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ON A-STATISTICAL CLUSTER POINTS
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ABSTRACT. In this paper we study the concepts of statistical cluster
points and statistical core of a sequence for C'y methods defined by deleting
a set of rows from the Cesdro matrix C7. Also we get necessary conditions
on the matrices A and B so that A and B are equivalent in the statistical
convergence sense and, study the equality I' 4 (z) = I'g(x),where I' 4 (z) is
the set of A-statistical cluster points of the real number sequence x.

1. INTRODUCTION AND NOTATIONS

In [5] Fridy introduced the concepts of statistical limit points and statis-
tical cluster points of a number sequence. These concepts are compared to
the usual concept of limit point of a sequence. In [6] Fridy and Orhan intro-
duced the concepts of statistical limit superior and inferior. They have also
given the definition of the statistical core of a real number sequence which is
based on the idea of the statistical cluster points of the sequence, and proved
the statistical core theorem. Those results have also been extended [7] to the
complex case by them, too. In [2] Connor and Kline extended the concept
of a statistical limit (cluster) point of a number sequence to a A-statistical
limit (cluster) point where A is a nonnegative regular summability matrix. In
[3] the present author extended the concepts of statistical limit superior and
inferior (as introduced by Fridy and Orhan) to A-statistical limit superior and
inferior and given some A-statistical analogue of properties of statistical limit
superior and inferior for a sequence of real numbers. Also in [3] the concept
of statistical core is extended to A-statistical core.

In this paper we study the concepts of statistical cluster points and statis-
tical core of a sequence for C'y methods, defined by deleting a set of rows from
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the Cesaro matrix C. Also we get necessary conditions on the matrices A and
B so that A and B are equivalent in the statistical convergence sense and,
study the equality I'4(z) = I'p(z),where T'4(x) is the set of A— statistical
cluster points of the real number sequence x.

First we introduce some notation. Let A = (anx) denote a summability
matrix which transforms a number sequence z = (x}) into the sequence Ax

o0
whose n-th term is given by (Ax), =>",_; anrr . As usual, N and C denote
the sets of positive integers and complex numbers, respectively.
If K is a set of positive integers, | K| will denote the cardinality of K. The
natural density of K [11] is given by

1
§(K) :=1lm(Cixk)n = limﬁ Hk<n:keK},

if it exists, where C is the Cesaro mean of order one and x is the charac-
teristic function of the set K.

We recall the following elementary result concerning natural density (See
[11, page 222)):

Let E be an infinite subset of N and consider E as strictly increasing
sequence of positive integers, say £ = {A\(n)},~,. Then

n
0(F) =lim——

provided this limit exists. Because §(F) does not exists for all subsets of N,
it is convenient to use the upper asymptotic density ¢*(E), which is defined
by

0*(E) = limsupl {k<n:keE}
non

(See [9, p.xvii]). For convenience we state here some properties of §*. For
arbitrary subsets £ and F' of N we have
(i) if 6(F) exists then 0(F) = §*(E);
(ii) §(E) # 0 if and only if 6*(E) > 0;
(ii) if E C F, then 6*(E) < 6*(F).
Natural density can be generalized by using a nonnegative regular summa-
bility matrix A in place of Cj.
Following Freedman and Sember [4] we say that a set K C N has
A—density if

oo
da(K) = hngank = 117r1n Z ank Xk (k) = hﬁn(AxK)n
keK k=1
exists where A is a nonnegative regular summability matrix.
The number sequence x = (z,) is A—statistically convergent to L pro-
vided that for every € > 0 the set K, := {k € N: |z — L| > ¢} has A—density
zero [2, 10]. In this case we write st4 — limz = L.
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By sta we denote the set of all A—statistically convergent sequences.

The number v is a A—statistical cluster point of the number sequence
x = (x) provided that for every € > 0,04(K.) # 0 where K, :=
{keN: |z —7| <e} [2]. Note that the statement d4(K) # 0 means that
either §4(K) > 0 or K fails to have A—density.

By I'a(z) we denote the set of all A—statistical cluster points of z. When
A = C; we shall simply write J instead of ¢, and I' instead of T'¢,.

The sequence z = (z) is the A—statistical bounded if it has a bounded
subsequence {x}, . such that 04(E) = 1; st4 —limsup x and st4 — liminf 2
are the greatest and least A—statistical cluster point of such an z [3]. Also
A—statistically bounded sequence x is A—statistically convergent if and only
if stq4 — liminf x = st4 — limsupz [3].

Note that A—statistical boundedness implies that st 4 —lim sup and st 4 —
lim sup are finite [3]. Some results on statistical limit points may be found in
[2, 5, 6, 13].

For any complex number sequence x = (z;,) the A—statistical core of x is
given by

sta —core{z} = ﬂ H,
HeH(z)
where H(x) is the collection of all closed half-planes H that satisfy d4 {k € N :
xp € H} =1 (see [3]).

In [3, Theorem 6] it is shown that for every A— statistically bounded

complex number sequence x = ()

sta —core{z} = ﬂ B.(2),
zeC

where

B.(z) := {w €C:|w—z| < stqa—limsup|zy — z|} .
k
When A = C; we shall simply write st-core instead of sto, — core (see [6, 7]).

2. C\-STATISTICAL CLUSTER POINTS

In [1] Armitage and Maddox introduced the summability method C) de-
fined by deleting a set of rows from the Cesaro matrix. They gave some
inclusion theorems for Cy methods. This method has also been studied in
[12].

Let E be an infinite subset of N and consider E as strictly increasing
sequence of positive integers, say E = {A(n)} ;. The summability method
C', as introduced in [1], is defined as

A(n)

(Cr)n = ﬁ S o
k=1
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where z = (z1) is a sequence of real or complex numbers and n =1,2,.... It
is clear that C is regular for any A.

Note that if A = C, then v € I'¢, (2) if, for every € > 0,

. . 1

doy (Ke) = 117rln(C>\xK5)n = 11}}1% Hk <k(n): |z, —v| <e}| #0.

In the particular case when A(n) = n we see that (Chxk.)n is the Cy
mean of xx, .

In this section we establish inclusion relations between I'c, (x) and I'c,, (2)
and between I'(Cyz) and I'(C),z) for C methods. Also we study Cj-statistical
core for a bounded complex sequence.

THEOREM 2.1. Let F'={\(n)} and E = {u(n)} be infinite subsets of N.
If E\ F is finite and lim, E ") — 40, then

éc, (K) # 0 implies 6c, (K) # 0 for every K C N.

PRrROOF. If E\ F is finite, then there exists N such that {y(n) : n>N}CF.
For n > N let j(n) be such that u(n) = Xj¢,). Then (j(n)) increases and
j(n) — oo, (as n — o0). If ¢, (K) # 0, then
« . H{i <A(n):ie K}
50A (K)= hmnsup )
Since limsup,, (zpyn) < (limpz,)(limsup,,y,) provided that the right hand
side exists, and

Am) i < Am) i€ K} J{i < Ay i€ K|

> 0.

Aj(n) Aln) - Aj(n)
we get
. {i < p(n):ie K}
05 (K) = limsup >0
0, () =l u(n)
Hence dc, (K) # 0. O

Since EAF = (E\ F)U (F\ E),(Cuz)n = (C17)4n) and (Crx), =
(C12)x(n), we immediately get the following from Theorem 2.1.
THEOREM 2.2. Let F = {A(n)} and E = {p(n)} be infinite subsets of N.
(i) If E\ F is finite and lim,, % =d#0, thenT'c,(xz) CTc,(z).
(ii) If EAF is finite and lim, 53 = d # 0, then e, (z) = T, ().
(iii) If E\ F is finite and lim, E— =d#0, then T'(Cpz) C T(Chz).
(iv) If EAF is finite and limn% =d#0, then I'(Cypx) =T(Crz).

When A(n) = n the following may be deduced from (i) and (iii) of Theo-
rem 2.2.
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THEOREM 2.3. Let E = {u(n)} be infinite subset of N.
(i) If lim, 0 = d # 0, then I'(z) € I'e, (2).
(ii) If lim,, 05 = d # 0, then I'(C,z) CT(Chz).
It is clear from (i) of Theorem 2.2 that for every bounded complex se-
quence x = (xy)
stc, — limsup |z| < sto, — limsup |z].

So it follows that, for any z € C,

{w €C:|w—z| <stg, — limsup |z —z|} -
k

C {w € C:|w—z| < sto, — limsup [z, —z|} .
k
Now Theorem 6 of [3] implies that

ﬂ {w €C:|w—z| < ste, — limsup |zg —z|} -
k
zeC

C ﬂ {wE(C:|w—z| Sstcu—limsup|xk—z|},
k
z€C
ie.,

sto, — core{x} C sto, — core{x}.

Thus we have

COROLLARY 2.4. Let F = {\(n)} and E = {u(n)} be infinite subsets of N.
If E\F is finite and limn% =d #0, then stc, —core{z} C stc, —core{xr}
for every bounded complex sequence x.

We immediately get the next corollary from (ii),(iii) and (iv) of Theo-
rem 2.2 while the latter from Theorem 2.3 for every bounded complex se-
quence z.

COROLLARY 2.5. Let F = {A(n)} and E = {u(n)} be infinite subsets of
N. Then, for every bounded complex sequence x,

(i) if EAF is finite and limn% =d#0, then stc, — core{z} = stc, —
core{z};

(ii) of E\ F is finite and limn% = d # 0, then st — core{Cyx} C
st — core {Chx};

(i) of EAF is finite and limn% =d # 0, then st — core {C,z} = st —
core {Crz}.
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COROLLARY 2.6. Let E = {u(n)} be infinite subset of N. Then, for every

bounded complex sequence x,
(i) if lim, —to5 = d # 0, then st — core {z} C stg, — core{x};
(ii) 4f limy, tos = d # 0, then st — core {Cua} C st — core {Cix}.

3. CONSISTENCY OF A-STATISTICAL CONVERGENCE

In this section we consider the concept of A—statistical convergence and
recall definitions of inclusion and consistency in the statistical convergence
sense as introduced by Fridy and Khan [8]. Also we get necessary conditions
on the matrices A and B so that A and B are equivalent in the statistical
convergence sense and I' 4 (z) = T'g(z) for a real number sequence x where A
and B are nonnegative regular summability matrices.

We begin by giving two definitions.

DEFINITION 3.1. If stq4 D stp, A is said to be stronger than B in the
statistical convergence sense.

DEFINITION 3.2. Matrices A and B are called consistent in the statistical
convergence sense if sta — limx = stg — limx whenever x € sty N stg. If
A is stronger than B in the statistical convergence sense and consistent with

t t

B in the statistical convergence sense we then write A 5B 8. If A 5 B
t

and B S A, A and B are called equivalent in the statistical convergence sense

denoted by AL B).
( y

Throughout this section A = (anx) and B = (byx) will denote nonnegative
regular summability matrices.

THEOREM 3.3. If the condition

limsupz |ank — bnk| =0 (%)
T k=1

holds, then 64(K) =0 if and only if 65(K) =0 for every K C N.

PROOF. (Necessity). If 4(K) = 0, then lim > ar = 0. Since
" keK

keK k=1

we have limsup,, |(Axx)n — (Bxk)n| = 0 by (%), which implies
0p(K) =1m Y by = 0.
" kek
Sufficiency follows from the symmetry. O

Hence we can get the following results from Theorem 3.3.
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THEOREM 3.4. If A and B satisfy the condition (x), then

(i) sta = stp
(i) Ta(z) =Tp(z)

for a real number sequence x.

The statistical limits in (¢) of Theorem 3.4 agree (i.e., stg — limz = L
implies sty — limz = L). Therefore, if A and B satisfy condition () of
Theorem 3.3, then A and B are consistent in the statistical convergence sense.

Note that the support sets generated by nonnegative summability meth-
ods A and B can be used to determine when, if a sequence x is both A- and
B-statistically convergent, the A-statistical and B-statistical limits of x agree.
In [2] Connor and Kline, using the “ASN program” have shown that A and B
assign the same statistical limit to x if K4 N Kp # ¢ where the sets K4 and
K p are the support sets of the nonnegative regular summability matrices A
and B.

The next corollary shows that we have the same result under different
conditions.

COROLLARY 3.5. If A and B satisfy the conditions (x) of Theorem 3.3,
then A X B.

Recall that A-statistical boundedness implies that st 4 —lim sup and st 4 —
liminf are finite and st4 — limsupx and st 4 — liminf x are the greatest and
least A-statistical cluster points of such an z [3]. Also

sta —core{x} = [sta — liminfx, st4 — limsup ]

for any A—statistically bounded real number sequence z [3].
Hence we can get the following from (ii) of Theorem 3.4.

COROLLARY 3.6. If A and B satisfy the condition (), then sta —
core{z} = stg — core{x} for every bounded real sequence x.

Note that the converse of Corollary 3.6 does not hold. This is seen by the
following example.

EXAMPLE 3.7. Counsider the matrices A = (an) and B = (b,) defined

by
n
— . k=n?
3(n+1)’ "
k=9 1- —" _ k=n241
3(n+1)

0, otherwise;
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and
n
—_— k =n?
5(n+ 1) "
bnk = — L k=n24+1
5(n+1) nt
0, otherwise.

It is clear that A and B are nonnegative regular matrix summability methods.
Let us define the sequence z = (z1) by

1, k=n?

Tk = .
0, otherwise.

If we write By := {k=n?:n=1,2,...} and By := {k #n?:n=1,2,..},
then we have 04(E1) = 3, 6a(E2) = 2, 0p(Er) = %, 6p(E>) = 2. Thus

5.
Ta(z) = I'p(z) = {0,1}. Also, sty — core{z} = stp — core{z} = [0,1].
Observe that

. - 4
hmsupz |ank — bnk| = TR
" k=1
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