ON A-STATISTICAL CLUSTER POINTS

KAMIL DEMIRCI
Kirikkale University, Turkey

Abstract. In this paper we study the concepts of statistical cluster points and statistical core of a sequence for C_A methods defined by deleting a set of rows from the Cesaro matrix C_1. Also we get necessary conditions on the matrices A and B so that A and B are equivalent in the statistical convergence sense and, study the equality $\Gamma_A(x) = \Gamma_B(x)$, where $\Gamma_A(x)$ is the set of A-statistical cluster points of the real number sequence x.

1. INTRODUCTION AND NOTATIONS

In [5] Fridy introduced the concepts of statistical limit points and statistical cluster points of a number sequence. These concepts are compared to the usual concept of limit point of a sequence. In [6] Fridy and Orhan introduced the concepts of statistical limit superior and inferior. They have also given the definition of the statistical core of a real number sequence which is based on the idea of the statistical cluster points of the sequence, and proved the statistical core theorem. Those results have also been extended [7] to the complex case by them, too. In [2] Connor and Kline extended the concept of a statistical limit (cluster) point of a number sequence to a A-statistical limit (cluster) point where A is a nonnegative regular summability matrix. In [3] the present author extended the concepts of statistical limit superior and inferior (as introduced by Fridy and Orhan) to A-statistical limit superior and inferior and given some A-statistical analogue of properties of statistical limit superior and inferior for a sequence of real numbers. Also in [3] the concept of statistical core is extended to A-statistical core.

In this paper we study the concepts of statistical cluster points and statistical core of a sequence for C_A methods, defined by deleting a set of rows from

2000 Mathematics Subject Classification. 40A05, 26A03, 11B05.
Key words and phrases. $A-$ density, $A-$statistical cluster point, $A-$ statistical core of a sequence.
the Cesàro matrix C_1. Also we get necessary conditions on the matrices A and B so that A and B are equivalent in the statistical convergence sense and, study the equality $\Gamma_A(x) = \Gamma_B(x)$, where $\Gamma_A(x)$ is the set of A– statistical cluster points of the real number sequence x.

First we introduce some notation. Let $A = (a_{nk})$ denote a summability matrix which transforms a number sequence $x = (x_k)$ into the sequence Ax whose n-th term is given by $(Ax)_n = \sum_{k=1}^{\infty} a_{nk}x_k$. As usual, \mathbb{N} and \mathbb{C} denote the sets of positive integers and complex numbers, respectively.

If K is a set of positive integers, $|K|$ will denote the cardinality of K. The natural density of K [11] is given by
\[
\delta(K) := \lim_{n \to \infty} \frac{1}{n} \left| \{ k \leq n : k \in K \} \right|,
\]
if it exists, where C_1 is the Cesàro mean of order one and χ_K is the characteristic function of the set K.

We recall the following elementary result concerning natural density (See [11, page 222]):

Let E be an infinite subset of \mathbb{N} and consider E as strictly increasing sequence of positive integers, say $E = \{ \lambda(n) \}_{n=1}^{\infty}$. Then
\[
\delta(E) = \lim_{n \to \infty} \frac{n}{\lambda(n)}
\]
provided this limit exists. Because $\delta(E)$ does not exists for all subsets of \mathbb{N}, it is convenient to use the upper asymptotic density $\delta^*(E)$, which is defined by
\[
\delta^*(E) = \limsup_{n \to \infty} \frac{1}{n} \left| \{ k \leq n : k \in E \} \right|
\]
(See [9, p.xvii]). For convenience we state here some properties of δ^*. For arbitrary subsets E and F of \mathbb{N} we have

(i) if $\delta(E)$ exists then $\delta(E) = \delta^*(E)$;
(ii) $\delta(E) \neq 0$ if and only if $\delta^*(E) > 0$;
(iii) if $E \subseteq F$, then $\delta^*(E) \leq \delta^*(F)$.

Natural density can be generalized by using a nonnegative regular summability matrix A in place of C_1.

Following Freedman and Sember [4] we say that a set $K \subseteq \mathbb{N}$ has A–density if
\[
\delta_A(K) = \lim_{n \to \infty} \frac{1}{n} \sum_{k \in K} a_{nk} = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{\infty} a_{nk} \chi_K(k) = \lim_{n \to \infty} (A\chi_K)_n
\]
exists where A is a nonnegative regular summability matrix.

The number sequence $x = (x_k)$ is A–statistically convergent to L provided that for every $\epsilon > 0$ the set $K_\epsilon := \{ k \in \mathbb{N} : |x_k - L| \geq \epsilon \}$ has A–density zero [2, 10]. In this case we write $st_A - \lim x = L$.

By \(st_A \) we denote the set of all \(A \)-statistically convergent sequences.

The number \(\gamma \) is a \(A \)-statistical cluster point of the number sequence \(x = (x_k) \) provided that for every \(\epsilon > 0, \delta_A(K_\epsilon) \neq 0 \) where \(K_\epsilon := \{ k \in \mathbb{N} : |x_k - \gamma| < \epsilon \} \) [2]. Note that the statement \(\delta_A(K) \neq 0 \) means that either \(\delta_A(K) > 0 \) or \(K \) fails to have \(A \)-density.

By \(\Gamma_A(x) \) we denote the set of all \(A \)-statistical cluster points of \(x \). When \(A = C_1 \) we shall simply write \(\delta \) instead of \(\delta_{C_1} \) and \(\Gamma \) instead of \(\Gamma_{C_1} \).

The sequence \(x = (x_k) \) is the \(A \)-statistically bounded if it has a bounded subsequence \(\{x_k\}_{k \in E} \) such that \(\delta_A(E) = 1; st_A - \limsup x \) and \(st_A - \liminf x \) are the greatest and least \(A \)-statistical cluster point of such an \(x \) [3]. Also \(A \)-statistically bounded sequence \(x \) is \(A \)-statistically convergent if and only if \(st_A - \liminf x = st_A - \limsup x \) [3].

Note that \(A \)-statistically boundedness implies that \(st_A - \limsup \) and \(st_A - \liminf \) are finite [3]. Some results on statistical limit points may be found in [2, 5, 6, 13].

For any complex number sequence \(x = (x_k) \) the \(A \)-statistical core of \(x \) is given by

\[
st_A - \text{core} \{ x \} = \bigcap_{H \in \mathbf{H}(x)} H,
\]

where \(\mathbf{H}(x) \) is the collection of all closed half-planes \(H \) that satisfy \(\delta_A \{ k \in \mathbb{N} : x_k \in H \} = 1 \) (see [3]).

In [3, Theorem 6] it is shown that for every \(A \)-statistically bounded complex number sequence \(x = (x_k) \)

\[
st_A - \text{core} \{ x \} = \bigcap_{z \in \mathbb{C}} B_x(z),
\]

where

\[
B_x(z) := \left\{ w \in \mathbb{C} : |w - z| \leq st_A - \limsup_k |x_k - z| \right\}.
\]

When \(A = C_1 \) we shall simply write \(st \)-core instead of \(st_{C_1} \)-core (see [6, 7]).

2. \(C_\lambda \)-statistical cluster points

In [1] Armitage and Maddox introduced the summability method \(C_\lambda \) defined by deleting a set of rows from the Cesàro matrix. They gave some inclusion theorems for \(C_\lambda \) methods. This method has also been studied in [12].

Let \(E \) be an infinite subset of \(\mathbb{N} \) and consider \(E \) as strictly increasing sequence of positive integers, say \(E = \{\lambda(n)\}_{n=1}^{\infty} \). The summability method \(C_\lambda \), as introduced in [1], is defined as

\[
(C_\lambda x)_n = \frac{1}{\lambda(n)} \sum_{k=1}^{\lambda(n)} x_k,
\]
where $x = (x_k)$ is a sequence of real or complex numbers and $n = 1, 2, \ldots$. It is clear that C_λ is regular for any λ.

Note that if $A = C_\lambda$, then $\gamma \in \Gamma_{C_\lambda}(x)$ if, for every $\varepsilon > 0$,

$$\delta_{C_\lambda}(K) = \lim_{n} (C_\lambda x)_n = \lim_{n} \frac{1}{\lambda(n)} \{ k \leq k(n) : |x_k - \gamma| < \varepsilon \} \neq 0.$$

In the particular case when $\lambda(n) = n$ we see that $(C_\lambda x)_n$ is the C_1 mean of x.

In this section we establish inclusion relations between $\Gamma_{C_\lambda}(x)$ and $\Gamma_{C_\mu}(x)$ and between $\Gamma(C_\lambda x)$ and $\Gamma(C_\mu x)$ for C_λ methods. Also we study C_λ-statistical core for a bounded complex sequence.

Theorem 2.1. Let $F = \{ \lambda(n) \}$ and $E = \{ \mu(n) \}$ be infinite subsets of \mathbb{N}. If $E \setminus F$ is finite and $\lim_{n} \frac{\lambda(n)}{\mu(n)} = d \neq 0$, then

$$\delta_{C_\lambda}(K) \neq 0 \text{ implies } \delta_{C_\mu}(K) \neq 0 \text{ for every } K \subseteq \mathbb{N}.$$

Proof. If $E \setminus F$ is finite, then there exists N such that $\{ \mu(n) : n \geq N \} \subseteq F$. For $n \geq N$ let $j(n)$ be such that $\mu(n) = \lambda_{j(n)}$. Then $(j(n))$ increases and $j(n) \to \infty$, (as $n \to \infty$). If $\delta_{C_\lambda}(K) \neq 0$, then

$$\delta_{C_\lambda}(K) = \lim_{n} \sup \frac{|\{ i \leq \lambda(n) : i \in K \}|}{\lambda(n)} > 0.$$

Since $\lim_{n} \sup \lambda_n(x_n y_n) \leq (\lim_{n} x_n)(\lim_{n} y_n)$ provided that the right hand side exists, and

$$\frac{\lambda(n)}{\lambda_{j(n)}} \frac{|\{ i \leq \lambda(n) : i \in K \}|}{\lambda(n)} \leq \frac{|\{ i \leq \lambda_{j(n)} : i \in K \}|}{\lambda_{j(n)}},$$

we get

$$\delta_{C_\mu}(K) = \lim_{n} \sup \frac{|\{ i \leq \mu(n) : i \in K \}|}{\mu(n)} > 0.$$

Hence $\delta_{C_\mu}(K) \neq 0$.

Since $E \Delta F = (E \setminus F) \cup (F \setminus E), (C_\mu x)_n = (C_1 x)_{\mu(n)}$ and $(C_\lambda x)_n = (C_1 x)_{\lambda(n)}$, we immediately get the following from Theorem 2.1.

Theorem 2.2. Let $F = \{ \lambda(n) \}$ and $E = \{ \mu(n) \}$ be infinite subsets of \mathbb{N}.

(i) If $E \setminus F$ is finite and $\lim_{n} \frac{\lambda(n)}{\mu(n)} = d \neq 0$, then $\Gamma_{C_\lambda}(x) \subseteq \Gamma_{C_\mu}(x)$.

(ii) If $E \Delta F$ is finite and $\lim_{n} \frac{\lambda(n)}{\mu(n)} = d \neq 0$, then $\Gamma_{C_\lambda}(x) = \Gamma_{C_\mu}(x)$.

(iii) If $E \setminus F$ is finite and $\lim_{n} \frac{\lambda(n)}{\mu(n)} = d \neq 0$, then $\Gamma(C_\mu x) \subseteq \Gamma(C_\lambda x)$.

(iv) If $E \Delta F$ is finite and $\lim_{n} \frac{\lambda(n)}{\mu(n)} = d \neq 0$, then $\Gamma(C_\mu x) = \Gamma(C_\lambda x)$.

When $\lambda(n) = n$ the following may be deduced from (i) and (iii) of Theorem 2.2.
Theorem 2.3. Let $E = \{\mu(n)\}$ be infinite subset of \mathbb{N}.

(i) If $\lim_{n} \frac{\lambda(n)}{\mu(n)} = d \neq 0$, then $\Gamma(x) \subseteq \Gamma_{\mu}(x)$.

(ii) If $\lim_{n} \frac{\lambda(n)}{\mu(n)} = d \neq 0$, then $\Gamma(C_{\mu}x) \subseteq \Gamma(C_{1}x)$.

It is clear from (i) of Theorem 2.2 that for every bounded complex sequence $x = (x_k)$

$$st_{C_{\lambda}} - \lim sup |x| \leq st_{C_{\mu}} - \lim sup |x|.$$

So it follows that, for any $z \in \mathbb{C}$,

$$\left\{ w \in \mathbb{C} : |w - z| \leq st_{C_{\lambda}} - \lim sup |x_k - z| \right\} \subseteq$$

$$\subseteq \left\{ w \in \mathbb{C} : |w - z| \leq st_{C_{\mu}} - \lim sup |x_k - z| \right\}.$$

Now Theorem 6 of [3] implies that

$$\bigcap_{z \in \mathbb{C}} \left\{ w \in \mathbb{C} : |w - z| \leq st_{C_{\lambda}} - \lim sup |x_k - z| \right\} \subseteq$$

$$\subseteq \bigcap_{z \in \mathbb{C}} \left\{ w \in \mathbb{C} : |w - z| \leq st_{C_{\mu}} - \lim sup |x_k - z| \right\},$$

i.e.,

$$st_{C_{\lambda}} - \text{core } \{x\} \subseteq st_{C_{\mu}} - \text{core } \{x\}.$$

Thus we have

Corollary 2.4. Let $F = \{\lambda(n)\}$ and $E = \{\mu(n)\}$ be infinite subsets of \mathbb{N}. If $E \setminus F$ is finite and $\lim_{n} \frac{\lambda(n)}{\mu(n)} = d \neq 0$, then $st_{C_{\lambda}} - \text{core } \{x\} \subseteq st_{C_{\mu}} - \text{core } \{x\}$ for every bounded complex sequence x.

We immediately get the next corollary from (ii),(iii) and (iv) of Theorem 2.2 while the latter from Theorem 2.3 for every bounded complex sequence x.

Corollary 2.5. Let $F = \{\lambda(n)\}$ and $E = \{\mu(n)\}$ be infinite subsets of \mathbb{N}. Then, for every bounded complex sequence x,

(i) if $E \Delta F$ is finite and $\lim_{n} \frac{\lambda(n)}{\mu(n)} = d \neq 0$, then $st_{C_{\lambda}} - \text{core } \{x\} = st_{C_{\mu}} - \text{core } \{x\}$;

(ii) if $E \setminus F$ is finite and $\lim_{n} \frac{\lambda(n)}{\mu(n)} = d \neq 0$, then $st_{C_{\mu}} \setminus \text{core } \{C_{1}x\} \subseteq st - \text{core } \{C_{\lambda}x\};$

(iii) if $E \Delta F$ is finite and $\lim_{n} \frac{\lambda(n)}{\mu(n)} = d \neq 0$, then $st - \text{core } \{C_{\mu}x\} = st - \text{core } \{C_{\lambda}x\}$.
Corollary 2.6. Let \(E = \{\mu(n)\} \) be infinite subset of \(\mathbb{N} \). Then, for every bounded complex sequence \(x \),

(i) if \(\lim_{n} \frac{n}{\mu(n)} = d \neq 0 \), then \(\text{st} \) \(\text{core} \{x\} \subseteq \text{st} \text{core} \{C_{\mu}x\} \);

(ii) if \(\lim_{n} \frac{n}{\mu(n)} = d \neq 0 \), then \(\text{st} \) \(\text{core} \{C_{\mu}x\} \subseteq \text{st} \text{core} \{C_{1}x\} \).

3. Consistency of \(A \)-statistical convergence

In this section we consider the concept of \(A \)-statistical convergence and recall definitions of inclusion and consistency in the statistical convergence sense as introduced by Fridy and Khan [8]. Also we get necessary conditions on the matrices \(A \) and \(B \) so that \(A \) and \(B \) are equivalent in the statistical convergence sense and \(\Gamma_{A}(x) = \Gamma_{B}(x) \) for a real number sequence \(x \) where \(A \) and \(B \) are nonnegative regular summability matrices.

We begin by giving two definitions.

Definition 3.1. If \(\text{st} A \supset \text{st} B \), \(A \) is said to be stronger than \(B \) in the statistical convergence sense.

Definition 3.2. Matrices \(A \) and \(B \) are called consistent in the statistical convergence sense if \(\text{st} A = \text{st} B \) whenever \(x \in \text{st} A \cap \text{st} B \). If \(A \) is stronger than \(B \) in the statistical convergence sense and consistent with \(B \) in the statistical convergence sense we then write \(A \supset B \) [8]. If \(A \supset B \) and \(B \supset A \), \(A \) and \(B \) are called equivalent in the statistical convergence sense (denoted by \(A \cong B \)).

Throughout this section \(A = (a_{nk}) \) and \(B = (b_{nk}) \) will denote nonnegative regular summability matrices.

Theorem 3.3. If the condition

\[
\limsup_{n} \sum_{k=1}^{\infty} |a_{nk} - b_{nk}| = 0 \tag{*}
\]

holds, then \(\delta_{A}(K) = 0 \) if and only if \(\delta_{B}(K) = 0 \) for every \(K \subseteq \mathbb{N} \).

Proof. (Necessity). If \(\delta_{A}(K) = 0 \), then \(\lim_{n} \sum_{k \in K} a_{nk} = 0 \). Since

\[
|A_{K}x - B_{K}x| = \sum_{k \in K} |a_{nk} - b_{nk}| \leq \sum_{k=1}^{\infty} |a_{nk} - b_{nk}|,
\]

we have \(\limsup_{n} |A_{K}x - B_{K}x| = 0 \) by \((*) \), which implies \(\delta_{B}(K) = \lim_{n} \sum_{k \in K} b_{nk} = 0 \).

Sufficiency follows from the symmetry. \(\square \)

Hence we can get the following results from Theorem 3.3.
Theorem 3.4. If A and B satisfy the condition $(*)$, then

(i) $st_A = st_B$
(ii) $\Gamma_A(x) = \Gamma_B(x)$

for a real number sequence x.

The statistical limits in (i) of Theorem 3.4 agree (i.e., $st_B - \lim x = L$ implies $st_A - \lim x = L$). Therefore, if A and B satisfy condition $(*)$ of Theorem 3.3, then A and B are consistent in the statistical convergence sense.

Note that the support sets generated by nonnegative summability methods A and B can be used to determine when, if a sequence x is both A- and B-statistically convergent, the A-statistical and B-statistical limits of x agree. In [2] Connor and Kline, using the “βN program” have shown that A and B assign the same statistical limit to x if $K_A \cap K_B \neq \phi$ where the sets K_A and K_B are the support sets of the nonnegative regular summability matrices A and B.

The next corollary shows that we have the same result under different conditions.

Corollary 3.5. If A and B satisfy the conditions $(*)$ of Theorem 3.3, then $A \preceq B$.

Recall that A-statistical boundedness implies that $st_A - \lim sup$ and $st_A - \lim inf$ are finite and $st_A - \lim sup x$ and $st_A - \lim inf x$ are the greatest and least A-statistical cluster points of such an x [3]. Also

$$st_A - \text{core}\{x\} = [st_A - \lim inf x, st_A - \lim sup x]$$

for any A-statistically bounded real number sequence x [3]. Hence we can get the following from (ii) of Theorem 3.4.

Corollary 3.6. If A and B satisfy the condition $(*)$, then $st_A - \text{core}\{x\} = st_B - \text{core}\{x\}$ for every bounded real sequence x.

Note that the converse of Corollary 3.6 does not hold. This is seen by the following example.

Example 3.7. Consider the matrices $A = (a_{nk})$ and $B = (b_{nk})$ defined by

$$a_{nk} = \begin{cases} \frac{n}{3(n+1)}, & k = n^2 \\ 1 - \frac{n}{3(n+1)}, & k = n^2 + 1 \\ 0, & \text{otherwise;} \end{cases}$$
and
\[
b_{nk} = \begin{cases}
 \frac{n}{5(n+1)}, & k = n^2 \\
 1 - \frac{n}{5(n+1)}, & k = n^2 + 1 \\
 0, & \text{otherwise.}
\end{cases}
\]

It is clear that A and B are nonnegative regular matrix summability methods.

Let us define the sequence $x = (x_k)$ by
\[
x_k = \begin{cases}
 1, & k = n^2 \\
 0, & \text{otherwise.}
\end{cases}
\]

If we write $E_1 := \{k = n^2 : n = 1, 2, \ldots\}$ and $E_2 := \{k \neq n^2 : n = 1, 2, \ldots\}$, then we have $\delta_A(E_1) = \frac{1}{5}$, $\delta_A(E_2) = \frac{2}{3}$, $\delta_B(E_1) = \frac{1}{5}$, $\delta_B(E_2) = \frac{4}{5}$. Thus $\Gamma_A(x) = \Gamma_B(x) = \{0, 1\}$. Also, $st_A - \text{core}\{x\} = st_B - \text{core}\{x\} = [0, 1]$.

Observe that
\[
\limsup_n \sum_{k=1}^{\infty} |a_{nk} - b_{nk}| = \frac{4}{15}.
\]

References

Department of Mathematics
Faculty of Sciences and Arts
Kirikkale University
Yahşihan 71450
Kirikkale, Turkey

Received: 11.01.2001.
Revised: 05.10.2001.