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Abstract. Let X be a metric continuum. Let C2(X) be the hyper-
space of X consisting of all the nonempty and with at most two compo-
nents closed subsets of X, with the Hausdorff metric. In this paper we
prove that if X is a finite graph and Y is a metric continuum such that
C2(X) is homeomorphic to C2(Y ), then X is homeomorphic to Y .

1. Introduction

All the concepts not defined here will be taken as in the book [24]. A con-
tinuum is a nonempty compact and connected metric space. For a continuum
X and a positive integer n, consider the following hyperspaces:

2X = {A ⊂ X : A is closed and nonempty},
C(X) = {A ∈ 2X : A is connected},
Fn(X) = {A ∈ 2X : A contains at most n points} and

Cn(X) = {A ∈ 2X : A has at most n components}.
All the hyperspaces are considered with the Hausdorff metric H .
Let H(X) denote one of the hyperspaces 2X , C(X), Fn(X) or Cn(X).

We say that a continuum X has unique hyperspace H(X) provided that the
following implication holds: if Y is a continuum and H(X) is homeomorphic
to H(Y ), then X is homeomorphic to Y .

The topic of this paper is inserted in the following general problem.

Problem. Find conditions on the continuum X in order that X has
unique hyperspace H(X).
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Generalizing previous results by Duda, Nadler, Nadler and Eberhart and
Maćıas, Acosta proved that the following continua have unique hyperspace
C(X):

(a) Finite graphs different from an arc and the simple closed curve ([7,
9.1]),

(b) Hereditarily indecomposable continua ([23, 0.60]),
(c) Smooth fans ([10, Corollary 3.3]),
(d) Indecomposable continua such that all their proper nondegenerate sub-

continua are arcs ([18]).

Acosta also proved that the metric, with nondegenerate remainder, com-
pactifications of the ray [0,∞) have unique hyperspace C(X) ([1]).

Maćıas has shown that hereditarily indecomposable continua have unique
hyperspace 2X ([19]). Castañeda has proved that finite graphs have unique
hyperspace F2(X) and F3(X) ([6]). Related results to the subject of this
paper can be found in [2, 3, 4, 5, 13, 14, 15] and [21, Theorem 6.1].

In this paper we prove the following theorem:

Theorem. Finite graphs have unique hyperspace C2(X).

2. The hyperspaces C2([0, 1]) and C2(S1)

A map is a continuous function. The unit circle in the euclidean plane E2

is denoted by S1. Given a subset A of the real line E1 and two real numbers
s and t let s+ tA = {s+ ta ∈ E1 : a ∈ A}. A connected space Y is said to be
unicoherent if A∩B is connected for every pair of closed connected subsets A
and B such that Y = A ∪B. The exponential map e : E1 → S1 is defined by
e(t) = (cos(t), sin(t)). Given a connected space Y , a map f : Y → S1 is said
to be inessential provided that there is a map g : Y → E1 such that f = e◦g.
It is known that if Y is a connected, locally connected metric space, then Y is
unicoherent if and only if each map f : Y → S1 is inessential ([11, Theorems
2 and 3]).

Lemma 2.1. [0, 1]4 − {z} is unicoherent for each z ∈ [0, 1]4.

Proof. Let z ∈ [0, 1]4. It is easy to show that [0, 1]4 − {z} can be put
as the union of two contractible closed subsets A and B such that A ∩ B
is connected. Let f : [0, 1]4 − {z} → S1 be a map. Then f |A and f |B
are homotopic to a constant. By the main result of [22], f |A and f |B are
inessential. Thus, there exist maps gA : A → E1 and gB : B → E1 such
that f |A = e ◦ gA and f |B = e ◦ gb. Fix a point p ∈ A ∩ B. Adding
an integer multiple of π to gA it is possible to assume that gA(p) = gB(p).
Since A ∩ B is connected, gA|A ∩ B = gB|A ∩ B. Thus there exists a map
g : [0, 1]4 − {z} → E1 which extends both maps gA and gB . This shows that
f = e ◦ g, so f is inessential. By ([11, Theorems 2 and 3]) we can conclude
that [0, 1]4 − {z} is unicoherent.



THE HYPERSPACE C2(X) FOR A FINITE GRAPH X IS UNIQUE 349

The following lemma and its proof was privately communicated to the
author by R. Schori.

Lemma 2.2. (R. Schori) C2([0, 1]) is homeomorphic to [0, 1]4.

Proof. Let D1 = {A ∈ C2([0, 1]) : 1 ∈ A} and D1
0 = {A ∈ C2([0, 1]) :

0, 1 ∈ A}. In order to prove the lemma, we are going to show that C2([0, 1])
is homeomorphic to Cone(D1), D1 is homeomorphic to Cone (D1

0) and D1
0 is

homeomorphic to [0, 1]2.
Let f : Cone (D1) → C2([0, 1]) be given by f(A, t) = (1 − t)A. Since

f(A, 1) = {0} for each A ∈ C2([0, 1]), f is a well defined map. In order to
see that f is one-to-one, suppose that f(A, t) = f(B, s). Since 1 ∈ A ∩ B,
1 − t = max(1 − t)A and 1 − s = max(1 − s)B. This implies that t = s.
In the case that t = s = 1, (A, t) represents the same element as (B, s) in
Cone(D1). Hence, we may assume that t < 1. Since (1 − t)A = (1 − t)B, it
follows that A = B. Therefore, f is one-to-one. Given A ∈ C2([0, 1])−{{0}},
let t = 1 − maxA. Then, max( 1

1−tA) = 1. Thus 1
1−tA ∈ D1 and A =

f( 1
1−tA, t). This completes the proof that f is bijective. Therefore, Cone(D1)

is homeomorphic to C2([0, 1]).
Now, let g : Cone(D1

0)→ D1 be given by g(A, t) = t+ (1− t)A. Proceed-
ing as before, it can be seen that g is a homeomorphism. Therefore, D1 is
homeomorphic to Cone(D1

0).
Let T = {(a, b) ∈ E2 : 0 ≤ a ≤ b ≤ 1} and let S be the space obtained by

identifying the diagonal ∆ = {(a, b) ∈ T : a = b} of T to a point. Note that S
is homemomorphic to [0, 1]2. Let h : T → D1

0 be given by h(a, b) = [0, a]∪[b, 1].
Then h is continuous and h(a, b) = h(c, d) if and only if (a, b) = (c, d) or a = b
and c = d. This implies that there is a homeomorphism between S and D1

0.
This completes the proof of the lemma.

Lemma 2.3. C2([0, 1]) is not homeomorphic to C2(S1).

Proof. By Lemma 2.2, C2([0, 1]) is homeomorphic to [0, 1]4. By
Lemma 2.1, C2([0, 1])−{A} is unicoherent for each A ∈ C2([0, 1]). In order to
prove this lemma we are going to show that C2(S1)−{S1} is not unicoherent.
This will be made by defining an essential map f : C2(S1)− {S1} → S1.

Let A ∈ C2(S1)− {S1}. We consider two cases:

Case 1. If A is connected, then A is a subarc of S1. Let zA be the middle
point of the arc S1 −A and let f(A) = (zA)2.

Case 2. If A is not connected, then the complement of A in S1 consists
of two open subarcs I and J . Let p and q be the respective middle points of
I and J , and let r and s be the respective lengths of I and J . Let α and β
be real numbers such that |α− β| ≤ π, p = e(α) and q = e(β). Thus, let

f(A) =

{
e(2(αr + βs− sπ)/(r + s)), if α < β,
e(2(αr + βs− rπ)/(r + s)), if β < α.
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In this case, it is easy to check that f(A) does not depend on the choice
of α and β, even when |α− β| = π.

It is also easy to show that f is continuous in each one of the two sets
where f is defined. Finally, to conclude that f is continuous, we only need to
check that if A is a connnected element of C2(S1) and {An}∞n=1 is a sequence
of disconnected elements of C2(S1) such that An → A, then f(An)→ f(A).

Let zA be the middle point of the arc S1−A. Suppose that zA = e(α) for
some real number α. For each n ≥ 1, let In, Jn, pn, qn, rn and sn be as before
for the set An. Since An → A, we may assume that cl(In) → cl(S1 − A),
pn → zA, rn → (the length of the subcontinuum cl(S1 − A)), αn → α and
sn → 0. Thus, f(An)→ e(2α) = (zA)2 = f(A). Therefore, f is continuous.

Let S = {A ∈ C(S1) : A is connected and length(A) = π}. Let g : S → S1

be given by g(A) = the middle point of (S1−A). Then g is a homeomorphism.
Since f ◦ g−1 : S1 → S1 is the map f ◦ g−1(z) = z2, this map is essential.
Therefore, f is essential. This completes the proof of the theorem.

3. Dimension in C2(X) for a finite graph X

From now on, then letter X will denote a finite (connected) graph. Then
in X are defined segments (edges) and vertices. The vertices of X are the end
points of the segments of X . We are interested in having as few subgraphs as
possible, so we assume that each vertex of X is either an end point of X or
a ramification point of X . Since this convention is not applicable to a simple
closed curve, we assume that X is not a simple closed curve, unless we say
the contrary. With this restriction two end points of a segment of X may
coincide and such a “segment” is a simple closed curve. We also assume that
the metric d in X is the metric of arc length and each segment of X has length
equal to one. For each segment J of X , we identify J with a closed interval
[(0)J , (1)J ]. Notice that it is possible that (0)J = (1)J , in this case J will be
named a loop of X , the elements of J are denoted by (s)J , where s ∈ [0, 1], we
write simply s if it causes no confusion. Thus, in X there are only three kind
of segments, namely: loops, segments that contains end points and segments
joining ramification points. The set of ramification points of X is denoted by
R(X).

By a subgraph of X we mean a connected subgraph of X (the empty set
and the sets consisting of exactly one vertex of X are considered subgraphs
of X). A fine subgraph is a subgraph S of X such that S is acyclic and S
does not contain end points of X . The order of a point p in X is denoted by
ord(p) or ordX(p) when it is necessary to make explicit the graph X . Two
different vertices p and q of X are said to be adjacent provided that there is
a segment J of X such that p and q are the end points of J .

If A ∈ 2X and ε > 0, let DX(ε, A) = {p ∈ X : there exists a point a ∈ A
such that d(a, p) ≤ ε}, NX(ε, A) = {p ∈ X : there exists a point a ∈ A such
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that d(a, p) < ε}, and if H(X) is one hyperspace of X , let BH(X)(ε, A) =
{B ∈ H(X) : H(A,B) < ε}.

For a nonempty fine subgraph S of X , let MS = {B ∈ C(X) : S ⊂ B ⊂
DX(1, S) and B ∩ NX(1, S) is connected}. In the case that S is of the form
{p}, we write Mp instead M{p}. For the case that we take S = ∅ and J is a

segment of X , let MJ
∅ = {A ∈ C(X) : A ⊂ J}. We only write M∅ instead of

MJ
∅ when it is not necessary to mention the segment J .

Given a nonempty fine subgraph S of X , let I1, . . . , Ir be the segments
of X such that, for each i, Ii intersects S at exactly one of the end points of
Ii (then Ii is an arc) and let J∗

1 , . . . , J
∗
s be the segments of X such that, for

each j, J∗
j intersects S at exactly the two end points of J∗

j (here the two end

points of J∗
j can agree). Then DX(1, S) = S ∪ I1 ∪ · · · ∪ Ir ∪ J∗

1 ∪ · · · ∪ J∗
s .

This is called the canonical representation of DX(1, S).
In [7, 8, 9], R. Duda, made a very detalied study of the hyperspace C(X)

for a finite graph X . He showed that C(X) is a polyhedron by showing that
the sets of the formMS give a nice decomposition of C(X). In the following
lemma, we summarize some of the known results about the dimension of
C(X). Some other results concerning hyperspaces of finite graphs can be
found in [16, Section 65].

Lemma 3.1. (see [7, 5.2] and [17, Lemma 1.4]) Let S be a nonempty fine
subgraph of X and let DX(1, S) = S∪I1∪· · ·∪Ir∪J∗

1 ∪· · ·∪J∗
s be its canonical

representation, then:

(a) MJ
∅ is homeomorphic to [0, 1]2 for each segment J of X,

(b) the elements in MS are exactly those subcontinua A of X that can
be represented in the form A = S ∪ (

⋃{[(0)Ii
, (a)Ii

] : 1 ≤ i ≤ r}) ∪
(
⋃{[(0)J∗

j
, (c)J∗

j
] ∪ [(d)J∗

j
, (1)J∗

j
] : 1 ≤ j ≤ s}), where 0 ≤ ai ≤ 1 for

each i and 0 ≤ cj ≤ dj ≤ 1 for each j,
(c) MS is homeomorphic to [0, 1]r+2s,
(d) if A ∈ C(X), then dimA(C(X)) = dim(MT ), where T is a fine sub-

graph of X, T ⊂ A and T is maximal with respect to the inclusion,
(e) if A,B ∈ C(X) and A ⊂ B, then dimA(C(X)) ≤ dimB(C(X)),
(f) if T and R are fine subgraphs of X and T ⊂ R 6= T, then dim(MT ) <

dim(MR)

Lemma 3.2. Let X be a finite graph and let A ∈ C2(X). Then:

(a) if A has two components B and C, then dimA(C2(X))= dimB(C(X))+
dimC(C(X)),

(b) if A does not contain ramification points of X, then dimA(C2(X)) = 4,
(c) if A ∈ C(X), then dimA(C2(X)) ≥ dimA(C(X)) + 2 and there exist

B ∈ C2(X) and a map α : [0, 1]→ C2(X) such that B is disconnected,
dimα(t)(C2(X)) = dimA(C(X)) + 2 for each t > 0, α(0) = A and
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α(1) = B. Furthermore, if A contains more than one ramification
point of X, then B contains more than one ramification point of X,

(d) let p be a ramification point of X such that ord(p) = n, let Kp = {A ∈
C2(X) : p ∈ A and p is the only ramification point of X that belongs
to A}. Then C2(X) has dimension equal to n + 2 at each one of the
elements of Kp,

(e) suppose that p is a ramification point of X and ord(p) = n, let Let Cp

be the component of X − (R(X)−{p}) that contains p, let Dp = {A ∈
C2(X) : p ∈ A ⊂ Cp}. Then C2(X) has dimension equal to n + 2 at
each one of the elements of Dp and Dp can be separated by a closed (in
Dp) subset of dimension less than or equal to n,

(f) if A contains more than one ramification point of X, then there exists
a map α : [0, 1] → C2(X) such that α(0) = A, dimα(s)(C2(X)) ≥
dimα(t)(C2(X)) for every s ≤ t, α(1) contains exactly one ramification
point and dimA(C2(X)) > dimα(1)(C2(X)).

Proof. (a) Suppose that B and C are the components of A. Let ε =
min{d(b, c) : b ∈ B and c ∈ C}. Given A1 ∈ BC2(X)(ε/2, A), there exist
B1 ∈ BC(X)(ε/2, B) and C1 ∈ BC(X)(ε/2, C) such that B1 and C1 are the
components of A1. Clearly, the map A1 → (B1, C1) is a homeomorphism
from BC(X)(ε/2, A) onto BC(X)(ε/2, B) × BC(X)(ε/2, C) ⊂ C(X) × C(X).
Since C(X) is a polyhedron ([7]), dim(B,C)(C(X)×C(X)) = dimB(C(X)) +
dimC(C(X)). Therefore, dimA(C2(X)) = dimB(C(X)) + dimC(C(X)).

(b) Suppose that A does not contain ramification points. Then each
component of A is contained in the interior of a segment of X . We analyze
two cases: the first case is when A is contained in one segment J of X . In this
case, there exists and arc J1 such that A ⊂ intX (J1) ⊂ J1 ⊂ J . Thus C2(J1) is
a closed neighborhood of A in C2(X). By Lemma 2.2, C2(J1) is homeomorphic
to [0, 1]4. Thus, dimA(C2(X)) = 4. The second case is when A intersects two
segments J and L of X . In this case, each one of the components A1 and A2

of A is a subcontinuum of X without ramification points. This implies that
each Ai is a subarc of the interior of some segment of X . This implies that
dimAi

(C(X)) = 2. According to (a), we conclude that dimA(C(X)) = 4.

(c) Let n = dimA(C(X)). By Lemma 3.1 (d), there exists a fine subgraph
S of X such that A ∈ MS , and dim(MS) = n (then MS is homeomorphic
to [0, 1]n, by Lemma 3.1 (c)). We analyze four cases:

Case 1. A contains a cycle and S 6= ∅. Then there exists a segment J
of X such that J ⊂ A, J is not a segment of S and (A − J) ∪ {(0)J , (1)J}
is connected. We claim that the two end points of J belong to S. Since
A ⊂ DX(1, S), then at least one end point of J belongs to S. Sup-
pose to the contrary that J contains another end point q that does not
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belong to S. Since (A − J) ∪ {(0)J , (1)J} is connected, q is a ramifica-
tion point of X . Let T = S ∪ J . Then T is a fine subgraph of X
and A ⊂ DX(1, T ). By Lemma 3.1 (f), dim(MS) < dim(MT ). Since
A − A ∩ NX(1, S) is a finite set and A is nondegenerate, A ∩ NX(1, S) is
dense in A and A ∩ NX(1, S) ⊂ A ∩ NX(1, T ) ⊂ A, then A ∩ NX(1, T ) is
connected. Thus A ∈ MT . This implies that dimA(C(X)) ≥ dim(MT ) > n
which is a contradiction. Therefore, both end points of J belong to S. Let
L = [( 1

3 )J , (
2
3 )J ]. It is easy to prove that the set M = {D ∈ MS : D ∩ J ⊂

[(0)J , (
1
3 )J ] ∪ [( 2

3 )J , (1)J ]} is homeomorphic to [0, 1]n. Let z = ( 1
2 )J . Let

K = {E ∈ C([( 1
3 )J , (

2
3 )J ]) : z ∈ E}. Then K is homeomorphic to [0, 1]2. Let

f : M×K → C2(X) be given by f(D,E) = D ∪ E. Clearly, f is a one-to-
one map and f((A − J) ∪ [(0)J , (

1
3 )J ] ∪ [( 2

3 )J , (1)J ], L) = A. Thus there is a
(n+ 2)-cell in C2(X) that contains A. Hence dimA(C2(X)) ≥ n+ 2.

Let A0 = (A − J) ∪ [(0)J , (
1
3 )J ] ∪ [( 2

3 )J , (1)J ] and let α : [0, 1] → C2(X)

be given by α(t) = A0 ∪ [(t 12 + (1 − t)( 1
3 ))J , (t

1
2 + (1 − t)( 2

3 ))J ]. Then
α(0) = A, for each t > 0, α(t) is disconnected and, by (a), dimα(t)(C2(X)) =
dimA0

(C(X))+2. Notice that A0 ∈ MS, this implies that n ≤ dimA0
(C(X)).

Since A0 ⊂ A, we conclude that dimA0
(C(X)) = n (Lemma 3.1 (e)). There-

fore, dimα(t)(C2(X)) = n+ 2 for each t > 0.
Let B = α(1).

Case 2. A does not contain cycles, S 6= ∅ and A 6= S. Then there
exist a segment J of X and a number t0 > 0 such that if L = [(0)J , (t0)J ]
and A1 = (A − L) ∪ {(0)J}, then A1 is a subcontinuum of X , A = A1 ∪ L
and L ∩ S = {(0)J}. If (1)J ∈ S, there exists t1 ∈ [0, 1] such that A =
(A− J) ∪ L ∪ [(t1)J , (1)J ] and t0 < t1. Let

M1 =

{
{D ∈MS : D ∩ J ⊂ [(0)J , (

t0
2 )J ] ∪ [( t0+t1

2 )J , (1)J ]}, if (1)J ∈ S,
{D ∈ MS : D ∩ J ⊂ [(0)J , (

t0
2 )J ]}, if (1)J /∈ S.

It is easy to check that M1 is homeomorphic to [0, 1]n. Let K = {E ∈
C([( t0

2 )J , (t0)J ]) : ( 3t0
4 )J ∈ E}. Then K is homeomorphic to [0, 1]2. Let f :

M1×K → C2(X) be given by f(D,E) = D∪E. Let A0 = A− (( t0
2 )J , (t0)J ].

Clearly, f is a one-to-one map and f(A0, [(
t0
2 )J , (t0)J ]) = A. Thus there is a

(n+ 2)-cell in C2(X) that contains A. Hence dimA(C2(X)) ≥ n+ 2.
Let α : [0, 1] → C2(X) be given by α(t) = A0 ∪ [(t( 3t0

4 ) + (1 −
t) t0

2 )J , (t(
3t0
4 ) + (1− t)t0)J ].

Then α(0) = A, for each t > 0, α(t) is disconnected and dimα(t)(C2(X)) =
dimA0

(C(X)) + 2, by (a). Notice that A0 ∈ M1, this implies that
n ≤ dimA0

(C(X)). Since A0 ⊂ A, we conclude that dimA0
(C(X)) = n

(Lemma 3.1 (e)). Therefore, dimα(t)(C2(X)) = n+ 2 for each t > 0.
Let B = α(1).

Case 3. A = S (then A does not contain cycles and S 6= ∅). Let p be
an end point of S if S is not degenerate, and let p be such that S = {p}, if
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S is degenerate. Choose a segment J of X such that p = (0)J and J is not a
segment of S. Let

M1 =

{
{D ∈MS : D ∩ J ⊂ {p} ∪ [( 2

3 )J , (1)J ]}, if (1)J ∈ S,
{D ∈MS : D ∩ J = {p}}, if (1)J /∈ S.

It is easy to check thatM1 is homeomorphic to [0, 1]n−1. Let S = {(a, b) ∈
E2 : 0 ≤ a ≤ b ≤ 1} and let T be the cone over S. Then T is a 3-cell. Let
f :M1 × T → C2(X) be given by

f(D, ((a, b), t)) =

= D ∪ [(0)J , ((1− t)/6)J ] ∪ [((2 + a)(1− t)/6)J , ((2 + b)(1− t)/6)J ].

Clearly, f is a well defined one-to-one map and f(A, ((0, 0), 1)) = A. Since
M× T is homeomorphic to [0, 1]n+2, we conclude that dimA(C2(X)) ≥ n+2.

Let α : [0, 1] → C2(X) be given by α(s) = f(A, ((0, s), 1 − s)). Then
α(0) = A, for each t > 0, α(s) is disconnected and dimα(s)(C2(X)) =
dimA∪[(0)J ,(s/6)J ](C(X)) + 2, by (a). Notice that A ∪ [(0)J , (s/6)J ] ∈ MS,
this implies that n ≤ dimA∪[(0)J ,(s/6)J ](C(X)). Given a fine subgraph T of
X such that T ⊂ A ∪ [(0)J , (s/6)J ], we have that T ⊂ S. By Lemma 3.1 (f),
dim(MT ) ≤ dim(MS) = n. Therefore, dimA∪[(0)J ,(s/6)J ](C(X)) = n. There-
fore, dimα(s)(C2(X)) = n+ 2 for each s > 0.

Let B = α(1).

Case 4. S = ∅. In this case n = 2 and there exists a segment J of
X such that MS = {D ∈ C(X) : D ⊂ J}. Since dimA(C(X)) = 2, A
does not contain any ramification point of X and A = [(a)J , (b)J ] for some
0 ≤ a ≤ b ≤ 1. By (b), dimA(C2(X)) = 4 = dimA(C(X)) + 2. If A 6= J , we
may assume that b < 1. In this subcase, let α : [0, 1] → C2(X) be given by
α(t) = A ∪ {(t( b+1

2 ) + (1 − t)b)J} and let B = α(1). If A = J , then X is an
arc (remember that we are assuming that X is not a simple closed curve). In
this subcase, let α : [0, 1] → C2(X) be given by α(t) = {( t

2 )J} ∪ [(t)J , (1)J ]
and let B = α(1).

This completes the proof of (c).

(d) Let A ∈ Kp be such that A is disconnected, let A = B ∪ C, where B
and C are the components of A. Suppose that p ∈ B. Then C does not contain
ramification points of X . On the other hand, the only two acyclic subgraphs
of X that can be contained in B are ∅ and {p}. If q is a vertex of X such that
q ∈ B and d(p, q) = 1, then q is not a ramification point of X , so q is an end
point of X . This implies that B ∈Mp. Hence, dimB(C(X)) = dim(Mp) = n
(By Lemma 3.1 (c) and (d)). Therefore, dimA(C2(X)) = dimB(C(X)) +
dimC(C(X)) = n+2. Notice that Kp∩C(X) ⊂Mp, so dim(Kp∩C(X)) = n.
Thus Kp can be put as the union of one closed (in Kp) set Kp ∩ C(X) and
an open (in Kp) set Kp − C(X), where both sets are of dimension less than
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or equal to n + 2. Since open sets in metric spaces are Fσ , Theorem III 2 of
Chapter III of [12] implies that dim(Kp) = n+ 2.

Let K = {A ∈ C2(X) : A does not have any ramification point of X
different from p} = Kp ∪ {A ∈ C2(X) : A does not have any ramification
point of X}. Then K is an open subset of C2(X) such that it is the union of
an (n+ 2)-dimensional closed (in K) subset and a 4-dimensional open subset.
This implies that dimA(K) ≤ n+2 for each A ∈ K. Since K is open in C2(X),
dimA(C2(X)) ≤ n+ 2 for each A ∈ Kp.

Given A ∈ Kp, dimA(C2(X)) ≤ n+ 2. In the case that A is disconnected,
we have shown that dimA(C2(X)) = n+ 2. In the case that A is connected,
by (c) dimA(C2(X)) ≥ dimA(C(X)) + 2. Therefore, dimA(C2(X)) = n+ 2.

(e) Since Dp ⊂ Kp, by (d), C2(X) has dimension equal to n+2 at each one
of the elements of Dp. Let J1, . . . , Js be the components of Cp−{p}. Since p is
a ramification point, s ≥ 2. For each j ∈ {1, . . . , s}, let Cj = {A ∈ Dp : A has
one component contained in Jj}. Since each Jj is open in X , it follows that
each Cj is open in Dp. Thus Dp−(Dp∩C(X)) = C1∪· · ·∪Cs is a decomposition
of Dp − (Dp ∩ C(X)). On the other hand, Dp ∩ C(X) is contained in Mp.
Since dim(Mp) = n, the proof of (e) is complete.

(f) First, we are going to see that it is enough to consider the case when A
is disconnected. Thus, assume that A is connected. By (c), there exist A0 ∈
C2(X) and a map β : [0, 1] → C2(X) such that A0 is disconnected, A0 has
more that one ramification point of X and dimβ(t)(C2(X)) = dimA(C(X))+2
≤ dimA(C2(X)) for each t > 0, β(0) = A and β(1) = A0. Hence, if we
can prove (f) for the set A0, combining the resulting map with β, we would
have the corresponding map for A. Therefore, we may assume that A is
disconnected.

Let B and C be the components of A. We analyze two cases:

Case 1. B has two different ramification points p and q of X . Since B
is connected, we may assume that p and q are the end points of a segment J
of X such that J ⊂ B. Fix a point z ∈ C and let y be a point of X such that
there is an arc λ joining z and y with λ∩B = ∅ and λ−{z} does not contain
vertices of X . By [16, Theorem 15.3], there exists a map β : [0, 1] → C(X)
such that β(0) = B, β( 1

2 ) = J , β(1) = {p} and β(t) ⊂ β(s) if s ≤ t. Using
[16, Theorem 15.3] again, there exists a map γ : [0, 1] → C(X) such that
γ(0) = C, β( 1

2 ) = {z}, γ(1) = {y}, β(t) ⊂ β(s) if s ≤ t ≤ 1
2 and γ(s) ⊂ λ−{z}

for each s ∈ ( 1
2 , 1]. Let α : [0, 1] → C2(X) be given by α(s) = β(s) ∪ γ(s).

Notice that α(s) is disconnected for each s. If s ≤ t, by (a) and Lemma 3.1
(e), dimα(s)(C2(X)) = dimβ(s)(C(X)) + dimγ(s)(C(X)) ≥ dimβ(t)(C(X)) +
dimγ(t)(C(X)) = dimα(t)(C2(X)). Since dimα( 1

2
)(C2(X)) = dimJ(C(X)) +

dim{z}(C(X)) > dim{p}(C(X)) + dim{y}(C(X)) = dimα(1)(C2(X)), we have
completed the proof of (f) for this case.
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Case 2. B contains a ramification point p of X and C contains a ram-
ification point q of X . Let y be a point of X such that there is an arc λ
joining q and y with λ ∩ B = ∅ and λ − {q} does not contain vertices of
X . By [16, Theorem 15.3], there exists a map β : [0, 1] → C(X) such that
β(0) = B, β(1) = {p} and β(t) ⊂ β(s) if s ≤ t. Using [16, Theorem 15.3]
again, there exists a map γ : [0, 1] → C(X) such that γ(0) = C, γ( 1

2 ) = {q},
γ(1) = {y}, γ(t) ⊂ γ(s) if s ≤ t ≤ 1

2 and γ(s) ⊂ λ − {q} for each

s ∈ ( 1
2 , 1]. Let α : [0, 1]→ C2(X) be given by α(s) = β(s) ∪ γ(s). Notice

that α(s) is disconnected for each s. If s ≤ t, by (a) and Lemma 3.1 (e),
dimα(s)(C2(X)) = dimβ(s)(C(X)) + dimγ(s)(C(X)) ≥ dimβ(t)(C(X)) +
dimγ(t)(C(X)) = dimα(t)(C2(X)). Since dimα( 1

2
)(C2(X)) = dimβ( 1

2
)(C(X))+

dim{q}(C(X)) > dim{p}(C(X)) + dim{y}(C(X)) = dimα(1)(C2(X)), we have
completed the proof of (f) for this case.

4. The main result

Theorem 4.1. Finite graphs have unique hyperspace C2(X).

Proof. Let X and Y be continua such that X is a finite graph (here,
the continuum X could be a simple closed curve) and C2(X) is homeomor-
phic to C2(Y ). By [20, Theorem 6.1], Y is locally connected. If Y is not a
finite graph, then dim(C(Y )) =∞ ([23, Theorem 5.1]). Thus dim(C2(X)) =
dim(C2(Y )) = ∞. By ([7]), dim(C(X)) is finite. Let n = dim(C(X)). By
Lemma 3.2 (a), dimA(C2(X)) ≤ 2n for each A ∈ C2(X)−C(X). Thus C2(X)
is the union of the finite dimensional open (then Fσ) set C2(X)− C(X) and
the finite dimensional closed set C(X). By Theorem III 2, Chapter III of
[12], C2(X) is finite dimensional. This contradiction proves that Y is a finite
graph.

Let h : C2(X)→ C2(Y ) be a homeomorphism.
If X does not contain ramification points, dimA(C2(X)) = 4 for each

A ∈ C2(X), by Lemma 3.2 (b). This implies that dimB(C2(Y )) = 4 for each
B ∈ C2(Y ). If Y contains a ramification point q such that ord(q) = n ≥ 3,
by Lemma 3.2 (d), dim{q}(C2(Y )) = n + 2 ≥ 5. This contradiction proves
that C2(Y ) does not contain ramification points. Thus each of the continua
X and Y is either homeomorphic to [0, 1] or to S1. By Lemma 2.3, X is
homeomorphic to Y .

Therefore, we may assume that each of the continua X and Y contains
ramification points.

Claim 4.2. If A ∈ C2(X) and A contains exactly one ramification point
p of X , then B = h(A) contains exactly one ramification point of Y .

Notice that by Lemma 3.2 (d) dimA(C2(X)) ≥ 5. This implies that
dimB(C2(Y )) ≥ 5. By Lemma 3.2 (b), B contains ramification points of Y .

Suppose that B contains more than one ramification point of Y . By
Lemma 3.2 (f), there exists a map β : [0, 1] → C2(Y ) such that β(0) = B,
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dimβ(s)(C2(Y )) ≥ dimβ(t)(C2(Y )) for every s ≤ t, β(1) contains exactly
one ramification point of Y and dimB(C2(Y )) > dimβ(1)(C2(Y )). Let

α : [0, 1] → C2(X) be given by α(s) = h−1(β(s)). Then α(0) = A,
dimα(s)(C2(X)) ≥ dimα(t)(C2(X)) for every s ≤ t, dimA(C2(X)) =
dimB(C2(Y )) > dimβ(1)(C2(Y )) = dimα(1)(C2(X)) and dimα(1)(C2(X)) =
dimβ(1)(C2(X)) ≥ 5 (Lemma 3.2 (d)), so α(1) contains at least one ramifica-
tion point of X (Lemma 3.2 (b)).

Let n = ord(p), let Kp = {D ∈ C2(X) : p ∈ D and p is the only
ramification point of X that belongs to D}. By Lemma 3.2 (d), C2(X)
has dimension equal to n + 2 at each one of the elements of Kp. In par-
ticular, dimA(C2(X)) = n + 2. Since dimA(C2(X)) > dimα(1)(C2(X)),
α(1) /∈ Kp. Since, for each s ∈ [0, 1], dimα(s)(C2(X)) ≥ dimα(1)(C2(X)) ≥ 5,
by Lemma 3.2 (b), we conclude that α(s) contains ramification points of X
for each s ∈ [0, 1]. Let K = {D ∈ C2(X) : D contains ramification points
of X}. Then α(s) ∈ K for each s ∈ [0, 1]. Notice that Kp is an open subset
of K. Let s0 = min{s ∈ [0, 1] : α(s) /∈ Kp}. Since A = α(0) ∈ Kp, s0 > 0.
Notice that α(s0) /∈ Kp. Fix a sequence {sn}∞n=1 of elements in [0, s0) such
that sn → s0. Since p ∈ α(sn) for each n ≥ 1, p ∈ α(s0). Thus, there exists
another ramification point u of X such that u ∈ α(s0).

In the case that α(s0) has a component E such that p, u ∈ E, let S be
a maximal fine subgraph X that is contained in E and contains p and u.
Then E ∈ MS. By Lemmas 3.1 and 3.2, dimA(C2(X)) ≥ dimα(s0)(C2(X)) ≥
dimE(C(X)) + 2 ≥ dimMS + 2 > dimMp + 2 = n+ 2 = dimA(C2(X)). This
contradiction shows that no component of α(s0) can contain both points p
and u. In particular, α(s0) is disconnected.

Suppose that E and F are the components of α(s0). By the para-
graph above, we may assume that p ∈ E and u ∈ F . By Lemma 3.2 (a),
dimA(C2(X)) ≥ dimα(s0)(C2(X)) = dimE(C(X))+dimF (C(X)) ≥ dimMp+
dimMu > n+2 = dimA(C2(X)). This contradiction completes the proof that
B contains exactly one ramification point of Y .

By symmetry, we conclude that if A ∈ C2(X), then A contains exactly one
ramification point of X if and only if h(A) contains exactly one ramification
point of Y .

Given a ramification point p of X , let Kp = {A ∈ C2(X) : p ∈ A and p is
the only ramification point of X that belongs to A}. For a ramification point
q of Y , define the corresponding set K′

q in C2(Y ). Let Cp be the component
of X − (R(X) − {p}) that contains p, let Dp = {A ∈ C2(X) : p ∈ A ⊂ Cp}.
Let J1, . . . , Jr be the segments of X which do not contain p. For each
i ∈ {1, . . . , r}, let Di = {A ∈ C2(X) : p ∈ A, A ⊂ Cp ∪ intX(Ji), A ∩ Cp 6= ∅
and A ∩ intX(Ji) 6= ∅}.

Claim 4.3. The components of Kp are the sets Dp,D1, . . . ,Dr.
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Let A ∈ Kp. If A is connected, then A is a connected subset of
X − (R(X)− {p}) that contains p. Thus A ⊂ Cp, so A ∈ Dp. Now, sup-
pose that A is not connected and A is not contained in Cp. Let B and C
be the components of A, where p ∈ B. Then B ⊂ Cp. This implies that C
is not contained in Cp and C does no contain any ramification point of X .
Thus C is contained in the interior of some segment J of X . If p ∈ J ,
then C ⊂ int X(J) ⊂ Cp which is a contradiction. Hence, p /∈ J and
J = Ji for some i ∈ {1, . . . , r}. Therefore, A ∈ Di. We have proved that
Kp ⊂ Dp ∪ D1 ∪ · · · ∪ Dr.

Since the unique ramification point in the set Cp∪ intX(J1)∪· · · ∪ intX(Jr)
is p, it follows that Dp∪D1∪· · ·∪Dr ⊂ Kp. Therefore, Kp = Dp∪D1∪· · ·∪Dr.

Since each one of the sets Cp, intX (J1), . . . ,intX(Jr) is open in X , each
one of the sets Dp,D1, . . . ,Dr is open in Kp.

Let i ∈ {1, . . . , r}. Since Cp∩ intX(Ji) = ∅, Dp ∩ Di = ∅. If j 6= i, then
(Cp∪ intX(Ji))∩ intX(Jj) = ∅. This implies that Di ∩Dj = ∅. Therefore, the
sets Dp,D1, . . . ,Dr are pairwise disjoint.

For each i ∈ {1, . . . , r}, choose a point pi ∈ intX(Ji).
Notice that {p, pi} ∈ Di. Since {p} ∈ Dp, we conclude that the sets

Dp,D1, . . . ,Dr are nonempty.
Let i ∈ {1, . . . , r}. Let A ∈ Di. Since A intersects the disjoint open sets

Cp and intX(Ji) and it is contained in their union, A is disconnected. Let B
and C be the components of A. Suppose that p ∈ B. Then B ⊂ Cp and C ⊂
intX(Ji). Let α : [0, 1] → C(X) be a map such that α(0) = {pi}, α(1) = C
and α(s) ⊂ intX(Ji) for each s ∈ [0, 1], such a map α can be constructed
by using an arc joining pi to a point c of C inside intX (Ji) and then taking
an order arc ([16, Theorem 15.3]) from {c} to C. Let β : [0, 1] → C(X) be
an order arc from {p} to B. Then the map γ : [0, 1] → C2(X) given by
γ(s) = α(s) ∪ β(s) is a path that joins the set {p, pi} to A in the set Di.
Therefore, Di is connected.

In a similar way it can be proved that any element in Dp can be joined
by a path in Dp to the element {p}.

This completes the proof that the components of Kp are the sets Dp,
D1, . . . ,Dr.

Claim 4.4. If i ∈ {1, . . . , r} and ord(p) = n, then Di contains an open
(in C2(X)) dense (in Di) subset U which is homeomorphic to (0, 1)n+2.

It can be shown that there exists a homeomorphism f : [0, 1]n → Mp

such that f((0, 1)n) is an open subset of C(X) and, for each z ∈ (0, 1)n,
f(z) does not contain any vertex of X different from p, then f(z) ⊂ Cp.
Let E = [0, 1]2, if Ji is not a loop and let E = [0, 1]2/{(0, 0), (1, 0)} (the
continuum obtained from [0, 1]2, by identifying (0, 0) and (1, 0)), if Ji is a
loop. LetW = {A ∈ C(Ji) : A−{(0)Ji

, (1)Ji
} is connected}. Notice that if Ji

is not a loop, then W = C(Ji), soW is homeomorphic to [0, 1]2 = E , and if Ji
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is a loop, thenW is homeomorphic to [0, 1]2/{(0, 0), (1, 0)} = E . Therefore, it
is possible to define a homeomorphism g : E → W such that g((0, 1)2) = Ei,
where Ei = {E ∈ C(X) : E ⊂ Ji − {(0)Ji

, (1)Ji
} and E is nondegenerate}.

Notice that Ei is open in C(X). Let U = {D∪E : D ∈ f((0, 1)n) and E ∈ Ei}.
Then U is an open subset of C2(X). Let ψ1 : [0, 1]n × (0, 1)2 → C2(X) be
given by ψ1(s, t) = f(s) ∪ g(t). Then ψ1 is one-to-one and continuous. Let
ψ = ψ1|(0, 1)n × (0, 1)2 : (0, 1)n × (0, 1)2 → U . In order to check that ψ−1

is continuous, take and element D ∪ E ∈ U , where D = f(s) ∈ f((0, 1)n)
and E ∈ Ei. Let E0 be a subarc of Ji such that E ⊂ intX(E0). Then
G = {G ∈ C(E0) : diameter(G) ≥ (diameter(E0))/2} is a closed neighborhood
of E. Let φ = ψ1|[0, 1]n × g−1(G) : [0, 1]n × g−1(G) → C2(X). Then φ is a
one-to-one continuous function. Thus φ is a homeomorphism on its image
which is a closed neighborhood of D∪E. Hence φ−1|φ([0, 1]n×g−1(G))∩U =
ψ−1|ψ1([0, 1]n × g−1(G)) ∩ U is continuous. Since φ(([0, 1]n × g−1(G)) ∩ U is
a neighborhood of D ∪ E, we conclude that ψ−1 is continuous. Therefore, ψ
is a homeomorphism.

Let A ∈ Di, let B and D be the components of A, where p ∈ B. Then
B ⊂ Cp and D ⊂ intX(Ji). Since B is connected, p ∈ B ⊂ Cp, then B ⊂
DX(1, {p}) and B∩NX (1, {p}) is equal to B minus a (possibly empty) subset
of end points of X . Thus B ∩NX(1, {p}) is connected. Hence, B ∈ Mp thus
B ∈ clC(X)(f((0, 1)n). On the other hand D ∈ Ei or D is a degenerate subset
of intX(Ji). In any case D ∈ clC(X)(Ei). This implies that A ∈ clC2(X)(U).
Therefore, the proof of Claim 4.4 is complete.

Claim 4.5. For each ramification point p of X , there exists a (unique)
ramification point q of Y such that h(Dp) = D′

q. Symmetrically, for each
ramification point q of Y , there exists a (unique) ramification point p of X
such that h(Dp) = D′

q . Furthermore, ordX(p) = ordY (q). Therefore, there is
a bijection between R(X) and R(Y ).

Let n = ordX(p). Let B = h({p}). Then, by Claim 4.2, B has ex-
actly one ramification point q of Y , with ordY (q) = n′. By Lemma 3.2 (d),
dim{p}(C2(X)) = n+ 2 and dimB(C2(Y )) = n′ + 2. Thus n = n′. Let C ′

q be
the component of Y − (R(Y )− {q}) that contains q, let D′

q = {D ∈ C2(Y ) :
q ∈ D ⊂ C ′

q}. Let L1, . . . , Ls be the segments of Y that do not contain q.
For each j ∈ {1, . . . , s}, let D′

j = {D ∈ C2(Y ) : q ∈ D, D ⊂ C ′
q∪ intY (Lj),

D ∩ C ′
q 6= ∅ and D∩ intY (Lj) 6= ∅}.

Let R(Y ) = {q1, q2, . . . , qm}, where q1 = q. By Claim 4.3, h(Dp) is a con-
nected subset of K′

q1
∪ . . .∪K′

qs
, the sets h(Dp)∩K′

qj
are pairwise disjoint and

open in h(Dp) and h({p}) ∈ K′
q . Thus h(Dp) ⊂ K′

q . By Claim 4.3, the compo-
nents of K′

q are D′
q , D′

1, . . . ,D′
s. Hence, h(Dp) ⊂ D′

t for some t ∈ {q, 1, . . . , s}.
With a similar reasoning as before, we conclude that h−1(D′

t) ⊂ Dp. There-
fore, h(Dp) = D′

t.
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Suppose that t 6= q. By Claim 4.4, D′
t contains an open (in C2(Y )) dense

(in D′
t) subset U ′ which is homeomorphic to (0, 1)n+2. Let U = h−1(U ′) ⊂

Dp. Then U is open in C2(X), U is dense in Dp and U is homeomorphic to
(0, 1)n+2. By Lemma 3.2 (e) there exists a closed (in Dp) subset H of Dp

such that dim(H) = n and Dp −H = V ∪W , where V and W are nonempty
disjoint open (in Dp) subsets of Dp. Then U − (U ∩H) = (U ∩ V ) ∪ (U ∩W )
is a disconnection of U − (U ∩H). Therefore U , and then (0, 1)n+2, can be
separated by a subset of dimension less than or equal to n. This contradicts
Theorem IV 4 of [12] and proves that t = q.

Therefore, h(Dp) = D′
q . This proves Claim 4.5.

For each ramification point p of X , put k(p) = q, where q is the unique
ramification point of Y such that h(Dp) = D′

q. Then k is a bijection between
R(X) and R(Y ).

Claim 4.6. Let p, x ∈ R(X). Then p and x are adjacent vertices of X if
and only if k(p) and k(x) are adjacent vertices of Y .

By symmetry, we only need to prove the necessity of Claim 4.6. If p
and x are adjacent vertices of X , then {p, x} ∈ clC2(X)(Dp)∩ clC2(X)(Dx).
Thus F = h({p, x}) ∈ clC2(Y )(D′

k(p))∩ clC2(Y )(D′
k(x)). Then there exists a

sequence {Fi}∞i=1 such that Fi → F and Fi ∈ D′
k(p) for each i ≥ 1. Since

k(p) ∈ Fi ⊂ C ′
k(p) ⊂ DY (1, {k(p)}) for each i ≥ 1, k(p) ∈ F ⊂ DY (1, {k(p)}).

Similarly, k(x) ∈ F ⊂ DY (1, {k(x)}). Thus k(p) ∈ DY (1, {k(x)}). This
implies that dY (k(p), k(x)) = 1. Therefore, k(p) and k(x) are adjacent vertices
of Y .

Let R = {A ∈ C2(X) : dimA(C2(X)) = 4} and R′ = {B ∈ C2(Y ) :
dimB(C2(Y )) = 4}. Notice that h(R) = R′. Given two segments J and L
of X , let R({J, L}) = {A ∈ C2(X) : A ⊂ intX(J)∪ intX (L), A ∩ J 6= ∅ and
A ∩ L 6= ∅}. Notice that in the case that J 6= L, A ∈ R({J, L}) implies that
A is disconnected.

Claim 4.7. The components of R are the sets of the form R({J, L}) and
if R({J, L}) = R({J1, L1}), then {J, L} = {J1, L1}.

Combining (b), (d) and (f) of Lemma 3.2, it follows that R = {A ∈
C2(X) : A does not have ramification points of X}. This implies that R =⋃{R({J, L}) : J and L are segments of X}. It is easy to prove that each set
of the form R({J, L}) is open in C2(X). Now suppose that there exists an
element A ∈ R({J, L})∩R({J1, L1}). Since ∅ 6= A∩J ⊂ intX(J1)∪ intX(L1).
This implies that J∩ intX (J1) 6= ∅ or J∩ intX (L1) 6= ∅. Thus J = J1

or J = L1. Hence J ∈ {J1, L1}. Using similar arguments, it follows that
{J, L} = {J1, L1}. In particular the sets of the form R({J, L}) are pairwise
disjoint. It is easy to check that each set of the form R({J, L}) is connected.
This completes the proof of Claim 4.7.
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Claim 4.8. Let p be a ramification point ofX and let J and L be segments
of X , then Dp∩ clC2(X)R({J, L}) 6= ∅ if and only if p ∈ J ∩ L.

Suppose that A ∈ Dp∩ clC2(X)R({J, L}). Then ∅ 6= A∩J ⊂ Cp∩J . This
implies that p ∈ J . Similarly, p ∈ L.

Now, suppose that p ∈ J ∩ L. Fix a point x ∈ intX (J) and choose a
sequence {pn}∞n=1 in intX(L) such that pn → p. Then {p, x} ∈ Dp, {pn, x} →
{p, x} (in C2(X)) and {pn, x} ∈ R({J, L}) for each n ≥ 1. Hence {p, x} ∈ Dp∩
clC2(X)R({J, L}).

Claim 4.9. Let p and p1 be adjacent ramification points of X . Suppose
that the number of segments of X joining p and p1 is equal to S. Then the
number of segments of Y joining k(p) and k(p1) is equal to S.

Let J and L be segments of X . Then J and L join p and p1 if and only if
p, p1 ∈ J ∩ L. By Claim 4.8, this is equivalent to Dp∩ clC2(X)R({J, L}) 6= ∅
and Dp1

∩ clC2(X)R({J, L}) 6= ∅. This implies that the number of components

of R whose closure intersects both sets Dp and Dp1
is S +

(
S
2

)
.

Let S′ be the number of segments of Y joining k(p) and k(p1). Since h
is a homeomorphism, h(R) = R′, h(Dp) = D′

k(p) and h(Dp1
) = D′

k(p1), we

conclude that S +
(
S
2

)
= S′ +

(
S′

2

)
. This implies that S = S′ and completes

the proof of Claim 4.9.

Claim 4.10. Let p be a ramification point of X such that ord(p) = n.
Suppose that the number of loops of X (resp., Y ) containing p (resp., k(p)) is
N (resp., N ′), the number of end points of X (resp., Y ) adjacent to p (resp.,
k(p)) is M (resp., M ′ ) and the number of segments in X (resp., Y ) that joins
p (resp., k(p)) to another ramification point of X (resp., Y ) is R (resp., R′).
Then N = N ′, M = M ′ and R = R′.

Let q = k(p). We know that ordY (q) = n. By Claims 4.6 and 4.9,
R = R′. Notice that n = 2N + M + R and n = 2N ′ + M ′ + R′. Thus
2N + M = 2N ′ + M ′. On the other hand, the number of components of
R whose closure intersects Dp is N +M +R+

(
N+M+R

2

)
and the number of

components of R′ whose closure intersects D′
k(p) is N ′+M ′+R′+

(
N ′+M ′+R′

2

)
.

This implies that N + M + R +
(
N+M+R

2

)
= N ′ + M ′ + R′ +

(
N ′+M ′+R′

2

)
.

Thus N +M = N ′ +M ′. Therefore, N = N ′ and M = M ′.

We are ready to prove that the graphs X and Y are equivalent as graphs
and then they are homeomorphic continua.

Given two different adjacent ramification points p and x inX , let A(p, x)=
{J : J is a segment of X and J joins p and x} and let A′(p, x) = {L : L is
a segment of Y and L joins k(p) and k(x)}. By Claim 4.9, we can choose a
bijection k(p, x) from A(p, x) onto A′(p, x). Given a ramification point p of
X , let B(p) = {J : J is a loop of X and p ∈ J}, B′(p) = {L : L is a loop of Y
and k(p) ∈ L}, C(p) = {J : J is a segment of X that joins p and an end point
of X} and C′(p) = {L : L is a segment of Y that joins k(p) and an end point
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of Y }. By Claim 4.10, it is possible to choose bijections k1(p) : B(p)→ B′(p)
and k2(p) : C(p)→ C′(p).

Let S(X) (resp., S(Y )) be the set of segments of X (resp., Y ). Since
varying the points p and x we obtain disjoint sets A(p, x), B(p) and C(p)
and the union of all of them is S(X), we can define a common extension
K : S(X) → S(Y ) of all the functions of the form k(p, x), k0(p) and k1(p),
and K is a bijection.

Let V(X) (resp., V(Y )) be the set of vertices of X (resp., Y ). Now, we
extend the function k (defined on the ramification points of X) to V(X).
Given an end point x of X , there exists a segment J of X that joins x and a
ramification point p of X . Then K(J) contains exactly one end point y of Y .
Then define k(x) = y. Hence k is a bijection.

Therefore, we have defined a bijection K : S(X)→ S(Y ) and a bijection
k : V(X)→ V(Y ) such that p ∈ J if and only if k(p) ∈ K(J).

This proves that the graphsX and Y are isomorphic as graphs. Therefore,
X is homeomorphic to Y .

5. Questions

Question 5.1. Is Cn([0, 1]) not homeomorphic to Cn(S1) for n ≥ 3?

Question 5.2. Do finite graphs have unique hyperspace Cn(X) for n ≥
3?

Question 5.3. ([6]) Do finite graphs have unique hyperspace Fn(X) for
n ≥ 4?

Question 5.4. Do hereditarily indecomposable continua have unique hy-
perspace F2(X)? And the same question for Fn(X), with n ≥ 3?

By Lemma 2.2, we can say that a model for C2([0, 1]) is [0, 1]4. This is
the motivation for the following problem.

Problem 5.5. Find models for C3([0, 1]) and C2(S1).
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Added in Proof. Question 5.2 has been recently answered, in the
positive, by the author and Question 5.3 has been answered, in the positive,
by the author and E. Castañeda. With respect to Problem 5.5, the author
has shown that C2(S1) is homeomorphic to the cone over the solid torus.
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