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ON APPROXIMATION BY MODIFIED SZASZ-MIRAKYAN
OPERATORS

ZBIGNIEW WALCZAK
Poznan University of Technology, Poland

ABSTRACT. We consider certain modified Szasz-Mirakyan operators
Sn(f;an,bn) and Tn(f;an,bn) in spaces Cp and L of continuous and
Lebesgue integrable functions, respectively. We study approximation prop-
erties of these operators.

1. INTRODUCTION

1.1. Let S, be the Szasz-Mirakyan operator and let 7; be the Szasz-
Mirakyan-Kantorovitch operator, i. e.

(1.1 Sulfi) = gowk(m)f (%),

o (k+1)/n
(1.2) T.(f;z) = anpk(nx) f(¥)dt,
k=0 k/n
x € Ry :=[0,40), n € N, where
tk
(1.3) oR(t) == e_ty for te Ry, ke Ny=NU{0}.

Approximation properties of S,, were examined in [1] for functions f € Cp, p €
Ny, where C,, is a polynomial weighted space with the weight function wy,

(1.4) wo(z) =1, wy(z):=(1+2P)"! it p>1,
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and C), is the set of all real-valued functions f for which fw, is uniformly
continuous and bounded on Ry and the norm is defined by

(1.5) £l = 11F () llp = Sup wp(2) [ f(2)]-

In papers [2] and [3] the approximation properties of operators T,, for
functions f € L were examined, where L = L (Ry) is the space of all real-
valued functions f Lebesgue integrable on Ry and the norm

+o0
(1.6) 1]l = / ().

1.2. In this paper we modify operators S,, and T,, given by (1.1) and (1.2),
i. e. we consider operators

- k
1.7 S’n, ; n;bn7 = n R R7 N7
0D St = anton)f (5] e ne
for f € Cp, p € Nop, and
0 (k+1)/bn
(1.8) Tn(f;an,bp;x) == angok(an:v) / f(t)dt, x € Rp,n€N,
k=0 k/bn

for f € L, where (ay)3° and (b,)$° are given increasing and unbounded nu-
merical sequences such that a,, > 1, b, > 1 and (a,/b,)$° is non-decreasing
and

an 1
1. — =1 — .
(1.9) oo +O(bn>

If a,, = by, =n for all n € N, then we have operators (1.1) and (1.2).

Operator s S,, defined by (1.7) have some application to differential equa-
tions, similarly as operators Szasz-Mirakyan (1.1).

In our paper we shall study approximation properties of operators (1.7)
and (1.8). In Section 2 we shall examine operators Sy, (f; an, by) for f € C), and
in Section 3 operators Ty, (f; an, b,) for f € L. We shall prove approximation
theorems which are similar to some results given in [1, 2, 3] for operators (1.1)
and (1.2).

2. OPERATORS Sy, (f;an,by)

2.1. First we shall give some auxiliary results. From (1.7) and (1.3) we derive
the following formulas

(21) Sn(l;anvbn;x) =1,

(2.2) Sp(t — x;an,by;x) = <Z—n - 1) x,

n

2
(2.3) Sp((t —2)2;an,by; ) = (Z—" —1) 2?4 2t
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for x € Rp and n € N, which by (1.9) imply
lim b,S,(t — x;a,,b,;2) =0,
(2.4) lim 0,8, ((t — )% an, bp; ) =

for every = € Ry.
By elementary calculations we can prove also the following

LEMMA 2.1. For every x € Ry
lim 25, ((t — z)%; an, by; ) = 32°.
n—oo

Using the mathematical induction we can prove

LEMMA 2.2. Let r € N be fixred number. Then there exist positive numer-
ical coefficients A, ;, 1 < j <, depending only on r and j such that

j ;
Sn(tr;anabn;x) = b_r Z/\r,j(anI)Ja
n =1

for all x € Ry and n € N. Moreover we have A\p1 =1 = A ,.
Applying Lemma 2.2, we shall prove two lemmas.

LEMMA 2.3. For given p € Ny and (an)3° and (b,)3° there exists a positive
constant My (b1, p) such that

(2.5) [1Sn (1/wp(t); an, by; ')”p < My (by, p), n € N.
Moreover for every f € C,
(2.6) 190 (f3 ans bni ), < Ma(br,p) [IfIl,,  neN.

The formulas (1.7) and (1.3) and the inequality (2.6) show that S,, n € N,
is a positive linear operator from the space C)p into Cp, p € Np.

ProoF. First we shall prove (2.5).
If p = 0, then (2.5) follows by (1.4), (1.5) and (2.1). If p > 1, then by
(1.4), (1.7), (1.9) and Lemma 2.2 we get

wp(x) Sy (1/wp(t); an, bp; ) = wp(z) {14+ Sy (5 an, bp; )}

1 P 1 an\’ 7
= A [
1+x1’+; Py (bn) 1+ zp

p
1
S 1+ E Ap,j bp_j = Ml(blvp)a
1

Jj=1

for all x € Ry and n € N. From this follows (2.5).
By (1.7) and (1.5) we have

150 (5 ans bas I, < WFIp 1150 (1/wp(); an, bu; ),
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for every f € Cp, p € Ny and n € N, which by (2.5) yields (2.6). O

LEMMA 2.4. For every p € Ny there exists a positive constant M (b1, p)
such that

2.7)  wy(x)Sn (M;an,bn;x) < Ms(b1, p) l(z_” _ 1)2:02 Lz

wp(t) n bn

forallz € Ry andn € N.

PRrROOF. If p = 0, then (2.7) follows by (2.3).
Let Sy, (f;2) = Sn (f;an, bn;x). By (1.4) and (1.7) we have

(2.8) Sn ((t =) Jwp(t);z) = S, ((t—2)%2) + S, (Pt — 2)%52),
for p > 1 and n € N. Since

n an 3a,2%  anx
S, ((t - n _ an InZ
((t=2) <bn > () g

Sn((t—z Sh t—x) )—i—zS ((t—x)z;x),

we immediately obtain (2.7) for p =1 by (2.3) and (2.8).
If p > 2, then by Lemma 2.2 we get

( t—x )z
=wp {S (tp+2 ) 2xSn(tp+1;x)+:c2Sn(tp;x)}

1 p+2 p+1

= wp(z) bp+2 Z pt2,5(anx)’ — Py Apt1,5(an®)’ +
j=1 noj=1

2P p+2 P 2
T , i\ _® In Gn _
+b£;Ap,g(anx) =1 (bn) (bn 1) +

p+1 j—1

x 1 x i
+Q prZ p+2,50 n1+ " bpz)\p-i'ld "1 2 PR

i+l

al
bplszjn1+p )
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and by 0 < ‘g—: <1 for n € N it follows that

2 p+1
an 1
wy ()5, (tp<t—z>2;x)é(b——1> 2+ = Eiwybpﬂ 7+
Jj=1

n n

p—1

+2ZAP+1J +mebp —

Jj=1

2
On x
SMz(blap){(b— - 1) * + b_}

for x € Ry, n € N. From this and by (2.8) and (2.3) and (1.4) we obtain (2.7)
for p > 2. Thus the proof is completed. O

2.2. Now we shall prove three approximation theorems for S, (f;an,bn),
using the modulus of continuity wi(f;Cp) and the modulus of smoothness
wa(f; Cp) of function f € Cp, p € Ny, 1. e.

wi(f;Cpit) = sup [Anf()llp,  w2lfiCpit) := sup [|AZF()]lp,
0<h<t 0<h<t
for ¢t > 0, where
Apf(x):=flz+h)—f(x),  Apf(x):=fx) = 2f(z+h) + f(x + 2h).
Let

2
(2.9) U, (z) := (Z—"—l) :c2+b£, x € Ry, neN.

THEOREM 2.5. Suppose that f € Cg with a fixed p € Ng. Then there
exists a positive constant Ms(by,p) such that
(2.10)

Wy (@) S0 (f:ans bui@) = F@)] < 111y | T

1|z + Ms(blap)llf””pwn(x)

for allz € Ry andn € N.
PRrROOF. From (1.7) we get
(2.11) Sn(fian,bp;0) = f(0),  ne€N,
which implies (2.10) for x = 0. Let = > 0 and let S, (f;x) = S,.(f;an,bn;x).
For f € C’f) and t € Ry we have

10 = f@+r@e-0+ [ [ " (u)duds
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and consequently

F(t) = f(2) + f@)(t —2) + / / ' (u)dsdu

:f(x)+f’(:c)(t—x)+/ (t —u) f" (u)du.

x

From this and by (2.1) we get
¢
S,((0:0) = () + 10500~ 0) 4 5, [ (0= )" wduia )
for n € N. But by (1.4) and (1.5) we have
1 1

[ = wrwad <18, (S + o) €0
From the above and by (2.2), (2.3), (2.7) and (2.9) we obtain

wy(2)[Sn (f(t); ) — f(2)] <
S||JN||p |Sn(t — z;2)| +

171, { s, <%x) £, (0= o)}

<11

— 1z 4+ Ms(b1, )| ["]lp¥n(x), neN.

an
bn,
Thus the proof is completed. O

From Theorem 2.5 we derive the following

COROLLARY 2.6. Let p(x) = (l—l—xz)il, x € Ro. If assumptions of
Theorem 2.5 are satisfied then there exists a positive constant My(by,p) such
that

1180 Fsanst) = Aol < (1= 32 ) 17 I+ Malor,p ", e .

THEOREM 2.7. Suppose that f € C), with a fivred p € Ng. Then there
exists a positive constant My(by,p) such that

wy(2)[Sn (f; an, by x) — fz)] <
T 1 (@)™ (13 G V@) +
+ Ms(b1, p)ws (f; Cpi v/ \I/n(x)) ;

for all z > 0 and n € N, where ¥,,(-) is defined by (2.9). For x =0 follows
(2.11).

A

(2.12) =
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PROOF. Similarly as in [1] we shall apply the Stieklov function f, for
f el

h h
4 (2 [=
() == ﬁ/ / [flx+s+t)— f(z+2(s+1))]dsdt,
o Jo
x € Ry, h > 0, for which we have

fh(x) = % /05 I:SAh/Qf(.T—" s) —2Apf(x + 25)} ds,

H) = 15 (887,00 (@) — ARF(@)]

Hence, for h > 0, we have

(213 1= 1, < o (£ Cyih).
(.14 Il < 50 (7. Cpi) 25,
(2.15) I ll, < 9h 2wy (f,Cpih),

which show that f, € C7 if f € C,. By denoting Sy (f;an,bn; ) as Sn(f;x),

we can write
wp () [Sn(f;2) — f(@)] Swp(@) {[Sn (f = fui2)| + [Sn (s 2) = fu(2)]
+ [fn(z) = f(2)[} == AL + Az + A3,
for x >0, h>0and n € N. By (2.6) and (2.13) we have
Ay < Mi(by,p) [I[f = full, < Mi(b1,p)wz (f,Cpih),
As <ws (f,Cp;h).
Applying Theorem 2.5 and (2.14) and (2.15), we get

Ay < ||fh||p @+ Ms(by, p) | £3llp ¥ ()

5x

A

wp()
~ wp(x + h) b__1

Combining these and setting h = /¥, (z), for fixed x > 0 and n € N, we
obtain the desired estimate (2.12). O

wi(f; Cps k) +9M3(b1, p)h 2V, (z)wa (f; Cp; h).

Analogously we obtain the following

THEOREM 2.8. Let f € Cp, p € No, and let p(z) = (1 + x2)_1 forx € Ry.
Then there exists a positive constant Mg(b1,p) such that

0 Fsanstn) = £l < (1= 52 ) Vi (1631 Vo) +
+ My (br, p)ws (f;c,,; 1/\/@) , neN.
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From Theorems 2.7 and 2.8 we derive

COROLLARY 2.9. Let f € Cp, p € No. Then for S, defined by (1.7) we
have

(2.16) lim S,(f;an,bn;x) = f(z), =€ Rp.

n—oo

The convergence (2.16) is uniform on every interval [x1,x2],x2 > 21 > 0.

2.3. Now we shall prove the analogy of (2.16) for the first order derivative.
Moreover we shall give other properties of derivatives of S, (f;an,by).

THEOREM 2.10. Let f € Cp, p € Ny, and let zo > 0 be a point for which
there exists finite deriwative f'(xo). Then

(2.17) Jim (Si(f3an,b0)) (20) = f'(20)-
PrOOF. By assumptions we can write
(2.18) f(@) = f(xo) + f'(20)(t — o) + €1(t, 20)(t — x0),

for t € Ry, where

FO=f(@o) _ 1 :
e1(t) = e1(t; ) = { t—z0 0 f'(o) ii f io’
— L0,

is continuous function at zg and €1 € Cp,. From (1.7) we get for S, (f;z) =
Sn(fa G, bp; I)

/ bn
(2.19)  (Su(f(1) (2) = (bn = an)Su(f(2); 2) + —=Su((t — 2) f(t); 2),

for z > 0 and n € N. By (2.18), (2.19) and (2.1) and by elementary calcula-
tions we obtain

(Su(F(£))) (o) =
— f(xo) {bn - Z—’;sna _ 960;960)} +
(2.20)

+ /(o) {(bn —ap)Sn(t — xo;x0) + Z—ZSn ((t— z0)%; xo)} +

+ (bn — an)Sn (e1(t)(t — zo;x0) + Z—ZSn (e1(t)(t — x0)*; o) -

Applying Corollary 2.9 and properties of €1, we get

(2.21) nhﬂngo Sn (e1(t)(t — x0);20) = 0,
(2.22) nh_)rrgo S (1(t);20) = €3(20) = 0.

By the Holder inequality we have
S (e2(t)(t — m0)*;20) | < {Sn (E%(t);ffo)}% {Sn ((t —z0)*;m0) } 2,

=
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for n € N which by (2.22) and Lemma 2.1 implies

(2.23) lim b,S, (e1(t)(t — z0)*; 20) = 0.

n—oo

Using (2.2) - (2.4), (1.9), (2.21) and (2.22) to (2.20), we immediately obtain
(2.17). 0

THEOREM 2.11. Suppose that f € Cp, p € Ng. Then for everyr € N there
exists the r-th derivative of Sy (f; an,bn) on Ry. Moreover (Sy(f; an, bn))(r) €
Cp and

224) [[(Su(f3an,52)"

< My (by,p)ay,
p

Ai/bnf(')Hp for r,m €N,

where My (b1,p) is a positive constant given in Lemma 2.8 and

T

(2.25) nfa)=>" ( ; > (=1)" "% f(x + kh).

k=0
PROOF. Let Sy, (f;x) = Sn(f;an,bn;x). From (1.7) we get

(Su(F(1) (2) = —anSn(f(t); 7) + anSn(f(t + 1/bp); )
= anSn(A1 s, f(1); ), x € Ry, neN.

Hence, for every r € N , we obtain the formula
(226) (Sa(F1)7 (1) = apSu(A], f(1);2),  for w€ R, meN,

where A7 f(z) := Ay (A7 f(z)) for 7 > 2 and from this follows (2.25).
Applying Lemma 2.3, we derive the inequality (2.24) from (2.26). O

Theorem 2.11 and Lemma 2.3 imply

COROLLARY 2.12. S, n € N, defined by (1.7) is positive linear operator
from the space Cp, p € Ny, into Cp°.

THEOREM 2.13. Suppose that f € Cp, p € No. Then:

(i) if f is increasing (decreasing) on Ry, then the function Syp(f;an,bn;-),
n € N, is also increasing (decreasing) on Ro;

(ii) if f is convex (concave) on Ro, then Sp(f;an,bn;-), n € N, is also
convez (concave) on Ry.

PROOF. Properties (i) and (ii) we derive from (2.26) with » = 1,2 and
by Corollary 2.12 and classical theorems of mathematical analysis. O
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3. OPERATORS Ty, (f; an,by)

It is obvious that operators T),(f;an,by), n € N, defined by (1.8) we can
consider for functions f € C},, p € Ny. For these operators and f € C) we
can prove lemmas and theorems similar to Theorems 2.5-2.13.

In this section we shall study properties of T, (f;an,by) for functions
f € L(Rp). We shall give theorem on point-convergence of the sequence
(T (f;an,by))]" and theorem on the degree of approximation of f € L (Ry)
by these operators.

Below we shall denote by ZkB:A x the sum of all x; with k € Ny and
A<k<B.

3.1. First we shall give some auxiliary results. From (1.8) we get
(3.1) Tn(l;an,bp;x) =1, x € Ry, neN.
LEMMA 3.1. T,(f;an,bn), n € N, defined by (1.8) is positive linear op-
erator from the space L (Ry) into L (Ro) and
by
(3.2) ITn(Fsan bullly, < M fll, - for meN.

PrOOF. By (1.8) it is obvious that T,,, n € N, is positive linear operator
well-defined for f € L (Ry) and

T (F5 @b ) < N fllp b Y onlane) =ballfl,  for z € RoneN.
k=0

Moreover by (1.8) and (1.6) we get

Foo o (k+1)/bn
| Tn(f5 an,bn)ll, = / b, Zg@k(anx)/ f(t)dt|dx
0 k=0 k/by,
- p(k+1)/bn 400
<X [l [ e,
=0 k/bn 0
But
+o0 1
(3.3) / or(apz)dr = — for ke Ny, neN.
0 (227

Hence for n € N we have
(k+1)/bn
ITu(Fram b, < Z/k Ol =""51,.

Since the sequence (b, /a,)5° is non-increasing and convergent to 1, we obtain
the inequality (3.2). O
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LEMMA 3.2. Let f € L(Ro) and let

(3.4) F(z):= /Ow f(t)dt, x € Ry.

Then F' belongs to the space Cp with p =0 and for every n € N there exists
the operator Sy, (F;an,by;-) deﬁned by (1.7). Moreover,
an

(3'5) (Sn(F§anabn))/ (I) = b_Tn(f;anvbn;I)

n

for allz € Ry andn € N.

PRrROOF. It is know that if f € L (Rp), then F' is a function continuous on
Ry and

|[F(@)| <|[fl,  for € Ro,
which shows that F' € Cy. Hence by Lemma 2.3 there exists Sy, (F;an,by;-),
n € N, and by (2.26) and (1.8) we get

d n
d Sn(F;anubn;x) = anSy (Al/an;anabn;x) = Z Tn(.ﬁanubn;x)a
X

n

for x € Ry, n € N. O

LEMMA 3.3. Let s > 0 be a fivred number and let

(3.6) ys(t) = { " Zfi Sy
Then
i . ;x) — ys(x)| da — = \/ 201
(37) /0 |Tn (ys(t)va’?“b""r) ys( )|d S ( 1) 7Ta1\/>
forme N.

ProoF. Let T,,(f; ) = Tn(f; an, bn; z). From (1.8) and (3.6) we get

sb,—1

T (ys(t);z) = Z vk (anx) for x€ Ry, neN.
k=0

Hence

+oo
/ 1T, (ya(8):2) — ys (&) dx =

(1)

vr(anx) — ys(z)| de := I + Is.
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Similarly as in [3] and by (3.3) we get for I; and I:

s |sbn—1 s 00
I :/ Z or(anz) — 1| dzx :/ ( Z (pk(anx)> dx,
0 | k=0 0 \k=sb,

+o0 sby,—1
I :/ ( Z cpk(anx)> dx
s k=0
sb,—1 +oo s
= Z {/ wk(ana?)dz—/ wk(anx)dz}
k=0 0 0
sb,—1 1 s [/sbn—1
- Z - < Z @k(an$)> dx
an, o
k=0 k=0
by, s s
— (——1)S+/ (Z ng(an )) dx
" 0 \k=sb
Consequently
+oo b s 0
/ 1T (ys(t); 2) — ys(2)| do < (a—n—l)s—l—Q/ Z orlanx) | da
0 " 0 \k=sb,
by, s >
< <— — 1) s—|—2/ ( Z ka(anx)> dz.
n 0 k=san

Similarly as in [3] we can assume without loss of generality that sa, is an
integer. Denoting by I3 the last integral, we get

0o _ k ;
L R S e
k=san k=san —an 7=0 J: n
7san *San > k
>y Lek > (s g
an k=san, j=k+1 an k=sa,+1 :
— e—san (San)san
(sap)!

and by the Stirling formula we get

\/271'5(1" \/ 27Ta1 \/

Combining these, we obtain (3.7). O

Arguing similarly as in the proof of Lemma 3.3, we shall prove the main
lemma.
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LEMMA 3.4. Let y,(t), € Ry, be the function defined by (3.6) and let

1
3.8 = —
(3.8) 1= T

Then there exists a positive constant Mr(a1,b1) such that for alln € N

T € Rp.

+oo
Rn(t) = / |Tn (ym(t)§anubn;$) _ym(tﬂpl(l')dx
(3.9) 0

< M7(a1’b1)¢%'
PRrROOF. From (3.6) it follows that
Yo (t) +ye(x) =1 for t,x € Ry.

Hence, for T, (f; ) = To(f; an, by; x), we have as in [3]

Ty (t); ) = yo(t) = Tl — ye(2);2) = 1 = ye(2) = Ta(ye(u); ).
By Lemma 3.3 and by Z—Z —1=o0 (ﬁ) we get for t <2

1

Now

+oo
Ro(t) = / T, (ys(w): ) — y(@)]| o1 (2)dee < Ms(as,b)

If ¢ > 2, then similarly as in [3] we can write

t e +oo tby,
Ralt) = [ o1(a) ( 3 sok<anx>> dot [ pila) (Z sok<anx>> da
0 t k=0

k=tby
= Il + IQ.

Analogously as in the proof of Lemma 3.3 we get

th thy k ;
1 gk optee 1 “ et (ta,)d
s H/t c xdm:utzz a !
k=0 k=0 j=0
1 e—tan tan k (tan)J tby, k (tan)J
S A I S L
k=0 j=0 k=tan+1 j=0
1 e tan | n (ta,)’
<— tay, — j + 1)—— +te'* (b, — ay,
S 1+t an D (tan =i +1) g1 e (b —an)

1 L (tap)er 1 (b
< et ) 4 (20 )y
_1—|—t{e (tay)! +an+<an ) }

and by the Stirling formula and properties of a,, and b,, it follows that

1 b1 1 b1 Ap, 1
I < 22 2 (128 < My(ay, by)—, € N.
2= V2rtay, + a1 by + ax ( bn) < Ms(a 1)\/bn "
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Arguing as in [3], p. 169, we have for ¢t > 2

< </ /)m <k 3 gak(ana:)> do =TIy + I1s.

Since the function gy (a,x) is increasing for = € [0, k/a,] and decreasing for
x € [k/an, ), we have

= ta/2 b (ta,/2)t = 1
v —tan/2 n v —tap /2 n -
Ill - 6 Z 26 tan Z 2k

k=ta, k=0

S (G) e L)

4 (tay)!

and similarly as for Iy we get
1
Iy < Mio(ar, b1) ——=, neN.

by,

1 t 2 (anx)®
o< ———— [ emon® d
12—1th/2/(Je <Z k! o

k=ta,

For 15 we get

and applying the estimation obtained for I3 in the proof of Lemma 3.3, we

can write
I A\ ,/ € N.
125 241 27Ta1 ﬂ'a1 \/ "

Hence, for ¢t > 2 and n € N, we obtain also

1
R, (t) < Mii(a1,b1)

S

This completes the proof of (3.9). O
3.2. Now we shall prove main theorems on operators T,, defined by (1.8).

THEOREM 3.5. Suppose that f € L (Rg) and F is defined by (3.4). Then
(310) lim Tn(f> Uy b T) = f(.%‘)

n—oo

at every point x € Ry where

(3.11) F'(z) = f(x).
Hence (3.10) follows almost everywhere on Ry.

PROOF. By properties of F given in Lemma 3.2 and by Theorem 2.10 we
deduce that

(3.12) lim (S, (F;an,bn)) (z) = F'(z)

n—oo
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at every € Rog where F'(x) there exists. Next, by (3.5) and (1.9) and (3.12),
we obtain

nlingoTn(fvanvbnvx) = F/(I) = f(l’)

at every x € Ry where the condition (3.11) is satisfied.
Since (3.11) follows almost everywhere on Ry, we obtain the desired as-
sertion. O

Now we shall prove approximation theorem for T,, and f € L (Ry). We
shall apply the integral modulus of continuity of f € L (Rp), i. e.

(3.13) wi(f; Lyt) := sup [[Anf()lL, t>0.
0<h<t

THEOREM 3.6. Suppose that f € L(Ry) and f' € L(Ro) and p1 is the
function defined by (3.8). Then there exists a positive constant Mis(aq,by)
such that

(3.14) [T (fs an,bn) = flpall, < M12(a1,b1)||f’||L\/Lb_n

for allm € N.

Proor. Let T, (f;2) = Tn(f; an,bn;x). Analogously as in [3] we can
write

and

x —+oo
f(2) - £(0) = / f(t)dt = / Pty (1)t

.
To(fi2) - f(z) = / P T (g2 (8): ) — (1)} i,

for x € Ry and n € N. Hence

+oo o0
ITu() = fpall, < / / P AT (02 (8):2) — e (8)} | p1 ()

—+oo
< [ 1rolr.w
0
where R, (t) is defined in (3.9). Applying Lemma 3.4, we get
1

+oo
/0 £O ROt < Mr(ar ) =, me N,

and we complete the proof of (3.14). O

THEOREM 3.7. Suppose that f € L (Ry) and p1 is defined by (3.8). Then
there exists a positive constant Mys(aq,b1) such that

(3.15) [T (f5 any b)) — flp1ll, < Mas(ar, by)wr (f;L; \/Lb_)

for allm € N.
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PRrROOF. We shall apply the Stieklov function
1 h
fh(:v)zﬁ/ [z + u)du, xr€ Ry, h>0,
0
for f € L(Ryp). For f5 we have

+oo h
l=fl=7 [ | G+ - fana

1 h “+o0
Ay f(x)|dx ) du < wy (f; Ly h),
<o [ ([ sl as oz

dx

(3.16)
~h
where wy is defined by (3.13). Moreover we have
fr(@) = b~ A f (), z € Ry, h>0,
which implies
(3.17) 1Al <h o (f5 Ls h).

Hence f, € L(Ry) and f], € L(Ryp) if f € L(Ry) and h > 0. From this and
by Lemma 3.1 we get for T,,(f;z) = T (f; an, bn; x)

|Tn(f7$) - f(.%‘)| < |Tn(f - fh;x)| + |Tn(fh7x) - fh(w)| + |fh(x) - f(x)l )
for z € Ry, n € N and h > 0. Consequently
T () = fleally S NTu(f = fu)pally + T (fn) = fulpall, + 1(Fn = Heallr
for n € N. By (3.2) and (3.8) and (3.16) we get

b
Muf—mmmLsmuf—mmLsin—nm
b1

—(.(Jl(f,L,h), TLEN,
a

[(fn = Hpally, < NF = full, S wr (f5Lih).
Applying Theorem 3.6 and (3.17), we obtain

[T (fn) = falprll, < Mua(as, )b, 2|7l
< M12(a1, bl)h_lbgl/le (f, L, h), n € N.

IN

N

Combining these and setting h = 1/1/b,, for every fixed n, we immediately
obtain (3.15). O

Finally we remark that Theorems 2.5-3.7 for operators defined by (1.7)
and (1.8) are similar to certain results obtained for operators (1.1) and (1.2)
in papers [1, 2, 3].
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