and different straight lines at in-

finity. The directing curvé is a cubical hyperbola.

5.3 Parametric and implicit equations offP?(g

Let the poleP be given by the vectop = (px, py, pz), and
let the directing line&k® of %3 be the twisted cubic given
by the vector function (22). The ray & passing through
the pointsK (u), K(v) € k3 can be expressed by the follow-
ing equation:

seR, (24)

whered(u,V) is the direction vector of the link(u)K(v),
i.e.d(u,v) =Kk(v) —k(u).

The plane through the pole, perpendicular to the ray
K(u)K(v), is given by the following vector equation:
(rZ(U,V) - p) : d(U,V) =0. (25)

Since the point on the pedal surfa®e&3 is the intersec-
tion of the ray (24) and the plane (25), for this point the

r1(u,v) =k(u)+sd(u,v),

ing to the Chasles formula [13, p. 40], these tangent lines Parametes satisfies the following equation:

form a third degree cone with a vert® Namely, every
tangent line ok N ok atP is the intersection of the plane
throughP perpendicular t&’K (the tangent plane afk at
P), and the tangent plane ¢k atP. The planes through
P perpendicular téK, K € k3 form a second degree enve-
lope cone with a verteR. Since the tangent planes §f
atP are determined by the liné¥K andtp, wheretp is the
tangent line ok® at P, they form the pencil of plan€)].

O

(P —k(u)) -d(u,v)

R TR (2
Thus, the parametric equationszﬂ(*z3 are:

X(u,v) = Ky (u) +d1(u,v) - s(u,v)

y(u,v) = ko(u) 4 do(u,Vv) - s(u,v)

z(u,v) = ka(u) +da(u,v) - s(u,v), (u,v) € R?. (27)
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This parametrization does not yield satisfactvtgthemat-
ica visualizations ofPK3. Therefore, to draw figures 21
and 22 we used the implicit equationsfbﬂ(g which can
be derived from the equations of corresponding spheres
and cones.

For any poinK (t) € k3, t € R, the implicit equation of the
sphereo ) is the following:

Px+ki(t))2 Py +ka(t) \ 2
(=) =)+ e
1
Z((px—kl(t))2+(py—kz(t))2+(pz—k3(t))2)~
The implicit equation of the cong ) can be derived by

eliminating parametera andv from the following para-
metric equations:

Pz+ka(t)\2 _
B T) B
(28)

x=ki(t)+u-di(t,v)
y=ko(t) +u-da(t,v)
z=Kka(t) +u-da(t,v) (29)

Now, if we eliminate the parametefrom the correspond-
ing implicit equations of k) andok ), we obtain the im-
plicit equation offl’?cg. According to propositions 9, 12
and theorem 1 this equation takes the following form:
OC+Y +Z2)H{ (XY, 2) + H(x,y,2)
+H3(x,y,2) + H?(x,y,2) =0,

(u,v) € R2,

(30)

whereH!(x,y,z) are homogeneous polynomials of degree
i. The equatiom3(x,y,z) = O represents three rays &f

at infinity andH?(x,y,z) = O represents the tangent cone
of PK3 at the origin.

Equation (30) depends on nine parameteas, a,az,
bo, b3, C3, Px, Py, Pz) and it is incongruously to write them

here even for the special cases. As an appendix to
this paper, the reader can download dvathematica
notebook available on-lin@ittp: //www.grad.hr/sgorjanc/
pedalsKP53.nb.

5.4 Examples ofP %>

We consider? k3 where the directing twisted cubic is
given by eq. (22) for
as=hy=c3= 1,

a2:a3:b3:0. (31)

Type | — the directing curvk® is a cubical parabola given
by egs. (22) and (31) fok = 1. The pedal surface has a
real line at infinity counted three times. In the standard
Cartesian coordinatés:y:z:w), this line is given by the
equationsé = 0, w= 0. See Fig. 21a and Fig. 22a.

Type Il — the directing curvé® is a cubical hyperbolic
parabola given by egs. (22) and (31) foe=1—t. The
pedal surface has two real lines, one of them counted twice,
at infinity. They are given by the equatioré — y)? =

0, w= 0. See Fig. 21b and Fig. 22b.

Type lIl — the directing curvé® is a cubical ellipse given
by egs. (22) and (31) fdc= 1+t2. The pedal surface has
one real and a pair of imaginary lines at infinity. They are
given by the equationé? +y?)(x+2) = 0,w = 0. See
Fig. 21c and Fig. 22c.

Type IV — the directing curvé® is a cubical hyperbola
given by egs. (22) and (31) fdr= 1 —t2. The pedal sur-
face has three real lines at infinity. They are given by the
equations(x —y)(x+Vy)(x—z) = 0,w= 0. See Fig.21d
and Fig. 22d.

a b

Figure 19:?7(2 of types I, II, lll and 1V, for F0,0,0), are shown in figures a, b, ¢ and d, respectively. The 3rd @egre

tangent cone at P has a cuspidal edge.
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a b c d

Figure 22:Figure a—P X3 type | for A4, 4,0); figure b —P K3 type Il for P(2, —1, 3); figure c —P X3 type Il for P(1, 2, 0);
figure d —P K3 type IV for R5,—1,3).
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