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Abstract. In this paper, we investigate the Hyers-Ulam stability of
a generalized Hosszú functional equation, namely f(x+y−αxy)+g(xy) =
h(x) + k(y), where f, g, h, k are functions of a real variable with values in
a Banach space.

1. Introduction

Given an operator T and a solution class {u} with the property that
T (u) = 0, when does ‖T (v)‖ ≤ ε for an ε > 0 imply that ‖u − v‖ ≤ δ(ε)
for some u and for some δ > 0 ? This problem is called the stability of the
functional transformation (ref. [12]). A great deal of work has been done
in connection with the ordinary and partial differential equations. If f is a
function from a normed vector space into a Banach space, and ‖f(x + y) −
f(x) − f(y)‖ ≤ ε, Hyers [3] proved that there exists an additive function A
such that ‖f(x)−A(x)‖ ≤ ε (cf. [11]). If f(x) is a real continuous function of
x over R, and |f(x+y)−f(x)−f(y)| ≤ ε, it was shown by Hyers and Ulam [5]
that there exists a constant k such that |f(x)−kx| ≤ 2ε. Taking these results
into account, we say that the additive Cauchy equation f(x+y) = f(x)+f(y)
is stable in the sense of Hyers and Ulam. The interested reader should refer
to the books by Hyers, Isac and Rassias [4] and by Jung [6] for an indepth
account on the subject of stability of functional equations.

Let Y be a Banach space and R be the set of real numbers. A function
f : R→ Y is said to be additive if it satisfies

f(x+ y) = f(x) + f(y)
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for all x, y ∈ R.
In [10], Kannappan and Sahoo determined the general solution f, g, h, k :

R→ R of the functional equation

(1.1) f(x+ y − αxy) + g(xy) = h(x) + k(y)

for all x, y ∈ R (see also [1]). Here α is a priori chosen parameter. If α = 1,
then (1.1) is a pexiderized version of Hosszú functional equation, namely

f(x+ y − xy) + f(xy) = f(x) + f(y).

If α = 0, then (1.1) reduces to

f(x+ y) + g(xy) = h(x) + k(y).

This functional equation was studied in [10] to characterize Cauchy differences
that depend on the product of arguments.

The following three results are needed to establish the main results of this
paper. The first result is due to Hyers [3].

Theorem 1.1. Let f : E1 → E2 be a function between Banach spaces
such that

‖f(x+ y)− f(x)− f(y)‖ ≤ ε
for some ε ≥ 0 and for all x, y ∈ E1. Then there exists a unique additive
function A : E1 → E2 satisfying

‖f(x)−A(x)‖ ≤ ε
for any x ∈ E1. Moreover, if f(tx) is continuous in t for each fixed x ∈ E1,
then the function A is linear.

The next result was established by Gǎvruta [2] concerning the Hyers-Ulam
stability of Hosszú’s functional equation (cf. [9]).

Theorem 1.2. Let Y be a Banach space and suppose that f : R → Y
satisfies the functional inequality

‖f(x+ y − xy) + f(xy)− f(x)− f(y)‖ ≤ ε
for all x, y ∈ R with ε ≥ 0. Then there exist a unique additive function
A : R→ Y and a constant b = f(1)−A(1) ∈ Y such that

‖f(x)−A(x) − b‖ ≤ 9 ε

for all x ∈ R.

The following result was established by Jung and Sahoo [7] (see also [8]).

Theorem 1.3. Let Y be a Banach space. If a function f : R → Y
satisfies the inequality

‖f(xy) + f(x+ y)− f(xy + x)− f(y)‖ ≤ ε
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for some ε ≥ 0 and for all x, y ∈ R, then there exists a unique additive
function A : R→ Y such that

‖f(x)−A(x) − f(0)‖ ≤ 12ε

for all x ∈ R.

In this paper, we prove the Hyers-Ulam stability of the equation (1.1) by
using Theorem 1.1 due to Hyers [3], Theorem 1.2 due to Gǎvruta [2], and
Theorem 1.3 due to Jung and Sahoo [7].

2. Main result

In the following theorem we show the Hyers-Ulam stability of the func-
tional equation (1.1) for the case α = 0. For the sake of convenience, we shall
write the functional equation (1.1) as f(x+ y)− g(xy) = h(x) + k(y).

Theorem 2.1. Let Y be a Banach space. If functions f, g, h, k : R→ Y
satisfy the functional inequality

(2.1) ‖f(x+ y)− g(xy)− h(x) − k(y)‖ ≤ ε

for some ε ≥ 0 and for all x, y ∈ R, then there exist unique additive functions
A1, A2 : R→ Y such that for all x ∈ R

‖g(x)− 2A1(x)− δ2‖ ≤ 144 ε,

‖f(x)−A1(x2)−A2(x)− δ1‖ ≤
153

2
ε,

‖h(x)−A1(x2)−A2(x) − δ3‖ ≤
155

2
ε,

‖k(x)−A1(x2)−A2(x) − δ4‖ ≤
155

2
ε,

where δ1, δ2, δ3, δ4 are constants in Y satisfying ‖δ1 − δ2 − δ3 − δ4‖ ≤ ε
2 .

Proof. Letting x = 0 in (2.1), we get

(2.2) ‖f(y)− k(y)− b1‖ ≤ ε

where b1 = g(0) + h(0). Putting y = 0 in (2.1), we have

(2.3) ‖f(x)− h(x) − b2‖ ≤ ε

where b2 = g(0) + k(0). Finally, letting x = 0 and y = 0 in (2.1), we obtain

(2.4) ‖f(0)− g(0)− h(0)− k(0)‖ ≤ ε.
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Using (2.1), (2.2) and (2.3), we see that

‖f(x+ y)− g(xy)− f(x)− f(y) + b1 + b2‖
= ‖ f(x+ y)− g(xy)− h(x) − k(y)

+ h(x) − f(x) + b2 + k(y)− f(y) + b1 ‖
≤ ‖ f(x+ y)− g(xy)− h(x) − k(y) ‖

+ ‖h(x)− f(x) + b2 ‖+ ‖ k(y)− f(y) + b1 ‖
≤ 3 ε.

Hence we have

(2.5) ‖f(x+ y)− g(xy)− f(x)− f(y) + b1 + b2‖ ≤ 3 ε

for all x, y ∈ R. Defining

(2.6) φ(x) = f(x)− b1 − b2
and using (2.6) in inequality (2.5), we have

(2.7) ‖φ(x+ y)− g(xy)− φ(x) − φ(y)‖ ≤ 3 ε

for all x, y ∈ R. From (2.7), we see that

(2.8) ‖φ(x+ y + z)− g(xz + yz)− φ(x + y)− φ(z)‖ ≤ 3 ε,

(2.9) ‖φ(x+ y + z)− g(xy + xz)− φ(x) − φ(y + z)‖ ≤ 3 ε,

(2.10) ‖φ(y + z)− g(yz)− φ(y)− φ(z)‖ ≤ 3 ε.

Now using (2.7), (2.8), (2.9) and (2.10), we obtain

‖g(xy + xz) + g(yz)− g(xy)− g(xz + yz)‖
≤ ‖φ(x + y)− g(xy)− φ(x) − φ(y)‖

+ ‖φ(x+ y + z)− g(xz + yz)− φ(x + y)− φ(z) ‖
+ ‖φ(x) + φ(y + z) + g(xy + xz)− φ(x+ y + z) ‖
+ ‖φ(y) + φ(z) + g(yz)− φ(y + z) ‖

≤ 12 ε

which is

(2.11) ‖g(xy + xz) + g(yz)− g(xy)− g(xz + yz)‖ ≤ 12 ε

for all x, y, z ∈ R. Letting z = 1 in (2.11), we have

‖g(xy + x) + g(y)− g(xy)− g(x+ y)‖ ≤ 12 ε

for all x, y ∈ R. From Theorem 1.3, we see that

(2.12) ‖g(x)−A(x) − δ2‖ ≤ 144 ε
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where A : R → Y is a unique additive map and δ2 = g(0). Now writing
A = 2A1 in (2.12), where A1 is an additive map and uniquely determined by
A, we have

(2.13) ‖g(x)− 2A1(x)− δ2‖ ≤ 144 ε

for all x ∈ R.
Letting y = −x in (2.7), we have

(2.14) ‖φ(0)− g(−x2)− φ(x) − φ(−x)‖ ≤ 3 ε

for all x ∈ R. Now using (2.13) and (2.14), we see that
∥∥φ(x) + φ(−x)− 2A1(x2) + g(0)− φ(0)

∥∥
≤

∥∥φ(x) + φ(−x) + g(−x2)− φ(0)
∥∥+

∥∥ g(−x2)− 2A1(−x2)− g(0)
∥∥

≤ 147 ε.

Thus we have

(2.15)
∥∥φ(x) + φ(−x)− 2A1(x2) + g(0)− φ(0)

∥∥ ≤ 147 ε

for all x ∈ R.
Replacing x by −x and y by −y in (2.7), we obtain

(2.16) ‖φ(−(x+ y))− g(xy)− φ(−x)− φ(−y)‖ ≤ 3 ε

for all x, y ∈ R. From (2.7) and (2.16), we observe that

‖φ(x + y)− φ(−(x + y))− φ(x) + φ(−x)− φ(y) + φ(−y)‖
≤ ‖φ(x+ y)− g(xy)− φ(x) − φ(y) ‖

+ ‖φ(−x) + φ(−y) + g(xy)− φ(−(x + y)) ‖
≤ 6 ε

for all x, y ∈ R. Defining F : R→ Y by

(2.17) F (x) = φ(x) − φ(−x) ∀x ∈ R

and using this F in the last inequality we have the functional inequality

‖F (x+ y)− F (x) − F (y)‖ ≤ 6 ε

for all x, y ∈ R. By Theorem 1.1, there is a unique additive function A0 :
R→ Y such that

(2.18) ‖F (x) −A0(x)‖ ≤ 6 ε

for all x ∈ R. Writing A0 = 2A2 in (2.18), where A2 : R → Y is an additive
map and then using (2.17), we have

(2.19) ‖φ(x)− φ(−x)− 2A2(x)‖ ≤ 6 ε

for all x ∈ R.
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Using (2.15) and (2.19), we see that
∥∥2φ(x)− 2A1(x2)− 2A2(x) + g(0)− φ(0)

∥∥
≤

∥∥φ(x) + φ(−x) − 2A1(x2) + g(0)− φ(0)
∥∥ + ‖φ(x) − φ(−x) − 2A2(x) ‖

≤ 153 ε

for all x ∈ R. Hence

(2.20)

∥∥∥∥φ(x) −A1(x2)−A2(x) +
1

2
[g(0)− φ(0)]

∥∥∥∥ ≤
153

2
ε.

Since φ(x) = f(x)− b1− b2 = f(x)− 2g(0)−h(0)− k(0), from (2.20) we have

(2.21)
∥∥f(x)−A1(x2)−A2(x) − δ1

∥∥ ≤ 153

2
ε

where δ1 = 1
2 [f(0) + g(0) + h(0) + k(0)]. We can easily prove the uniqueness

of A2 satisfying the inequality (2.21).
Next, using (2.2) and (2.21), we see that

∥∥k(x)−A1(x2)−A2(x) + b1 − δ1
∥∥

≤ ‖ k(x) − f(x) + b1 ‖+
∥∥f(x)−A1(x2)−A2(x) − δ1

∥∥

≤ 155

2
ε

for all x ∈ R. Hence
∥∥k(x) −A1(x2)−A2(x)− δ4

∥∥ ≤ 155

2
ε

where δ4 = 1
2 [f(0)− g(0)− h(0) + k(0)].

Finally, using (2.3) and (2.21), we see that
∥∥h(x)−A1(x2)−A2(x) + b2 − δ1

∥∥
≤ ‖h(x) − f(x) + b2 ‖+

∥∥f(x)−A1(x2)−A2(x) − δ1
∥∥

≤ 155

2
ε

for all x ∈ R. Hence
∥∥h(x) −A1(x2)−A2(x)− δ3

∥∥ ≤ 155

2
ε

where δ3 = 1
2 [f(0)− g(0) + h(0)− k(0)].

In view of the inequality (2.4), it is easy to check that the constants
δ1, δ2, δ3, δ4 satisfy ‖δ1 − δ2 − δ3 − δ4‖ = 1

2 ‖f(0) − g(0) − h(0) − k(0)‖ ≤ ε
2 .

Now the proof of the theorem is complete.

Remark 2.2. The above theorem gives a Hyers-Ulam stability as well as
the general solution of the original equation. We may put ε = 0 in Theorem 2.1
to get the general solution of the functional equation (1.1) with α = 0: The
functions f, g, h, k : R→ Y satisfy the functional equation f(x+y)−g(xy) =
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h(x) + k(y) if and only if there exist additive functions A1, A2 : R → Y and
constants δ1, δ2, δ3 ∈ Y such that

f(x) = A1(x2) +A2(x) + δ1 + δ2 + δ3,

g(x) = 2A1(x) + δ1,

h(x) = A1(x2) +A2(x) + δ2,

k(x) = A1(x2) +A2(x) + δ3.

In the following theorem, we treat the stability of the functional equation
(1.1) when the parameter α 6= 0.

Theorem 2.3. Let Y be a Banach space. If functions f, g, h, k : R→ Y
satisfy the functional inequality

(2.22) ‖f(x+ y − αxy) + g(xy)− h(x) − k(y)‖ ≤ ε
for some ε ≥ 0 and for all x, y ∈ R, then there exists unique additive function
A : R→ Y such that for all x ∈ R

‖f(x)−A(αx) − a‖ ≤ 54 ε,

‖h(x)−A(αx) − a− b1‖ ≤ 55 ε,

‖k(x)−A(αx) − a− b2‖ ≤ 55 ε,

‖g(x)−A(α2x)− a− b1 − b2‖ ≤ 57 ε,

where a = f
(

1
α

)
−A(1), b1 = g(0)− k(0), and b2 = g(0)− h(0).

Proof. Letting y = 0 in (2.22), we get

(2.23) ‖f(x)− h(x) + b1‖ ≤ ε
where b1 = g(0)− k(0). Putting x = 0 in (2.22), we have

(2.24) ‖f(y)− k(y) + b2‖ ≤ ε
where b2 = g(0)− h(0). Using (2.22), (2.23) and (2.24), we see that

‖f(x+ y − αxy) + g(xy)− f(x)− f(y)− b1 − b2‖
= ‖ f(x+ y − αxy) + g(xy)− h(x) − k(y)

+ h(x) − f(x)− b1 + k(y)− f(y)− b2 ‖
≤ ‖ f(x+ y − αxy) + g(xy)− h(x) − k(y) ‖

+ ‖h(x)− f(x)− b1 ‖+ ‖ k(y)− f(y)− b2 ‖
≤ 3 ε.

Hence

(2.25) ‖f(x+ y − αxy) + g(xy)− f(x)− f(y)− b1 − b2‖ ≤ 3 ε

for all x, y ∈ R. Since α 6= 0, substituting y = 1
α in (2.25), we obtain

(2.26)
∥∥∥g
(x
α

)
− f(x) − b1 − b2

∥∥∥ ≤ 3 ε
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for all x ∈ R. Now replacing x by αx in (2.26), we have

(2.27) ‖g(x)− f(αx)− b1 − b2‖ ≤ 3 ε

for all x ∈ R. From (2.25) and (2.27), we have

‖f(x+ y − αxy) + f(αxy)− f(x)− f(y)‖
= ‖ f(x+ y − αxy) + g(xy)− f(x)− f(y)− b1 − b2

+ f(αxy)− g(xy) + b1 + b2 ‖
≤ ‖ f(x+ y − αxy) + g(xy)− f(x)− f(y)− b1 − b2 ‖

+ ‖ f(αxy)− g(xy) + b1 + b2 ‖
≤ 6 ε.

Thus we have

(2.28) ‖f(x+ y − αxy) + f(αxy)− f(x)− f(y)‖ ≤ 6 ε

for all x, y ∈ R. Replacing x by x
α and y by y

α in (2.28), we obtain

(2.29)

∥∥∥∥f
(
x+ y − xy

α

)
+ f

(xy
α

)
− f

(x
α

)
− f

( y
α

)∥∥∥∥ ≤ 6 ε.

Defining ψ : R→ Y by

(2.30) ψ(x) = f
(x
α

)
∀x ∈ R

and using it in (2.29), we see that

‖ψ(x+ y − xy) + ψ(xy) − ψ(x)− ψ(y)‖ ≤ 6 ε

for all x, y ∈ R. Hence by Theorem 1.2, there exists a unique additive map
A : R→ Y such that for all x ∈ R

(2.31) ‖ψ(x)−A(x) − a‖ ≤ 54 ε,

where a = ψ(1)−A(1). Thus from (2.30) and (2.31), we obtain

(2.32) ‖f(x)−A(αx) − a‖ ≤ 54 ε,

where a = f
(

1
α

)
−A(1).

From (2.23) and (2.32), we get

‖h(x)−A(αx) − a− b1‖
≤ ‖h(x) − f(x)− b1 ‖+ ‖f(x)−A(αx) − a ‖
≤ 55 ε

for all x ∈ R. Similarly, from (2.24) and (2.32), we have

‖k(x)−A(αx) − a− b2‖
≤ ‖ k(x) − f(x)− b2 ‖+ ‖f(x)−A(αx) − a ‖
≤ 55 ε.
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Finally, from (2.27) and (2.32), we get
∥∥g(x)−A(α2x) − a− b1 − b2

∥∥
≤ ‖ g(x)− f(αx) − b1 − b2 ‖+

∥∥f(αx)−A(α2x) − a
∥∥

≤ 57 ε.

The proof of the theorem is now complete.

Remark 2.4. If we put ε = 0 in Theorem 2.3, we can obtain the general
solution of the original functional equation of (2.22): The functions f, g, h, k :
R → Y satisfy the functional equation (1.1) with α 6= 0 if and only if there
exists an additive function A : R→ Y and constants δ1, δ2, δ3 ∈ Y such that

f(x) = A(αx) − δ1 + δ2 + δ3,

g(x) = A(α2x) + δ1,

h(x) = A(αx) + δ2,

k(x) = A(αx) + δ3.
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Variables, Birkhäuser, Boston, 1998.
[5] D. H. Hyers and S. M. Ulam, Approximately convex functions, Proc. Bull. Amer.

Math. Soc. 3 (1952), 821–828.
[6] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical

Analysis, Hadronic Press, Florida, 2001.
[7] S.-M. Jung and P. K. Sahoo, Hyers-Ulam-Rassias stability of an equation of Davison,

J. Math. Anal. Appl. 238 (1999), 297–304.
[8] S.-M. Jung and P. K. Sahoo, On the Hyers-Ulam stability of a functional equation of

Davison, Kyungpook Mathematical Journal 40 (2000), 87–92.
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