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ON A-STATISTICAL CLUSTER POINTS
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Abstract. In this paper we study the concepts of statistical cluster
points and statistical core of a sequence for Cλ methods defined by deleting
a set of rows from the Cesáro matrix C1. Also we get necessary conditions
on the matrices A and B so that A and B are equivalent in the statistical
convergence sense and, study the equality ΓA(x) = ΓB(x),where ΓA(x) is
the set of A-statistical cluster points of the real number sequence x.

1. introduction and notations

In [5] Fridy introduced the concepts of statistical limit points and statis-
tical cluster points of a number sequence. These concepts are compared to
the usual concept of limit point of a sequence. In [6] Fridy and Orhan intro-
duced the concepts of statistical limit superior and inferior. They have also
given the definition of the statistical core of a real number sequence which is
based on the idea of the statistical cluster points of the sequence, and proved
the statistical core theorem. Those results have also been extended [7] to the
complex case by them, too. In [2] Connor and Kline extended the concept
of a statistical limit (cluster) point of a number sequence to a A-statistical
limit (cluster) point where A is a nonnegative regular summability matrix. In
[3] the present author extended the concepts of statistical limit superior and
inferior (as introduced by Fridy and Orhan) to A-statistical limit superior and
inferior and given some A-statistical analogue of properties of statistical limit
superior and inferior for a sequence of real numbers. Also in [3] the concept
of statistical core is extended to A-statistical core.

In this paper we study the concepts of statistical cluster points and statis-
tical core of a sequence for Cλ methods, defined by deleting a set of rows from
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the Cesàro matrix C1. Also we get necessary conditions on the matrices A and
B so that A and B are equivalent in the statistical convergence sense and,
study the equality ΓA(x) = ΓB(x),where ΓA(x) is the set of A− statistical
cluster points of the real number sequence x.

First we introduce some notation. Let A = (ank) denote a summability
matrix which transforms a number sequence x = (xk) into the sequence Ax

whose n-th term is given by (Ax)n =
∞∑
k=1 ankxk . As usual, N and C denote

the sets of positive integers and complex numbers, respectively.
If K is a set of positive integers, |K| will denote the cardinality of K. The

natural density of K [11] is given by

δ(K) := lim
n

(C1χK)n = lim
n

1

n
|{k ≤ n : k ∈ K}| ,

if it exists, where C1 is the Cesàro mean of order one and χK is the charac-
teristic function of the set K.

We recall the following elementary result concerning natural density (See
[11, page 222]):

Let E be an infinite subset of N and consider E as strictly increasing
sequence of positive integers, say E = {λ(n)}∞n=1. Then

δ(E) = lim
n

n

λ(n)

provided this limit exists. Because δ(E) does not exists for all subsets of N,
it is convenient to use the upper asymptotic density δ∗(E), which is defined
by

δ∗(E) = lim sup
n

1

n
|{k ≤ n : k ∈ E}|

(See [9, p.xvii]). For convenience we state here some properties of δ∗. For
arbitrary subsets E and F of N we have

(i) if δ(E) exists then δ(E) = δ∗(E);
(ii) δ(E) 6= 0 if and only if δ∗(E) > 0;

(iii) if E ⊆ F, then δ∗(E) ≤ δ∗(F ).

Natural density can be generalized by using a nonnegative regular summa-
bility matrix A in place of C1.

Following Freedman and Sember [4] we say that a set K ⊆ N has
A−density if

δA(K) = lim
n

∑

k∈K

ank = lim
n

∞∑

k=1

ankχK(k) = lim
n

(AχK)n

exists where A is a nonnegative regular summability matrix.
The number sequence x = (xk) is A−statistically convergent to L pro-

vided that for every ε > 0 the set Kε := {k ∈ N : |xk − L| ≥ ε} has A−density
zero [2, 10]. In this case we write stA − limx = L.
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By stA we denote the set of all A−statistically convergent sequences.
The number γ is a A−statistical cluster point of the number sequence

x = (xk) provided that for every ε > 0, δA(Kε) 6= 0 where Kε :=
{k ∈ N : |xk − γ| < ε} [2]. Note that the statement δA(K) 6= 0 means that
either δA(K) > 0 or K fails to have A−density.

By ΓA(x) we denote the set of all A−statistical cluster points of x. When
A = C1 we shall simply write δ instead of δC1

and Γ instead of ΓC1
.

The sequence x = (xk) is the A−statistical bounded if it has a bounded
subsequence {xk}k∈E such that δA(E) = 1; stA− lim supx and stA − lim inf x
are the greatest and least A−statistical cluster point of such an x [3]. Also
A−statistically bounded sequence x is A−statistically convergent if and only
if stA − lim inf x = stA − lim supx [3].

Note that A−statistical boundedness implies that stA− lim sup and stA−
lim sup are finite [3]. Some results on statistical limit points may be found in
[2, 5, 6, 13].

For any complex number sequence x = (xk) the A−statistical core of x is
given by

stA − core {x} =
⋂

H∈H(x)

H,

where H(x) is the collection of all closed half-planes H that satisfy δA {k ∈ N :
xk ∈ H} = 1 (see [3]).

In [3, Theorem 6] it is shown that for every A− statistically bounded
complex number sequence x = (xk)

stA − core {x} =
⋂

z∈C

Bx(z),

where

Bx(z) :=

{
w ∈ C : |w − z| ≤ stA − lim sup

k
|xk − z|

}
.

When A = C1 we shall simply write st-core instead of stC1
− core (see [6, 7]).

2. Cλ-statistical cluster points

In [1] Armitage and Maddox introduced the summability method Cλ de-
fined by deleting a set of rows from the Cesàro matrix. They gave some
inclusion theorems for Cλ methods. This method has also been studied in
[12].

Let E be an infinite subset of N and consider E as strictly increasing
sequence of positive integers, say E = {λ(n)}∞n=1 . The summability method
Cλ, as introduced in [1], is defined as

(Cλx)n =
1

λ(n)

λ(n)∑

k=1

xk,
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where x = (xk) is a sequence of real or complex numbers and n = 1, 2, . . .. It
is clear that Cλ is regular for any λ.

Note that if A = Cλ, then γ ∈ ΓCλ
(x) if, for every ε > 0,

δCλ
(Kε) = lim

n
(CλχKε

)n = lim
n

1

λ(n)
|{k ≤ k(n) : |xk − γ| < ε}| 6= 0.

In the particular case when λ(n) = n we see that (CλχKε
)n is the C1

mean of χKε
.

In this section we establish inclusion relations between ΓCλ
(x) and ΓCµ

(x)
and between Γ(Cλx) and Γ(Cµx) for Cλ methods. Also we study Cλ-statistical
core for a bounded complex sequence.

Theorem 2.1. Let F = {λ(n)} and E = {µ(n)} be infinite subsets of N.

If E \ F is finite and limn
λ(n)
µ(n) = d 6= 0, then

δC
λ

(K) 6= 0 implies δCµ
(K) 6= 0 for every K ⊆ N.

Proof. If E\F is finite, then there existsN such that {µ(n) : n≥N}⊂F.
For n ≥ N let j(n) be such that µ(n) = λj(n). Then (j(n)) increases and
j(n)→∞, (as n→∞). If δCλ

(K) 6= 0, then

δ∗C
λ

(K) = lim sup
n

|{i ≤ λ(n) : i ∈ K}|
λ(n)

> 0.

Since lim supn(xnyn) ≤ (limnxn)(lim supnyn) provided that the right hand
side exists, and

λ(n)

λj(n)

|{i ≤ λ(n) : i ∈ K}|
λ(n)

≤
∣∣{i ≤ λj(n) : i ∈ K

}∣∣
λj(n)

,

we get

δ∗Cµ
(K) = lim sup

n

|{i ≤ µ(n) : i ∈ K}|
µ(n)

> 0.

Hence δCµ
(K) 6= 0.

Since E∆F = (E \ F ) ∪ (F \ E), (Cµx)n = (C1x)µ(n) and (Cλx)n =
(C1x)λ(n), we immediately get the following from Theorem 2.1.

Theorem 2.2. Let F = {λ(n)} and E = {µ(n)} be infinite subsets of N.

(i) If E \ F is finite and limn
λ(n)
µ(n) = d 6= 0, then ΓCλ

(x) ⊆ ΓCµ
(x).

(ii) If E∆F is finite and limn
λ(n)
µ(n) = d 6= 0, then ΓCλ

(x) = ΓCµ
(x).

(iii) If E \ F is finite and limn
λ(n)
µ(n) = d 6= 0, then Γ(Cµx) ⊆ Γ(Cλx).

(iv) If E∆F is finite and limn
λ(n)
µ(n) = d 6= 0, then Γ(Cµx) = Γ(Cλx).

When λ(n) = n the following may be deduced from (i) and (iii) of Theo-
rem 2.2.
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Theorem 2.3. Let E = {µ(n)} be infinite subset of N.

(i) If limn
n

µ(n) = d 6= 0, then Γ(x) ⊆ ΓCµ
(x).

(ii) If limn
n

µ(n) = d 6= 0, then Γ(Cµx) ⊆ Γ(C1x).

It is clear from (i) of Theorem 2.2 that for every bounded complex se-
quence x = (xk)

stCλ
− lim sup |x| ≤ stCµ

− lim sup |x| .
So it follows that, for any z ∈ C,{

w ∈ C : |w − z| ≤ stCλ
− lim sup

k
|xk − z|

}
⊆

⊆
{
w ∈ C : |w − z| ≤ stCµ

− lim sup
k
|xk − z|

}
.

Now Theorem 6 of [3] implies that

⋂

z∈C

{
w ∈ C : |w − z| ≤ stCλ

− lim sup
k
|xk − z|

}
⊆

⊆
⋂

z∈C

{
w ∈ C : |w − z| ≤ stCµ

− lim sup
k
|xk − z|

}
,

i.e.,
stCλ

− core {x} ⊆ stCµ
− core {x} .

Thus we have

Corollary 2.4. Let F = {λ(n)} and E = {µ(n)} be infinite subsets of N.

If E \F is finite and limn
λ(n)
µ(n) = d 6= 0, then stCλ

−core {x} ⊆ stCµ
−core {x}

for every bounded complex sequence x.

We immediately get the next corollary from (ii),(iii) and (iv) of Theo-
rem 2.2 while the latter from Theorem 2.3 for every bounded complex se-
quence x.

Corollary 2.5. Let F = {λ(n)} and E = {µ(n)} be infinite subsets of
N. Then, for every bounded complex sequence x,

(i) if E∆F is finite and limn
λ(n)
µ(n) = d 6= 0, then stCλ

− core {x} = stCµ
−

core {x};
(ii) if E \ F is finite and limn

λ(n)
µ(n) = d 6= 0, then st − core {Cµx} ⊆

st− core {Cλx};
(iii) if E∆F is finite and limn

λ(n)
µ(n) = d 6= 0, then st − core {Cµx} = st −

core {Cλx}.
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Corollary 2.6. Let E = {µ(n)} be infinite subset of N. Then, for every
bounded complex sequence x,

(i) if limn
n

µ(n) = d 6= 0, then st− core {x} ⊆ stCµ
− core {x};

(ii) if limn
n

µ(n) = d 6= 0, then st− core {Cµx} ⊆ st− core {C1x}.

3. consistency of A-statistical convergence

In this section we consider the concept of A−statistical convergence and
recall definitions of inclusion and consistency in the statistical convergence
sense as introduced by Fridy and Khan [8]. Also we get necessary conditions
on the matrices A and B so that A and B are equivalent in the statistical
convergence sense and ΓA(x) = ΓB(x) for a real number sequence x where A
and B are nonnegative regular summability matrices.

We begin by giving two definitions.

Definition 3.1. If stA ⊃ stB , A is said to be stronger than B in the
statistical convergence sense.

Definition 3.2. Matrices A and B are called consistent in the statistical
convergence sense if stA − limx = stB − lim x whenever x ∈ stA ∩ stB . If
A is stronger than B in the statistical convergence sense and consistent with

B in the statistical convergence sense we then write A
st⊃ B [8]. If A

st⊃ B

and B
st⊃ A, A and B are called equivalent in the statistical convergence sense

(denoted by A
st
∼ B ).

Throughout this section A = (ank) and B = (bnk) will denote nonnegative
regular summability matrices.

Theorem 3.3. If the condition

lim sup
n

∞∑

k=1

|ank − bnk| = 0 (∗)

holds, then δA(K) = 0 if and only if δB(K) = 0 for every K ⊆ N.

Proof. (Necessity). If δA(K) = 0, then lim
n

∑
k∈K

ank = 0. Since

|(AχK)n − (BχK)n| ≤
∑

k∈K

|ank − bnk| ≤
∞∑

k=1

|ank − bnk| ,

we have lim supn |(AχK)n − (BχK)n| = 0 by (∗), which implies

δB(K) = lim
n

∑

k∈K

bnk = 0.

Sufficiency follows from the symmetry.

Hence we can get the following results from Theorem 3.3.
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Theorem 3.4. If A and B satisfy the condition (∗), then

(i) stA = stB
(ii) ΓA(x) = ΓB(x)

for a real number sequence x.

The statistical limits in (i) of Theorem 3.4 agree (i.e., stB − limx = L
implies stA − limx = L). Therefore, if A and B satisfy condition (∗) of
Theorem 3.3, then A and B are consistent in the statistical convergence sense.

Note that the support sets generated by nonnegative summability meth-
ods A and B can be used to determine when, if a sequence x is both A- and
B-statistically convergent, the A-statistical and B-statistical limits of x agree.
In [2] Connor and Kline, using the “βN program” have shown that A and B
assign the same statistical limit to x if KA ∩KB 6= φ where the sets KA and
KB are the support sets of the nonnegative regular summability matrices A
and B.

The next corollary shows that we have the same result under different
conditions.

Corollary 3.5. If A and B satisfy the conditions (∗) of Theorem 3.3,

then A
st
∼ B.

Recall that A-statistical boundedness implies that stA−lim sup and stA−
lim inf are finite and stA − lim supx and stA − lim inf x are the greatest and
least A-statistical cluster points of such an x [3]. Also

stA − core{x} = [stA − lim inf x, stA − lim supx]

for any A−statistically bounded real number sequence x [3].
Hence we can get the following from (ii) of Theorem 3.4.

Corollary 3.6. If A and B satisfy the condition (∗), then stA −
core{x} = stB − core{x} for every bounded real sequence x.

Note that the converse of Corollary 3.6 does not hold. This is seen by the
following example.

Example 3.7. Consider the matrices A = (ank) and B = (bnk) defined
by

ank =





n

3(n+ 1)
, k = n2

1− n

3(n+ 1)
, k = n2 + 1

0, otherwise;
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and

bnk =





n

5(n+ 1)
, k = n2

1− n

5(n+ 1)
, k = n2 + 1

0, otherwise.

It is clear that A and B are nonnegative regular matrix summability methods.
Let us define the sequence x = (xk) by

xk =

{
1, k = n2

0, otherwise.

If we write E1 := {k = n2 : n = 1, 2, ...} and E2 := {k 6= n2 : n = 1, 2, ...},
then we have δA(E1) = 1

3 , δA(E2) = 2
3 , δB(E1) = 1

5 , δB(E2) = 4
5 . Thus

ΓA(x) = ΓB(x) = {0, 1}. Also, stA − core{x} = stB − core{x} = [0, 1].
Observe that

lim sup
n

∞∑

k=1

|ank − bnk| =
4

15
.
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